This disclosure is protected under United States and/or International Copyright Laws. ©2022 Jetoptera, Inc. All Rights Reserved. A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and/or Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Existing VTOL and STOL propulsors involve rotary wings or tilting rotors or ducted fans. The challenge of any VTOL aircraft is the propulsor of choice. Helicopters are excluded from this discussion, as the ubiquitous choice of low-speed VTOL. The propulsor for the current high-speed V/STOL aircraft in military application relies on tilting, large rotors, such as the V-22 Osprey or on large, fixed ducted fans such as the F-35 fighter jet. The challenge with the latter is that the fixed ducted fan becomes dead weight for 99% of the mission time, when in non-vertical flight segments. This limits the payload capabilities; it is very complex and unaffordable for smaller manned or unmanned applications. The challenge with the V22 rotors is that they are of large footprint, must tilt with high precision yet they still limit the maximum speed due to the limitations of the tip speed of the rotors. The V22 history of development has also shown it has critical flaws that cost a lot of lives. A high-speed enabling VTOL propulsor is needed, one that can propel an aircraft at more than 400 knots. Most eVTOL aircraft employ tilting, multiple propellers which are also noisy and speed limiting due to the very nature of the propellers. Many of the hundreds of the eVTOL platforms proposed use fixed propellers, multiple, distributed for the vertical takeoff and a single pusher propeller for horizontal flight, and they are severely limited in speeds
While engineers are implementing sophisticated and high-cost technologies to enable propellers to maximize their hovering efficiency, present day smaller propellers are suffering from low efficiencies and high costs. The speeds for cargo drones and Urban Air Mobility flying cars (air taxis) are limited to low values, the propellers are noisy and inefficient at those sizes. What is needed is a method of propulsion that can be employed without the shortcomings of the propellers.
This application is intended to describe one or more embodiments of the present invention. It is to be understood that the use of absolute terms, such as “must,” “will,” and the like, as well as specific quantities, is to be construed as being applicable to one or more of such embodiments, but not necessarily to all such embodiments. As such, embodiments of the invention may omit, or include a modification of, one or more features or functionalities described in the context of such absolute terms. In addition, the headings in this application are for reference purposes only and shall not in any way affect the meaning or interpretation of the present invention.
The present embodiments disclosed in this application provide an adaptive propulsive system that operates in conjunction with an air compressor or fan. Rather than seeking to maximize thrust by accelerating a mass of air to the highest velocity possible like a typical turbofan engine, the preferred embodiment of the present invention produces several streams of pressurized air into an array of ejectors and/or simple nozzles creating force used in all phases of flight in a precise sequence for a precise mission section need and in conjunction with lift generating surfaces that enable particular capabilities of the aircraft that uses said propulsive system.
A propulsor according to an embodiment is designed from the principles of thrust augmentation using special ejectors and Upper Surface Blown lift augmentation. The air supply may come from a turbo-compressor, a turbofan or any air compressor that produces, preferably, at least a 1.5:1 pressure ratio supply of air in sufficient quantities.
In
The compressed air can use its own air intake 102 and supply said air via a compressor exit conduit 103 to a 3- or 4-way valve, 104. The valve 104 can serve as distributor of said stream of compressed air from compressor 101 towards a series of conduits 105 leading to various thrust generating devices.
In one embodiment, the compressed air is directed to two conduits that distribute the flow to a series of thrusters 106 called fluidic thrusters, or ejectors, that are aligned with the wing and flaps 108 of an aircraft. At static or low wind conditions this motive air creates a massive amount of entrained secondary air to generate thrust but also creates a wall jet in an adjacent pattern to the flaps 108 and on the suction side of said flaps, hence the name Upper Surface Blown Wing or Flaps. Such flow that was amplified to 5-20 times the flow rate of compressed air can be ejected at speeds between 150 to 300 mph over the flaps 108, generating additional lift by at least 50% compared to the flaps in head wind conditions and generating Lift Coefficients of exceeding 10.0.
The compressed air may be prevented from flowing towards the simple nozzles 107 and expanded to the ambient by the valve 104. The configuration of the valve 104 is such that it only allows the flow to the ejectors 106 system at take-off, landing or hovering (i.e., during vertical flight portion of the mission). The valve 104 can have several positions during flight and can enable the high speed in horizontal flight at higher altitudes by strictly blocking the flow to elements 106 and only allowing flow to nozzles 107.
Moreover, nozzles 107 distribute the efflux resulting from their entrainment of the air in the front and blowing it over the high portion of the flaps and wingspan 108, generating a low-pressure area that creates better circulation. This system would produce results similar to high lift systems or powered lift systems used in the past, except an additional factor of lift generation is introduced by the low pressure area in front of said thrust-augmenting ejectors 106: by the way it is introduced, the motive air from the compressor 101 is generating a depression in front of the thrusters 106 hence facilitating a Boundary Layer Ingestion phenomenon, which allows the entire wing 108 of such system to operate at extremely high angles of attack without stall or separation. Thus, in an example where there is a 1 lb/s flow, with a Pressure Ratio (PR) of 1.8 supplied to four thrust-augmenting ejectors 106 with emerging efflux of 150 mph blown in an adjacent manner to the upper surface of the airfoil and flaps 108, the resulting lift generated would be between 100% higher at very low speed to 25% higher at 100 knots speeds versus the clean wing without the use of such thruster-augmentors. The forward force is still produced by said ejectors 106 but at the same time an additional lift is generated together with the forward thrust, in effect augmenting lift by 2 times in comparison with the “clean” wing. The clean wing can be observed in
In one example the 1 lb/s motive air flow is produced using a compressor such as the ones typically employed in turbochargers or electric compressors, operating at a maximum pressure ratio of 2.0:1 and at isentropic efficiencies of exceeding 85%; in an embodiment the input mechanical or electrical power need to drive the air compressor is 38 horse power (HP); when deployed at the correct angle of tilt and across the wing in a Upper Surface Blown configuration over the deployed flaps, the lift force generated at speeds as low as 10 knots is doubled, compared to the case where a clean wing is used at the same head wind velocity (10 knots) but no thruster augmentors are active or present. This would allow the aircraft to perform super-short take off and landings or eventually take off vertically in headwinds as for example on the deck of a ship placed into the wind. Typical values of lift force that can be obtained with the blown wing example in 10 knots head wind conditions and flaps deployed could be around 200 lbf for 38 HP input, resulting in a ratio of 5.26 lbf/HP, which is a common value for the hovering efficiency of a tilt rotor such as the V22 Osprey or a helicopter as explained by Maiselet al.-NASA SP-2000-4517, “The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight” (Bibliographic data) http://history.nasa.gov/monograph17.pdf.
It follows that an aircraft may be able to produce a vertical thrust of multiples of 200 lbf in low-speed headwinds by employing multiples of 38 HP compressors which may be powered by mechanical or electrical or combinations of the two sources. A 380 HP load directed to the compressor of an Auxiliary Power Unit may hence produce, in combination with the fluidic thruster augmentors and the flaps of the blown wing, a vertical force of 2000 lbf by employing a motive air stream of 10 lb/s at a pressure ratio of 1.8 to ambient.
It would be then advantageous that once airborne and gaining forward speed, that the array of thruster-augmentors or ejectors 106 are gradually retracted into the wing. In
In one embodiment a blended wing body as shown in
Conversely, after the segment of the mission is complete at high speeds and without the use of the thrusters which are hidden in the wing and fuselage, by exposing partially the thrusters of the wing the aircraft is slowing down while air is re-distributed from the simple expansion nozzle conduit to the conduits feeding the thrusters 106. Furthermore, at even slower speeds the valve 104 opens now to supply all the thrusters including the ones on the wing and fuselage and the flaps are deployed as well, generating again a considerable thrust and lift augmentation and allowing the aircraft to slow down to hovering and vertical landing. With this approach, several achievements are made:
The thrusters/augmentors are deployed for vertical flight to work with the flaps and augment lift to at least two times the entitlement without blowing air over the upper surface of said flaps and wings
The thrusters and flaps are gradually retracted during the transitions from vertical to horizontal and acceleration flight, creating a stable and smooth flight dynamic transition and acceleration. The retraction of the flaps and of thrusters may be done in conjunction with well-controlled compressor air delivery.
Since BWB aircraft have been demonstrated to produce remarkable lift to drag ratios, a small need for thrust forward exists and the L/D of 25 or higher can ensure a high endurance, significant range and speed while also allowing vertical take-off and landing. Such combination does not exist today with rotary wing aircraft.
Air compressors onboard may be electric or mechanically driven, so agnostic to the input.
The 3-in-1 propulsor can supply VTOL SSTOL, STOL or CTOL operations, hovering in configuration 1 where in one embodiment the FPS is deployed with flaps in an Upper Surface Blown system to generate enough vertical lift at very low or zero forward speeds. In configuration 2 where it strictly provides forward thrust and it has partially retracted the FPS thrusters into the fuselage and wing. And a third configuration in which all FPS thrusters are retracted and hidden, providing a very high L/D number and allowing acceleration to speeds not achievable by rotary wing aircraft.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow.
The present application claims priority from U.S. Provisional Patent Application Ser. No. 63/190,762 filed May 19, 2021, which is incorporated by reference as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
63190762 | May 2021 | US |