Adaptive hash-based data replication in a storage system

Information

  • Patent Grant
  • 10565058
  • Patent Number
    10,565,058
  • Date Filed
    Wednesday, March 30, 2016
    8 years ago
  • Date Issued
    Tuesday, February 18, 2020
    4 years ago
Abstract
Described embodiments provide systems and methods for performing hash-based data replication in a storage system. The hash-based data replication replicates selected data from a source device to a target device of the storage system. One or more operating conditions of the storage system are determined. Based upon the determined operating conditions, one or more configuration settings of data replication operations are set. The data replication operation is initiated for the selected data, and sends, based upon the one or more configuration settings, at least one of (i) a hash value associated with the selected data to the one or more target devices, and (ii) the selected data to the one or more target devices.
Description
BACKGROUND

Computer data is increasingly vital to modern organizations, and protecting against data loss in the event of a system failure is an increasingly important organization objective. Data protection systems for storing organizational source (e.g., production) site data on a periodic basis suffer from several drawbacks. First, they require a system shutdown during backup, since the data being backed up cannot be used during the backup operation. Second, they limit the points in time to which the production site can recover. For example, if data is backed up on a daily basis, there may be several hours of lost data in the event of a disaster. Third, the data recovery process itself is both time consuming and can consume system resources.


Some data protection systems use data replication, by creating a copy of the organization's production site data on a secondary backup storage system, and updating the backup with changes. The backup storage system may be situated in the same physical location as the production storage system, or in a physically remote location. Data replication systems generally operate either at the application level, at the file system level, at the hypervisor level or at the data block level.


SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described herein in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.


One aspect may provide a method for performing hash-based data replication in a storage system. The hash-based data replication may replicate selected data from a source device to a target device of the storage system. One or more operating conditions of the storage system may be determined. Based upon the determined operating conditions, one or more configuration settings of data replication operations may be set. The data replication operation may be initiated for the selected data, and may send, based upon the one or more configuration settings, at least one of (i) a hash value associated with the selected data to the one or more target devices, and (ii) the selected data to the one or more target devices.


Another aspect may provide a system including a processor and memory with stored computer program code that when executed on the processor may cause the processor to execute a hash-based data replication process associated with at least one source device and at least one target device in a storage system. The hash-based data replication may replicate selected data from a source device to a target device of the storage system. The processor may perform the operations of determining one or more operating conditions of the storage system and setting, based upon the determined one or more operating conditions, one or more configuration settings of a data replication operation of the storage system. The data replication operation for the selected data may be initiated. The data replication operation may send, based upon the one or more configuration settings, at least one of (i) a hash value associated with the selected data to the one or more target devices, and (ii) the selected data to the one or more target devices.


Another aspect may provide a computer program product including a non-transitory computer readable storage medium having computer program code encoded thereon that when executed on a processor of a computer may cause the computer to execute a hash-based data replication process associated with at least one source device and at least one target device in a storage system. The hash-based data replication may replicate selected data from a source device to a target device of the storage system. The computer program product may include computer program code for determining one or more operating conditions of the storage system and setting, based upon the determined one or more operating conditions, one or more configuration settings of a data replication operation of the storage system. The data replication operation for the selected data may be initiated. The data replication operation may send, based upon the one or more configuration settings, at least one of (i) a hash value associated with the selected data to the one or more target devices, and (ii) the selected data to the one or more target devices.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

Objects, aspects, features, and advantages of embodiments disclosed herein will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings in which like reference numerals identify similar or identical elements. Reference numerals that are introduced in the specification in association with a drawing figure may be repeated in one or more subsequent figures without additional description in the specification in order to provide context for other features. For clarity, not every element may be labeled in every figure. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments, principles, and concepts. The drawings are not meant to limit the scope of the claims included herewith.



FIG. 1 is a block diagram of an example of a storage system to perform data replication from a source to a target in accordance with an illustrative embodiment;



FIG. 2 is a block diagram of another example of a storage system to perform data replication from a source to a target in accordance with an illustrative embodiment;



FIG. 3 is a flow diagram of an example of a process to perform data replication from a source to a target in accordance with an illustrative embodiment;



FIG. 4 is a flow diagram of an example of a process to initialize settings for the data replication process of FIG. 3;



FIG. 5 is a flow diagram of an example of a process to perform the data replication process of FIG. 3;



FIGS. 6A and 6B are diagrams showing an illustrative data flow of the processes shown in FIGS. 3, 4 and 5; and



FIG. 7 is a block diagram of an example of a hardware device that may perform at least a portion of the processes shown in FIGS. 3, 4 and 5.





DETAILED DESCRIPTION


FIG. 1 shows an example storage system 100. In accordance with illustrative embodiments, storage system 100 may perform hash-based asynchronous data replication cycles at time-based intervals and may perform hash-based synchronous data replication cycles as data is changed on a source site (e.g., 102).


Storage system 100 may include at least one source site 102 and at least one target site 112, which may be co-located or geographically separated. Source site 102 may include one or more processors 105, storage application 106, and storage 108. In some embodiments, storage 108 may include one or more storage volumes 1351-S, that operate as active or production volumes. Target site 112 may include hash-based replica manager 116 that manages a plurality of replicas 1181-N (generally referred to herein as replicas 118) according to a policy 114 (e.g., a replication and/or retention policy). Replicas 118 may be stored in one or more volumes 1391-Z of storage 137 of target site 112. Target site 112 may also include one or more processors 133. Source site 102 and target site 112 may be in communication with one or more hosts 113 via communication links 111 and 115, respectively.


Hosts 113 may perform input/output (I/O) operations on source-side storage 108 (e.g., read data from and write data to storage 108). In some embodiments, the I/O operations may be intercepted by and controlled by storage application 106. As changes are made to data stored on storage 108 via the I/O operations from hosts 113, or over time as storage system 100 operates, storage application 106 may perform data replication 120 from source site 102 to target site 112 over communication link 110. In some embodiments, communication link 110 may be a long distance communication link of a storage area network (SAN), such as an Ethernet or Internet (e.g., TCP/IP) link that may employ, for example, the iSCSI protocol. In some embodiments, target site 112 may include internal (e.g., short distance) communication links (not shown) to transfer data between storage volumes for storing replicas 1181-N, such as an InfiniBand (TB) link or Fibre Channel (FC) link.


In illustrative embodiments, storage system 100 may employ a snapshot (or replication) mechanism to replicate data between source site 102 and target site 112. A replica (or snapshot) may be created from data within storage 108 and transferred to one or more target site 112 during a data replication cycle by hash-based data replication 120. Hash-based data replication 120 may be performed based on data replication policies that may define various settings for data recovery operations, shown as policy 114. For example, policy 114 may define a plurality of attributes, such as a frequency with which replicas 118 are generated and how long each replica 118 is kept at target site 112. In some embodiments, one or both of storage application 106 and/or replica manager 116 may also define a remote replica lag (e.g., the length of time during which updates may be lost in case of a failure of source site 102), a recovery point objective (RPO) (e.g., a maximum acceptable lag time between the time data is committed to source site 102 and the time the data is committed to target site 112 or an acceptable amount of data loss measured in time), a recovery time objective (RTO) (e.g., the time taken to perform the recovery), the mode of replication (e.g., synchronous, asynchronous, continuous data protection (CDP), point in time (PIT), and so forth), and/or other attributes. For example, in one embodiment, storage application 106 may define the remote replica lag, RPO, RTO, and/or other attributes, and policy 114 and replica manager 116 may define the retention policy. In some embodiments, policy 114 may define the remote replica lag, RPO, RTO, retention policy, and/or other attributes.


As described herein, in example embodiments, hash-based data replication 120 may be asynchronous data replication performed at time-based intervals during operation of storage system 100. The timing of asynchronous replication cycles and the retention of the replicas 118 may be managed by one or both of storage application 106 of source site 102 and/or hash-based replica manager 116 of target site 112. In one embodiment, storage application 106 of source site 102 may define the timing of asynchronous replication cycles, and the retention may be defined by policy 114. Hash-based data replication 120 may alternatively be synchronous data replication performed when data is changed on source site 102.


For example, asynchronous data replication may periodically generate snapshots (or replicas), scan and compare the snapshots to determine changes in data between the snapshots, and transfer the data difference to target site 112. The frequency with which to perform replication cycles may be determined by a recovery point objective (RPO) and/or retention policy settings of policy 114. For example, policy 114 may define an RPO setting of x seconds, where x may be a positive integer, to ensure that the most recent available replica 118 stored on target site 112 reflects the state of data stored on source site 102 no longer than x seconds ago. Policy 114 may also determine how many replicas 118 should be maintained, at what time (e.g., what time of day, week, month, etc.), and for what duration.


Storage system 100 may employ hash operations to generate hash values associated with data of hash-based data replication operation 120. For example, storage system 100 may operate as a flash storage array, a content addressable storage system or a deduplication device. In some embodiments, storage 108 may save a block of data as a hash, or as a reference to a block of data stored at another location or volume. The blocks of data may be, for example, 8 kb in size. In some embodiments, the hash may be generated as a Secure Hash Algorithm hash (e.g., SHA-1, SHA-2, SHA-3, or similar hashes). In one example, storage 108 may be a deduplicated storage array, such as XtremIO by EMC Corporation of Hopkinton, Mass., so that each of the data in the storage array may be kept in two (or more) separate levels. In a first level, each volume contains address-to-hash mapping, which may be kept in a compact format. A second level of mapping may be a map from hash-to-the physical location where the data matching the hash value is stored.


For example, some embodiments of storage system 100 may store data in fixed-size chunks, for example 4 KB chunks, where each chunk may have an associated unique hash value. In such embodiments, storage system 100 may be configured to maintain a mapping between I/O (or logical) addresses associated with data and the hash values, and also to maintain a mapping between the hash values and physical storage addresses of the data. These mappings may be maintained using one or more address-to-hash (“A2H”) tables and/or one or more hash-to-physical address (“H2P”) tables. It will be appreciated that combinations of the A2H and H2P tables may provide multiple levels of indirection between the logical (or “I/O”) address used to access data and the physical address where that data is stored. Among other advantages, this may allow storage system 100 freedom to move data within storage 108. For example, illustrative embodiments may operate such as described in U.S. Pat. No. 9,104,326, issued Aug. 11, 2015, which is assigned to the same assignee as this patent application and is incorporated herein by reference in its entirety.


During hash-based data replication operation 120, storage system 100 may attempt to send hash values instead of the full data of the data replication operation. This can reduce data transmitted if all or some of the data of the data replication operation is already stored on target site 112. For example, storage system 100 may determine that the hash value is already stored on target site 112 (e.g., a hash hit). In instances where storage system 100 determines a hash hit, full block data associated with hash-based data replication operation 120 may not be sent from source site 102 to target site 112, since the data is already stored on target site 112. Alternatively, storage system 100 may determine that the hash value is not already stored on target site 112 (e.g., a hash miss). In instances where storage system 100 determines a hash miss, full block data associated with data replication operation 120 may be sent from source site 102 to target site 112.


For certain types of data, such as virtualized systems and other systems having relatively significant data deduplication, the likelihood of having data already stored on the target (e.g., having a hash hit) is relatively high. For other types of data, such as databases and other systems having relatively little data deduplication, the likelihood of having data already stored on the target (e.g., having a hash hit) is relatively low. Described embodiments of storage system 100 may provide an automated and adaptive way of recognizing the scenarios having a high/low likelihood of having a hash hit, by performing dynamic adaptation of settings of hash-based data replication operation 120, per volume, during operation of storage system 100.


Referring to FIG. 2, in an illustrative embodiment, apparatus 206 may form part of system 200 and include memory 208 storing program logic 210, processor 212 for executing process 214, and communications I/O interface 218, connected via a bus 216 to allow communication between memory 208, processor 212 and devices external to apparatus 206. For example, in some embodiments, communications I/O interface 218 may be coupled to apparatus 206, external media 220, one or more I/O devices 222, and a display device 224. In some embodiments, communications I/O interface 218 may couple apparatus 206 to one or more source devices 2021-202X via network 204. In some embodiments, communications I/O interface 218 may couple apparatus 206 to one or more target devices 2281-228Y via network 226. In some embodiments, network 226 of FIG. 2 may be a communication fabric between volumes of targets 228. For example, in some embodiments, network 226 may be an InfiniBand (IB) network or a Fibre Channel (FC) network. Further, in an illustrative embodiment, apparatus 206 may be implemented as part of host 104 of FIG. 1.


Referring to FIG. 3, process 300 is an example of a process to operate at least part of storage system 100 in accordance with illustrative embodiments. At block 302, operation of storage system 100 begins, for example when storage system 100 is first powered on. At block 304, storage system 100 may receive the retention policy and the recovery point objective (RPO), for example as set in policy 114 by a user of storage system 100. At block 306, one or more settings are set for data replication operations of storage system 100. Block 306 will be described in greater detail in conjunction with FIG. 4. In some embodiments, block 306 may be repeated during operation of storage system 100. At block 308, storage system 100 operates, for example by performing host read operations from and host write operations to one or more volumes of storage 108. At block 310, as data on storage 108 may be modified by system I/O operations (e.g., write operations, read-modify-write operations, etc.), at block 312a, synchronous data replication operations (e.g., “sync” data replication operations) may be performed to create and store replicas on target devices 112. Process 300 may return to block 306 to update data replication settings of storage system 100.


As indicated by dashed block 316, blocks 306, 308, 310 and 312 may be performed one or more times before an asynchronous data replication operation is performed at block 312b. Asynchronous data replication operations (e.g., “async” data replication operations) may be performed to create and store replicas on target devices 112. As indicated by dashed line 314, block 316 and block 312b may be performed in parallel during operation of storage system 100. As described herein, the timing of performing asynchronous data replication 312b may be determined, at least in part, by settings of the retention policy and RPO received at block 304. Block 316 may operate continuously, with block 312b operating periodically, during operation of storage system 100. Blocks 312a and 312b will be described in greater detail in conjunction with FIG. 5


Referring to FIG. 4, process 306′ is an example of a process to perform data replication setting initialization operation of block 306 of FIG. 3, in accordance with illustrative embodiments. At block 402, process 306′ starts. At block 404, a hash replication ratio parameter, R, may be set to an initial value. In some embodiments, hash replication ratio parameter, R, determines a percentage of pages for which hash-based data replication will be attempted. For example, the value of R may be a value between 0 and 100 percent. In an illustrative embodiment, the value of R may be set to either 0.1% or 100%. In such an embodiment, since R is always a non-zero value, at least some data blocks are transmitted employing hash-based data replication regardless the setting of R.


At block 406, a hash-based replication threshold, P, may be set to an initial value. Hash-based replication threshold, P, may depend on system operating conditions, such as processor load and available communications link bandwidth. For example, when the processor load is high, P may be set to a higher value in order to reduce processor utilization at the expense of using additional link bandwidth by reducing the number of data replication operations for which hash values are generated. Alternatively, if the available communications link bandwidth is low, P may be set to a lower value in order to reduce link utilization by increasing the number of data replication operations for which hash values are generated and reduce the number of data replication operations for which full data blocks are sent.


At block 408, the hash overhead may be determined that is required to perform data replication based on the settings of R and P. For example, the hash overhead may include system operating conditions of storage system 100, such as a processor load percentage and a communications link bandwidth required to perform data replication based on the settings of R and P. At block 410, the full block overhead may be determined that is required to perform data replication by sending full block data. For example, the full block overhead may include system operating conditions of storage system 100, such as a processor load percentage and a communications link bandwidth required to perform data replication by sending full block data instead of hash values.


At block 412, a hash hit ratio, AR, may be determined. In some embodiments, the hash hit ratio AR may be an estimated value based on an expected number of hash hits (e.g., an expected number or percentage of data blocks that are already stored on the target and, therefore, do not need full data block transmission). In some embodiments, the hash hit ratio AR may be an actual hash hit ratio tracked over time of operation of storage system 100 (e.g., a running number or percentage of data blocks that actually have already been stored on the target for data replication operations performed by storage system 100). At block 414, the value of hash-based replication threshold, P, may be adjusted based on the hash overhead determined at block 408, the full block overhead determined at block 410 and the estimated hash hit ratio, AR, determined at block 412.


At block 416, storage system 100 may determine whether the hash hit ratio AR has reached the hash-based replication threshold, P. In an illustrative embodiment, at block 416 storage system 100 may determine whether the hash hit ratio AR is greater than or equal to the hash-based replication threshold, P. As described, in some embodiments, the hash hit ratio AR is updated periodically during operation of storage system 100. For example, the hash hit ratio AR may be updated once every minute. If, at block 416, the hash hit ratio AR has reached the hash-based replication threshold, P, then process 306′ proceeds to block 418. At block 418, the hash replication ratio parameter, R, may be increased. In an illustrative embodiment, hash replication ratio parameter, R, may be set to 100%, although other embodiments may use additional intermediate values. If, at block 416, the hash hit ratio AR has not reached the hash-based replication threshold, P, then process 306′ proceeds to block 420. At block 420, the hash replication ratio parameter, R, may be decreased. In an illustrative embodiment, hash replication ratio parameter, R, may be set to 0.1%, although other embodiments may use additional intermediate values. At block 422, process 306′ completes.


In an illustrative embodiment, hash-based replication threshold, P, defines a percentage of data deduplication that justifies using hash-based data replication. For example, P=5% means that even if only 5% of data blocks (e.g., pages) are already stored on the target, hash-based data replication will be performed in order to reduce page transmission by 5%. In other words, in an example embodiment, P=5% means that the overhead required to perform hash-based data replication for the 95% of the pages that are not stored on the target and therefore have both the hash values and then also the full block data transmitted to the target, may be “worth” the 5% of data blocks for which only the hash values are sent (e.g., 5% of data blocks save communication link bandwidth). In such a case, using hash-based replication saves enough bandwidth for that 5% of data blocks by not having to send the full blocks, that the overhead required to determine the hashes for the other 95% is acceptable. Hash-based replication threshold, P, may be determined based on a ratio of the hash overhead (e.g., the system resources required to generate and send a hash value) to the full block overhead (e.g., the system resources required to send a full data block). For example, an estimated hash overhead to full block overhead ratio of 1:20 may lead to P=5%.


Referring to FIG. 5, process 312′ is an example of a process to perform data replication operation of blocks 312a and/or 312b of FIG. 3, in accordance with illustrative embodiments. In some embodiments, process 312′ may be performed independently for every volume of storage 108 for each data replication operation. At block 502, process 312′ starts.


As described herein, hash replication ratio parameter, R, may determine a percentage of pages for which hash-based data replication will be attempted. At block 504, a block of a given data replication operation has a hash generated for a percentage of pages equal to R. If, at block 504, the block corresponds to the percentage R, at block 506, a hash value (e.g., a hash signature) may be generated for one or more data blocks associated with the data replication operation. At block 508, the hash signature(s) may be transmitted from the source to the target.


At block 510, the target may determine whether there was a hash hit for the transmitted hash signature(s), where a hash hit indicates that the data blocks associated with the hash signature(s) are already stored on the target. If, at block 510, there is a hash hit, then at block 514, if there are additional data blocks to replicated, process 312′ repeats at block 504 until the data blocks have been replicated. If, at block 514, there are no remaining data blocks to be replicated, then process 312′ completes at block 518.


If, at block 510, there is not a hash hit, then at block 512, the full data for the block is sent from the source to the target. At block 514, if there are additional data blocks to replicated, process 312′ repeats at block 504 until the data blocks have been replicated. If, at block 514, there are no remaining data blocks to be replicated, then process 312′ completes at block 518.


At block 504, a block of a given data replication operation has a full block data sent to the target with a probability equal to 1-R. If, at block 504, the block corresponds to the probability 1-R, at block 512, the full data for the block is sent from the source to the target. At block 514, if there are additional data blocks to replicated, process 312′ repeats at block 504 until the data blocks have been replicated. If, at block 514, there are no remaining data blocks to be replicated, then process 312′ completes at block 518.


Described embodiments may provide systems and methods for performing hash-based data replication in a storage system. Described embodiments may determine operating conditions of the storage system and may set, based upon the determined operating conditions, configuration settings of data replication operations to replicate selected data from a source device to a target device. The data replication operation may send, based upon the one or more configuration settings, at least one of (i) a hash value associated with the selected data to the one or more target devices, and (ii) the selected data to the one or more target devices.


In some embodiments, the operating conditions may include a processor usage value associated with a processor of the storage system, a link usage value associated with a communication link of the storage system, and/or an overhead value associated with performing the data replication operation. The overhead value may include an estimated hash overhead value associated with generating and sending the hash value and an estimated block overhead value associated with sending the selected data to the target. A hash hit value, which may include tracking a historic hash hit rate of the storage system may be determined. A hash-based replication threshold, P, is set based on the determined operating conditions, the overhead values, and the hash hit value.


In some embodiments, if the hash hit value has reached the hash-based replication threshold, then the hash value is generated and sent to the target device. If the generated hash value was not previously stored on the target device or if the hash hit value has not reached the hash-based replication threshold, then the full data is sent to the target device. In some embodiments, a replication parameter, R, corresponds to a percentage of the selected data for which a hash value should be generated. If the hash hit value has reached the hash-based replication threshold, the replication parameter may be increased, or if the hash hit value has not reached the hash-based replication threshold, the replication parameter may be decreased. In an illustrative embodiment, the replication parameter is either 0.1% and 100%, although other values may be employed.



FIGS. 6A and 6B are diagrams of storage system 100 showing an illustrative data flow of processes 300, 306′ and 312′ shown in FIGS. 3, 4 and 5. As described herein, some embodiments of storage system 100 may employ one or more hash tables to maintain a mapping between I/O (or logical) addresses associated with data and hash values, and to maintain a mapping between hash values and physical storage addresses of the data. As shown in FIG. 6A, host 113 may first send data (e.g., data 601) to source site 102. Processor 105 of source site 102 may generate a hash value associated with data 601, shown as hash value 603. In some embodiments, storage application 106 may employ one or more A2H and/or H2P hash tables (not shown) to map hash value 603 to a storage location of data 601 in storage 108.


Referring to FIG. 6A, during a hash-based data replication operation 120 (e.g., 605), storage system 100 may send a hash value (e.g., 605) from source site 102 to target site 112 instead of sending the full data of the data replication operation. Target site 112 may receive hash value 605, for example, at replica manager 116. Replica manager 116 may provide the received hash value (e.g., as hash value 607) to one or more hash tables (e.g., H2P table 609). H2P table 609 includes one or more entries 611 that map between a given hash value and an associated physical address of storage 137. If hash value 607 is already stored in H2P table 609, then there is a hash hit, meaning that the full data associated with hash value 607 is already stored in storage 137. In instances where storage system 100 determines a hash hit, full block data associated with hash-based data replication operation 120 may not be sent from source site 102 to target site 112, since the data is already stored on target site 112. In some embodiments, target site 112 may optionally send a hash hit acknowledgment 613 to source site 102.


Referring to FIG. 6B, during a hash-based data replication operation 120 (e.g., 605), storage system 100 may send a hash value (e.g., 605) from source site 102 to target site 112 instead of sending the full data of the data replication operation. Target site 112 may receive hash value 605, for example, at replica manager 116. Replica manager 116 may provide the received hash value (e.g., as hash value 607) to one or more hash tables (e.g., H2P table 609). H2P table 609 includes one or more entries 611 that map between a given hash value and an associated physical address of storage 137. If hash value 607 is not already stored in H2P table 609, then there is a hash miss, meaning that the full data associated with hash value 607 is not yet stored in storage 137. In instances where storage system 100 determines a hash miss, a hash miss message 615 may be sent to source site 102. Source site 102 may then send the full block data (e.g., 617) to target site 112.


As described herein, some embodiments may attempt to send the hash value (e.g., 605) before sending the full block data (e.g., 617), for a determined percentage (e.g., percentage R) of pages for data replication operations (e.g., 120).


Referring to FIG. 7, in some embodiments, source site 102 and/or target site 112 may be implemented as one or more computers. Computer 700 may include processor 702, volatile memory 704 (e.g., RAM), non-volatile memory 706 (e.g., a hard disk drive, solid state drive such as a flash drive, a hybrid magnetic and solid state drive, etc.), graphical user interface (GUI) 708 (e.g., a mouse, a keyboard, a display, and so forth) and input/output (I/O) device 720. Non-volatile memory 706 stores computer instructions 712, an operating system 716 and data 718 such that, for example, the computer instructions 712 are executed by the processor 702 out of volatile memory 704 to perform at least a portion of processes 300, 306′ and 312′ (FIGS. 3, 4 and 5). Program code may be applied to data entered using an input device of GUI 708 or received from I/O device 720.


Processes 300, 306′ and 312′ (FIGS. 3, 4 and 5) are not limited to use with the hardware and software of FIG. 7 and may find applicability in any computing or processing environment and with any type of machine or set of machines that is capable of running a computer program. Processes 300, 306′ and 312′ may be implemented in hardware, software, or a combination of the two.


The processes described herein are not limited to the specific embodiments described. For example, processes 300, 306′ and 312′ are not limited to the specific processing order shown in FIGS. 3, 4 and 5. Rather, any of the blocks of processes 300, 306′ and 312′ may be re-ordered, combined or removed, performed in parallel or in serial, as necessary, to achieve the results set forth herein.


Processor 702 may be implemented by one or more programmable processors executing one or more computer programs to perform the functions of the system. As used herein, the term “processor” is used to describe an electronic circuit that performs a function, an operation, or a sequence of operations. The function, operation, or sequence of operations can be hard coded into the electronic circuit or soft coded by way of instructions held in a memory device. A “processor” can perform the function, operation, or sequence of operations using digital values or using analog signals. In some embodiments, the “processor” can be embodied in an application specific integrated circuit (ASIC). In some embodiments, the “processor” can be embodied in a microprocessor with associated program memory. In some embodiments, the “processor” can be embodied in a discrete electronic circuit. The “processor” can be analog, digital or mixed-signal.


While illustrative embodiments have been described with respect to processes of circuits, described embodiments may be implemented as a single integrated circuit, a multi-chip module, a single card, or a multi-card circuit pack. Further, as would be apparent to one skilled in the art, various functions of circuit elements may also be implemented as processing blocks in a software program. Such software may be employed in, for example, a digital signal processor, micro-controller, or general purpose computer. Thus, described embodiments may be implemented in hardware, a combination of hardware and software, software, or software in execution by one or more processors.


Some embodiments may be implemented in the form of methods and apparatuses for practicing those methods. Described embodiments may also be implemented in the form of program code, for example, stored in a storage medium, loaded into and/or executed by a machine, or transmitted over some transmission medium or carrier, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation. A non-transitory machine-readable medium may include but is not limited to tangible media, such as magnetic recording media including hard drives, floppy diskettes, and magnetic tape media, optical recording media including compact discs (CDs) and digital versatile discs (DVDs), solid state memory such as flash memory, hybrid magnetic and solid state memory, non-volatile memory, volatile memory, and so forth, but does not include a transitory signal per se. When embodied in a non-transitory machine-readable medium, and the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the method.


When implemented on a processing device, the program code segments combine with the processor to provide a unique device that operates analogously to specific logic circuits. Such processing devices may include, for example, a general purpose microprocessor, a digital signal processor (DSP), a reduced instruction set computer (RISC), a complex instruction set computer (CISC), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a programmable logic array (PLA), a microcontroller, an embedded controller, a multi-core processor, and/or others, including combinations of the above. Described embodiments may also be implemented in the form of a bitstream or other sequence of signal values electrically or optically transmitted through a medium, stored magnetic-field variations in a magnetic recording medium, etc., generated using a method and/or an apparatus as recited in the claims.


Various elements, which are described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. It will be further understood that various changes in the details, materials, and arrangements of the parts that have been described and illustrated herein may be made by those skilled in the art without departing from the scope of the following claims.

Claims
  • 1. A method comprising: determining an overhead value associated with performing a data replication operation, the overhead value being determined based on one or more operating conditions of a storage system, the storage system having at least one source device and one or more target devices, and the overhead value identifying a load that would be placed on the storage system when the data replication operation is executed;setting, based upon the overhead value, one or more configuration settings of the data replication operation of the storage system, the data replication operation to replicate selected data from the at least one source device to the one or more target devices; andinitiating the data replication operation for the selected data and sending, based upon the one or more configuration settings, at least one of (i) a hash value associated with the selected data to the one or more target devices, and (ii) the selected data to the one or more target devices.
  • 2. The method of claim 1, wherein determining the overhead value comprises at least one of: determining an estimated hash overhead value associated with sending the hash value associated with the selected data to the one or more target devices;determining an estimated block overhead value associated with sending the selected data to the one or more target devices; anddetermining an estimated hash hit value, the estimated hash hit value being associated with an estimated likelihood that the hash value associated with the selected data is stored on the one or more target devices.
  • 3. The method of claim 2, further comprising tracking an actual hash hit value, the actual hash hit value being associated with a historic hash hit rate of one or more previous data replication operations of the storage system.
  • 4. The method of claim 3, further comprising determining a hash-based replication threshold, wherein the hash-based replication threshold is based on the determined one or more operating conditions, the estimated hash overhead value, the estimated block overhead value, and at least one of the estimated hash hit value and the actual hash hit value.
  • 5. The method of claim 4, Wherein determining to send (i) the hash value associated with the selected data to the one or more target devices, or (ii) the selected data to the one or more target devices further comprises: generating the hash value associated with the selected data if at least one of the estimated hash hit value and the actual hash hit value has reached the hash-based replication threshold;sending the hash value to the one or more target devices;determining a hash hit if the hash value was previously stored on the one or more target devices; andcompleting the data replication operation for the selected data based upon the hash hit.
  • 6. The method of claim 5, further comprising sending the selected data to the one or more target devices if the hash value was not previously stored on the one or more target devices or if at least one of the estimated hash hit value and the actual hash hit value has not reached the hash-based replication threshold.
  • 7. The method of claim 6, wherein the one or more configuration settings comprise a replication parameter, the replication parameter corresponding to a percentage of the selected data for which a hash value should be generated, the method further comprising: generating the hash value for an amount of the selected data corresponding to the replication parameter if at least one of the estimated hash hit value and the actual hash hit value has reached the hash-based replication threshold.
  • 8. The method of claim 7, further comprising increasing the replication parameter if at least one of the estimated hash hit value and the actual hash hit value has reached the hash-based replication threshold.
  • 9. The method of claim 8, further comprising decreasing the replication parameter if at least one of the estimated hash hit value and the actual hash hit value has not reached the hash-based replication threshold.
  • 10. The method of claim 9, wherein the replication parameter is between 0.1% and 100%.
  • 11. The method of claim 1, further comprising weighting each of the one or more operating conditions by corresponding priority coefficients, the corresponding priority coefficients being based on settings received by the storage system.
  • 12. The method of claim 1, further comprising at least one of: performing the data replication operation as a synchronous replication operation when the selected data stored on the at least one source device is changed; andperforming the data replication operation as an asynchronous replication operation periodically during operation of the storage system, a frequency of the asynchronous replication operation based on a replication policy of the storage system.
  • 13. A system comprising: a processor; andmemory storing computer program code that when executed on the processor causes the processor to execute a data replication process between at least one source device and at least one target device in a storage system operable to perform the operations of: determining an overhead value associated with performing a data replication operation, the overhead value being determined based on one or more operating conditions of a storage system, the storage system having at least one source device and one or more target devices, and the overhead value identifying a load that would be placed on the storage system when the data replication operation is executed;setting, based upon the overhead value, one or more configuration settings of the data replication operation of the storage system, the data replication operation to replicate selected data from the at least one source device to the one or more target devices; andinitiating the data replication operation for the selected data and sending, based upon the one or more configuration settings, at least one of (i) a hash value associated with the selected data to the one or more target devices, and (ii) the selected data to the one or more target devices.
  • 14. The system of claim 13, wherein determining the overhead value comprises at least one of: determining an estimated hash overhead value associated with sending the hash value associated with the selected data to the one or more target devices;determining an estimated block overhead value associated with sending the selected data to the one or more target devices;determining an estimated hash hit value, the estimated hash hit value being associated with an estimated likelihood that the hash value associated with the selected data is stored on the one or more target devices; andtracking an actual hash hit value, the actual hash hit value being associated with a historic hash hit rate of one or more previous data replication operations of the storage system.
  • 15. The system of claim 14, wherein the computer program code is further operable to perform the operation of determining a hash-based replication threshold, wherein the hash-based replication threshold is based on the one or more operating conditions, the estimated hash overhead value, the estimated block overhead value, and at least one of the estimated hash hit value and the actual hash hit value.
  • 16. The system of claim 15, wherein sending (i) the hash value associated with the selected data to the one or more target devices, or (ii) the selected data to the one or more target devices comprises the operations of: generating the hash value associated with the selected data if at least one of the estimated hash hit value and the actual hash hit value has reached the hash-based replication threshold;sending the hash value to the one or more target devices;determining a hash hit if the hash value was previously stored on the one or more target devices; andcompleting the data replication operation for the selected data based upon the hash hit.
  • 17. The system of claim 16, wherein the computer program code is further operable to perform the operation of sending the selected data to the one or more target devices if the hash value was not previously stored on the one or more target devices or if at least one of the estimated hash hit value and the actual hash hit value has not reached the hash-based replication threshold.
  • 18. The system of claim 17, wherein the one or more configuration settings comprise a replication parameter, the replication parameter corresponding to a percentage of the selected data for Which a hash value should be generated, and wherein the computer program code is further operable to perform the operations of: generating the hash value for an amount of the selected data corresponding to the replication parameter if at least one of the estimated hash hit value and the actual hash hit value has reached the hash-based replication threshold;increasing the replication parameter if at least one of the estimated hash hit value and the actual hash hit value has reached the hash-based replication threshold; anddecreasing the replication parameter if at least one of the estimated hash hit value and the actual hash hit value has not reached the hash-based replication threshold.
  • 19. A computer program product including a non-transitory computer readable storage medium having computer program code encoded thereon that when executed on a processor of a computer causes the computer to execute a data replication process between at least one source device and at least one target device in a storage system, the computer program product comprising: computer program code for determining an overhead value associated with performing a data replication operation, the overhead value being determined based on one or more operating conditions of a storage system, the storage system having at least one source device and one or more target devices, and the overhead value identifying a load that would be placed on the storage system when the data replication operation is executed;computer program code for setting, based upon the overhead value, one or more configuration settings of the data replication operation of the storage system, the data replication operation to replicate selected data from the at least one source device to the one or more target devices; andcomputer program code for initiating the data replication operation for the selected data and sending, based upon the one or more configuration settings, at least one of (i) a hash value associated with the selected data to the one or more target devices, and (ii) the selected data to the one or more target devices.
  • 20. The computer program product of claim 19, wherein determining the overhead value comprises at least one of: computer program code for determining an estimated hash overhead value associated with sending the hash value associated with the selected data to the one or more target devices;computer program code for determining an estimated block overhead value associated with, sending the selected data to the one or more target devices;computer program code for determining an estimated hash hit value, the estimated hash hit value being associated with an estimated likelihood that the hash value associated with the selected data is stored on the one or more target devices;computer program code for tracking an actual hash hit value, the actual hash hit value being associated with a historic hash hit rate of one or more previous data replication operations of the storage system;computer program code for determining a hash-based replication threshold, wherein the hash-based replication threshold is based on the one or more operating conditions, the estimated hash overhead value, the estimated block overhead value, and at least one of the estimated hash hit value and the actual hash hit value;computer program code for generating the hash value associated with the selected data if at least one of the estimated hash hit value and the actual hash hit value has reached the hash-based replication threshold;computer program code for sending the hash value to the one or more target devices;computer program code for determining a hash hit if the hash value was previously stored on the one or more target devices; andcomputer program code for completing the data replication operation for the selected data based upon the hash hit.
US Referenced Citations (306)
Number Name Date Kind
4164763 Briccetti et al. Aug 1979 A
4608839 Tibbals, Jr. Sep 1986 A
4821178 Levin et al. Apr 1989 A
5276898 Kiel et al. Jan 1994 A
5319645 Bassi et al. Jun 1994 A
5537534 Voigt et al. Jul 1996 A
5539907 Srivastava et al. Jul 1996 A
5627995 Miller et al. May 1997 A
5710724 Burrows Jan 1998 A
5732273 Srivastava et al. Mar 1998 A
5860137 Raz et al. Jan 1999 A
5896538 Blandy et al. Apr 1999 A
5903730 Asai et al. May 1999 A
5940618 Blandy et al. Aug 1999 A
5940841 Schmuck et al. Aug 1999 A
5987250 Subrahmanyam Nov 1999 A
5999842 Harrison et al. Dec 1999 A
6226787 Serra et al. May 2001 B1
6327699 Larus et al. Dec 2001 B1
6353805 Zahir et al. Mar 2002 B1
6470478 Bargh et al. Oct 2002 B1
6496908 Kamvysselis et al. Dec 2002 B1
6519766 Barritz et al. Feb 2003 B1
6553464 Kamvysselis et al. Apr 2003 B1
6640280 Kamvysselis et al. Oct 2003 B1
6643654 Patel et al. Nov 2003 B1
6654948 Konuru et al. Nov 2003 B1
6658471 Berry et al. Dec 2003 B1
6658654 Berry et al. Dec 2003 B1
6862632 Halstead et al. Mar 2005 B1
6870929 Greene Mar 2005 B1
6883018 Meiri et al. Apr 2005 B1
6886164 Meiri Apr 2005 B2
6898685 Meiri et al. May 2005 B2
6910075 Marshak et al. Jun 2005 B2
6938122 Meiri et al. Aug 2005 B2
6944726 Yoder et al. Sep 2005 B2
6968369 Veprinsky et al. Nov 2005 B2
6976139 Halstead et al. Dec 2005 B2
7000086 Meiri et al. Feb 2006 B2
7024525 Yoder et al. Apr 2006 B2
7032228 McGillis et al. Apr 2006 B1
7051176 Meiri et al. May 2006 B2
7054883 Meiri et al. May 2006 B2
7099797 Richard Aug 2006 B1
7113945 Moreshet et al. Sep 2006 B1
7114033 Longinov et al. Sep 2006 B2
7143410 Coffman et al. Nov 2006 B1
7174423 Meiri et al. Feb 2007 B2
7197616 Meiri et al. Mar 2007 B2
7228456 Lecrone et al. Jun 2007 B2
7240116 Marshak et al. Jul 2007 B2
7251663 Smith Jul 2007 B1
7292969 Aharoni et al. Nov 2007 B1
7315795 Homma Jan 2008 B2
7376651 Moreshet et al. May 2008 B2
7380082 Meiri et al. May 2008 B2
7383385 Meiri et al. Jun 2008 B2
7383408 Meiri et al. Jun 2008 B2
7386668 Longinov et al. Jun 2008 B2
7389497 Edmark et al. Jun 2008 B1
7392360 Aharoni et al. Jun 2008 B1
7409470 Halstead et al. Aug 2008 B2
7421681 DeWitt, Jr. et al. Sep 2008 B2
7430589 Veprinsky et al. Sep 2008 B2
7475124 Jiang et al. Jan 2009 B2
7552125 Evans Jun 2009 B1
7574587 DeWitt, Jr. et al. Aug 2009 B2
7577957 Kamvysselis et al. Aug 2009 B1
7613890 Meiri Nov 2009 B1
7617372 Bjornsson et al. Nov 2009 B1
7672005 Hobbs et al. Mar 2010 B1
7702871 Arnon et al. Apr 2010 B1
7714747 Fallon May 2010 B2
7814218 Knee et al. Oct 2010 B1
7827136 Wang et al. Nov 2010 B1
7870195 Meiri Jan 2011 B1
7908436 Srinivasan et al. Mar 2011 B1
8046545 Meiri et al. Oct 2011 B2
8078813 LeCrone et al. Dec 2011 B2
8200923 Healey et al. Jun 2012 B1
8327103 Can et al. Dec 2012 B1
8332687 Natanzon et al. Dec 2012 B1
8335771 Natanzon et al. Dec 2012 B1
8335899 Meiri et al. Dec 2012 B1
8380928 Chen et al. Feb 2013 B1
8429346 Chen et al. Apr 2013 B1
8468180 Meiri et al. Jun 2013 B1
8478951 Healey et al. Jul 2013 B1
8504517 Agrawal Aug 2013 B2
8515911 Zhou et al. Aug 2013 B1
8539148 Chen et al. Sep 2013 B1
8566483 Chen et al. Oct 2013 B1
8578204 Ortenberg et al. Nov 2013 B1
8583607 Chen et al. Nov 2013 B1
8600943 Fitzgerald et al. Dec 2013 B1
8677087 Meiri et al. Mar 2014 B2
8683153 Long et al. Mar 2014 B1
8694700 Natanzon et al. Apr 2014 B1
8706959 Arnon et al. Apr 2014 B1
8712976 Chen et al. Apr 2014 B1
8719497 Don et al. May 2014 B1
8732124 Arnon et al. May 2014 B1
8775388 Chen et al. Jul 2014 B1
8782324 Chen et al. Jul 2014 B1
8782357 Halstead et al. Jul 2014 B2
8799601 Chen et al. Aug 2014 B1
8812595 Meiri et al. Aug 2014 B2
8825964 Sopka et al. Sep 2014 B1
8838849 Meiri et al. Sep 2014 B1
8862546 Natanzon et al. Oct 2014 B1
8909887 Armangau et al. Dec 2014 B1
8914596 Lecrone et al. Dec 2014 B2
8930746 Chen et al. Jan 2015 B1
8954699 Chen et al. Feb 2015 B1
8966211 Arnon et al. Feb 2015 B1
8977812 Chen et al. Mar 2015 B1
8977826 Meiri et al. Mar 2015 B1
8984241 Aizman Mar 2015 B2
9002904 Meiri et al. Apr 2015 B1
9009437 Bjornsson et al. Apr 2015 B1
9026492 Shorey et al. May 2015 B1
9026696 Natanzon et al. May 2015 B1
9037816 Halstead et al. May 2015 B1
9037822 Meiri et al. May 2015 B1
9100343 Riordan et al. Aug 2015 B1
9104326 Frank et al. Aug 2015 B2
9110693 Meiri et al. Aug 2015 B1
9128942 Pfau et al. Sep 2015 B1
9152336 Chen et al. Oct 2015 B1
9208162 Hallak et al. Dec 2015 B1
9270592 Sites Feb 2016 B1
9286003 Hallak et al. Mar 2016 B1
9304889 Chen et al. Apr 2016 B1
9323750 Natanzon et al. Apr 2016 B2
9330048 Bhatnagar et al. May 2016 B1
9342465 Meiri May 2016 B1
9355112 Armangau et al. May 2016 B1
9378106 Ben-Moshe et al. Jun 2016 B1
9384206 Bono et al. Jul 2016 B1
9395937 Si et al. Jul 2016 B1
9396243 Halevi et al. Jul 2016 B1
9418131 Halevi et al. Aug 2016 B1
9449011 Chen et al. Sep 2016 B1
9459809 Chen et al. Oct 2016 B1
9460102 Bono et al. Oct 2016 B1
9477431 Chen et al. Oct 2016 B1
9483355 Meiri et al. Nov 2016 B1
9513814 Can et al. Dec 2016 B1
9524220 Veprinsky et al. Dec 2016 B1
9529545 Bono et al. Dec 2016 B1
9542125 Chen Jan 2017 B1
9558083 LeCrone et al. Jan 2017 B2
9563683 Abercrombie Feb 2017 B2
9594514 Bono et al. Mar 2017 B1
9606739 LeCrone et al. Mar 2017 B1
9606870 Meiri et al. Mar 2017 B1
9684593 Chen et al. Jun 2017 B1
9710187 Si et al. Jul 2017 B1
9753663 LeCrone et al. Sep 2017 B1
9762460 Pawlowski et al. Sep 2017 B2
9769254 Gilbert et al. Sep 2017 B2
9785468 Mitchell et al. Oct 2017 B2
9811288 Chen et al. Nov 2017 B1
9817766 Si et al. Nov 2017 B1
9959063 Meiri et al. May 2018 B1
9959073 Meiri May 2018 B1
10007466 Meiri et al. Jun 2018 B1
10025843 Meiri et al. Jul 2018 B1
10037369 Bono et al. Jul 2018 B1
10055161 Meiri et al. Aug 2018 B1
10082959 Chen et al. Sep 2018 B1
10095428 Meiri et al. Oct 2018 B1
10152381 Shvaiger et al. Dec 2018 B1
10152527 Meiri et al. Dec 2018 B1
10176046 Hu et al. Jan 2019 B1
10235066 Chen et al. Mar 2019 B1
20020056031 Skiba et al. May 2002 A1
20020133512 Milillo et al. Sep 2002 A1
20030023656 Hutchison et al. Jan 2003 A1
20030079041 Parrella, Sr. et al. Apr 2003 A1
20030126122 Bosley et al. Jul 2003 A1
20030145251 Cantrill Jul 2003 A1
20040030721 Kruger et al. Feb 2004 A1
20040267835 Zwilling et al. Dec 2004 A1
20050039171 Avakian et al. Feb 2005 A1
20050102547 Keeton et al. May 2005 A1
20050125626 Todd Jun 2005 A1
20050144416 Lin Jun 2005 A1
20050171937 Hughes et al. Aug 2005 A1
20050177603 Shavit Aug 2005 A1
20050193084 Todd et al. Sep 2005 A1
20050278346 Shang et al. Dec 2005 A1
20060031653 Todd et al. Feb 2006 A1
20060031787 Ananth et al. Feb 2006 A1
20060047776 Chieng et al. Mar 2006 A1
20060070076 Ma Mar 2006 A1
20060123212 Yagawa Jun 2006 A1
20060242442 Armstrong et al. Oct 2006 A1
20070078982 Aidun et al. Apr 2007 A1
20070208788 Chakravarty et al. Sep 2007 A1
20070297434 Arndt et al. Dec 2007 A1
20080098183 Morishita et al. Apr 2008 A1
20080163215 Jiang et al. Jul 2008 A1
20080178050 Kern et al. Jul 2008 A1
20080228772 Plamondon Sep 2008 A1
20080228864 Plamondon Sep 2008 A1
20080228899 Plamondon Sep 2008 A1
20080228938 Plamondon Sep 2008 A1
20080229017 Plamondon Sep 2008 A1
20080229020 Plamondon Sep 2008 A1
20080229021 Plamondon Sep 2008 A1
20080229023 Plamondon Sep 2008 A1
20080229024 Plamondon Sep 2008 A1
20080229025 Plamondon Sep 2008 A1
20080243952 Webman et al. Oct 2008 A1
20080288739 Bamba et al. Nov 2008 A1
20090006745 Cavallo et al. Jan 2009 A1
20090030986 Bates Jan 2009 A1
20090049450 Dunshea et al. Feb 2009 A1
20090055613 Maki et al. Feb 2009 A1
20090089483 Tanaka et al. Apr 2009 A1
20090100108 Chen et al. Apr 2009 A1
20090222596 Flynn et al. Sep 2009 A1
20090319996 Shafi et al. Dec 2009 A1
20100042790 Mondal et al. Feb 2010 A1
20100088296 Periyagaram et al. Apr 2010 A1
20100180145 Chu Jul 2010 A1
20100199066 Artan et al. Aug 2010 A1
20100205330 Noborikawa et al. Aug 2010 A1
20100223619 Jaquet et al. Sep 2010 A1
20100257149 Cognigni et al. Oct 2010 A1
20110060722 Li et al. Mar 2011 A1
20110078494 Maki et al. Mar 2011 A1
20110083026 Mikami et al. Apr 2011 A1
20110099342 Ozdemir Apr 2011 A1
20110119679 Muppirala et al. May 2011 A1
20110161297 Parab Jun 2011 A1
20110202744 Kulkarni et al. Aug 2011 A1
20110225122 Denuit et al. Sep 2011 A1
20110289291 Agombar et al. Nov 2011 A1
20120054472 Altman et al. Mar 2012 A1
20120059799 Oliveira et al. Mar 2012 A1
20120078852 Haselton et al. Mar 2012 A1
20120124282 Frank et al. May 2012 A1
20120158736 Milby Jun 2012 A1
20120254131 Al Kiswany Oct 2012 A1
20120278793 Jalan et al. Nov 2012 A1
20120290546 Smith et al. Nov 2012 A1
20120290798 Huang et al. Nov 2012 A1
20120304024 Rohleder et al. Nov 2012 A1
20130031077 Liu et al. Jan 2013 A1
20130054524 Anglin et al. Feb 2013 A1
20130073527 Bromley Mar 2013 A1
20130110783 Wertheimer et al. May 2013 A1
20130111007 Hoffmann et al. May 2013 A1
20130138607 Bashyam et al. May 2013 A1
20130151683 Jain et al. Jun 2013 A1
20130151759 Shim et al. Jun 2013 A1
20130166549 Goldman et al. Jun 2013 A1
20130198854 Erway et al. Aug 2013 A1
20130246354 Clayton et al. Sep 2013 A1
20130246724 Furuya Sep 2013 A1
20130265883 Henry et al. Oct 2013 A1
20130282997 Suzuki et al. Oct 2013 A1
20130318051 Kumar et al. Nov 2013 A1
20130318221 Anaya et al. Nov 2013 A1
20130332610 Beveridge Dec 2013 A1
20140040199 Golab et al. Feb 2014 A1
20140040343 Nickolov et al. Feb 2014 A1
20140108727 Sakashita et al. Apr 2014 A1
20140136759 Sprouse et al. May 2014 A1
20140143206 Pittelko May 2014 A1
20140161348 Sutherland et al. Jun 2014 A1
20140195484 Wang et al. Jul 2014 A1
20140237201 Swift Aug 2014 A1
20140279884 Dantkale et al. Sep 2014 A1
20140297588 Babashetty et al. Oct 2014 A1
20140359231 Matthews Dec 2014 A1
20140380005 Furuya Dec 2014 A1
20140380282 Ravindranath Sivalingam et al. Dec 2014 A1
20150006910 Shapiro Jan 2015 A1
20150032696 Camble Jan 2015 A1
20150088823 Chen et al. Mar 2015 A1
20150112933 Satapathy Apr 2015 A1
20150134723 Kansal et al. May 2015 A1
20150149739 Seo et al. May 2015 A1
20150161194 Provenzano et al. Jun 2015 A1
20150200833 Cutforth Jul 2015 A1
20150205816 Periyagaram et al. Jul 2015 A1
20150249615 Chen et al. Sep 2015 A1
20150324236 Gopalan et al. Nov 2015 A1
20150370488 Watanabe et al. Dec 2015 A1
20160034692 Singler Feb 2016 A1
20160042285 Gilenson et al. Feb 2016 A1
20160062853 Sugabrahmam et al. Mar 2016 A1
20160080482 Gilbert et al. Mar 2016 A1
20160188419 Dagar et al. Jun 2016 A1
20160350391 Vijayan et al. Dec 2016 A1
20160359968 Chitti et al. Dec 2016 A1
20160366206 Shemer et al. Dec 2016 A1
20170091246 Risvik Mar 2017 A1
20170123704 Sharma et al. May 2017 A1
20170139786 Simon et al. May 2017 A1
20170161348 Araki et al. Jun 2017 A1
20170201602 Harnik et al. Jul 2017 A1
Foreign Referenced Citations (4)
Number Date Country
1804157 Jul 2007 EP
WO 2010019596 Feb 2010 WO
WO 2010040078 Apr 2010 WO
WO 2012066528 May 2012 WO
Non-Patent Literature Citations (107)
Entry
RCE and Response to Final Office Action dated Jun. 13, 2018 for U.S. Appl. No. 15/076,946, filed Aug. 30, 2018; 17 Pages.
Response to Office Action dated Dec. 6, 2018 for U.S. Appl. No. 15/076,946, filed Jan. 23, 2019; 9 Pages.
Office Action dated Nov. 1, 2017 corresponding to U.S. Appl. No. 15/196,374, 64 Pages.
U.S. Non-Final Office Action dated Jul. 6, 2017 for U.S. Appl. No. 14/494,895; 36 Pages.
U.S. Appl. No. 15/196,674, filed Jun. 29, 2016, Kleiner, et al.
U.S. Appl. No. 15/196,427, filed Jun. 29, 2016, Shveidel.
U.S. Appl. No. 15/196,374, filed Jun. 29, 2016, Shveidel, et al.
U.S. Appl. No. 15/196,447, filed Jun. 29, 2016, Shveidel, et al.
U.S. Appl. No. 15/196,472, filed Jun. 29, 2016, Shveidel.
Response to U.S. Non-Final Office Action dated Dec. 14, 2017 for U.S. Appl. No. 15/076,946; Response filed on Mar. 14, 2018; 11 pages.
Response to U.S. Non-Final Office Action dated Dec. 11, 2017 for U.S. Appl. No. 15/196,447; Response filed on Mar. 12, 2018; 12 pages.
Response to U.S. Non-Final Office Action dated Jul. 6, 2017 for U.S. Appl. No. 14/494,895; Response filed Oct. 3, 2017; 10 Pages.
U.S. Non-Final Office Action dated Jan. 11, 2018 corresponding to U.S. Appl. No. 15/085,168; 14 Pages.
U.S. Non-Final Office Action dated Dec. 29, 2017 corresponding to U.S. Appl. No. 15/196,674; 34 Pages.
U.S. Non-Final Office Action dated Jan. 8, 2018 corresponding to U.S. Appl. No. 15/196,472; 16 Pages.
U.S. Notice of Allowance dated Jan. 26, 2018 corresponding to U.S. Appl. No. 15/085,172; 8 Pages.
U.S. Notice of Allowance dated Jan. 24, 2018 corresponding to U.S. Appl. No. 15/085,181; 8 Pages.
Response to U.S. Non-Final Office Action dated Nov. 1, 2017 corresponding to U.S. Appl. No. 15/196,374; Response Filed Jan. 30, 2018; 14 Pages.
Response filed on May 2, 2016 to the Non-Final Office Action dated Dec. 1, 2015; for U.S. Appl. No. 14/230,405; 8 pages.
Response filed on May 2, 2016 to the Non-Final Office Action dated Feb. 4, 2016; for U.S. Appl. No. 14/037,577; 10 pages.
U.S. Appl. No. 16/050,247, filed Jul. 31, 2018, Schneider et al.
U.S. Appl. No. 16/177,782, filed Nov. 1, 2018, Hu et al.
U.S. Appl. No. 16/264,825, filed Feb. 1, 2019, Chen et al.
U.S. Appl. No. 16/263,414, filed Jan. 31, 2019, Meiri et al.
U.S. Appl. No. 15/001,789, filed Jan. 20, 2016, Meiri et al.
U.S. Appl. No. 15/076,775, filed Mar. 22, 2016, Chen et al.
U.S. Appl. No. 15/076,946, filed Mar. 22, 2016, Meiri.
U.S. Appl. No. 15/499,297, filed Apr. 27, 2017, Kucherov et al.
U.S. Appl. No. 15/499,303, filed Apr. 27, 2017, Kucherov et al.
U.S. Appl. No. 15/499,226, filed Apr. 27, 2017, Meiri et al.
U.S. Appl. No. 15/499,199, filed Apr. 27, 2017, Stronge et al.
U.S. Appl. No. 15/797,329, filed Oct. 30, 2017, Parasnis et al.
U.S. Appl. No. 15/971,153, filed May 4, 2018, Meiri et al.
U.S. Appl. No. 15/971,310, filed May 4, 2018, Kucherov et al.
U.S. Appl. No. 15/971,325, filed May 4, 2018, Kucherov et al.
U.S. Appl. No. 15/971,445, filed May 4, 2018, Kucherov et al.
U.S. Appl. No. 16/048,767, filed Jul. 30, 2018, Chen et al.
U.S. Appl. No. 16/169,202, filed Oct. 24, 2018, Chen et al.
U.S. Appl. No. 16/167,858, filed Oct. 23, 2018, Chen et al.
U.S. Appl. No. 16/175,979, filed Oct. 31, 2018, Hu et al.
U.S. Appl. No. 16/157,528, filed Oct. 11, 2018, Chen et al.
U.S. Appl. No. 16/162,786, filed Oct. 17, 2018, Hu et al.
U.S. Appl. No. 16/164,005, filed Oct. 18, 2018, Chen et al.
U.S. Appl. No. 16/254,899, filed Jan. 23, 2019, Chen et al.
U.S. Appl. No. 16/254,897, filed Jan. 23, 2019, Chen et al.
U.S. Appl. No. 16/264,982, filed Feb. 1, 2019, Chen et al.
U.S. Appl. No. 15/499,943, filed Apr. 28, 2017, Kucherov et al.
U.S. Appl. No. 15/499,935, filed Apr. 28, 2017, Chen et al.
U.S. Appl. No. 15/499,949, filed Apr. 28, 2017, Chen et al.
U.S. Appl. No. 15/499,947, filed Apr. 28, 2017, Kucherov et al.
U.S. Appl. No. 15/499,951, filed Apr. 28, 2017, Chen et al.
U.S. Appl. No. 15/656,168, filed Jul. 21, 2017, Hu et al.
U.S. Appl. No. 15/656,170, filed Jul. 21, 2017, Chen et al.
U.S. Appl. No. 15/797,324, filed Oct. 30, 2017, Chen et al.
U.S. Appl. No. 15/885,027, filed Jan. 31, 2018, Chen et al.
U.S. Appl. No. 16/042,363, filed Jul. 23, 2018, Chen et al.
U.S. Appl. No. 16/038,543, filed Jul. 18, 2018, Chen et al.
Final Office Action dated Jun. 13, 2018 for U.S. Appl. No. 15/076,946; 29 pages.
U.S. Notice of Allowance dated May 9, 2018 for U.S. Appl. No. 15/196,447; 12 Pages.
Feng et al., “eMuse: QoS Guarantees for Shared Storage Servers;” 22nd International Conference on Advanced Information Networking and Applications—Workshops; Mar. 25, 2008; 6 Pages.
Schaelicke et al. “Improving I/O Performance with a Conditional Store Buffer;” 31st Annual ACM/IEEE International Symposium on Microarchitecture; Dec. 2, 1998; 10 Pages.
Ye et al., “Buffering and Flow Control in Optical Switches for High Performance Computing;” IEEE/OSA Journal of Optical Communications and Networking, vol. 3, No. 8; Aug. 2011; 14 Pages.
Zhang et al., “Storage Performance Virtualization via Throughput and Latency Control;” Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS '05); Sep. 27, 2005; 8 Pages.
Response to U.S. Final Office Action dated Apr. 6, 2016 corresponding to U.S. Appl. No. 14/034,981; Response filed on Jun. 16, 2016; 11 Pages.
Notice of Allowance dated Jun. 29, 2016 corresponding to U.S. Appl. No. 14/034,981; 14 Pages.
Response to U.S. Office Action dated Feb. 4, 2016 corresponding to U.S. Appl. No. 14/037,577; Response filed on May 2, 2016; 10 Pages.
Notice of Allowance dated May 20, 2016 corresponding to U.S. Appl. No. 14/037,577; 19 Pages.
Notice of Allowance dated Jun. 6, 2016 corresponding to U.S. Appl. No. 14/317,449; 43 Pages.
U.S. Final Office Action dated Nov. 2, 2017 for U.S. Appl. No. 14/494,895; 12 Pages.
U.S. Appl. No. 14/034,981, filed Sep. 24, 2013, Halevi et al.
U.S. Appl. No. 14/037,577, filed Sep. 26, 2013, Ben-Moshe at al.
U.S. Appl. No. 14/230,405, filed Mar. 31, 2014, Meiri et al.
U.S. Appl. No. 14/230,414, filed Mar. 31, 2014, Meiri.
U.S. Appl. No. 14/317,449, filed Jun. 27, 2014, Halevi et al.
U.S. Appl. No. 14/494,895, filed Sep. 24, 2014, Meiri et al.
U.S. Appl. No. 14/494,899, filed Sep. 24, 2014, Chen et al.
U.S. Appl. No. 14/979,890, filed Dec. 28, 2015, Meiri et al.
U.S. Appl. No. 15,001,784, filed Jan. 20, 2016, Meiri et al.
U.S. Appl. No. 15/085,168, filed Mar. 30, 2016, Meiri et al.
U.S. Appl. No. 15/085,172, filed Mar. 30, 2016, Meiri.
U.S. Appl. No. 15/085,181, filed Mar. 30, 2016, Meiri et al.
PCT International Search Report and Written Opinion dated Dec. 1, 2011 for PCT Application No. PCT/IL2011/000692; 11 Pages.
PCT International Preliminary Report dated May 30, 2013 for PCT Patent Application No. PCT/IL2011/000692; 7 Pages.
U.S. Appl. No. 12/945,915; 200 Pages.
U.S. Appl. No. 12/945,915; 108 Pages.
U.S. Appl. No. 12/945,915; 67 Pages.
Nguyen et al., “B+ Hash Tree: Optimizing Query Execution Times for on-Disk Semantic Web Data Structures;” Proceedings of the 6th International Workshop on Scalable Semantic Web Knowledge Base Systems; Shanghai, China, Nov. 8, 2010; 16 Pages.
Notice of Allowance dated Apr. 13, 2015 corresponding to U.S. Appl. No. 14/037,511; 11 Pages.
Non-Final Office Action dated May 11, 2015 corresponding to U.S. Appl. No. 14/037,626; 13 Pages.
Response to Office Action dated May 11, 2015 corresponding to U.S. Appl. No. 14/037,626; Response filed on Jul. 20, 2015; 10 Pages.
Notice of Allowance dated Oct. 26, 2015 corresponding to U.S. Appl. No. 14/037,626; 12 Pages.
Office Action dated Jul. 22, 2015 corresponding to U.S. Appl. No. 14/034,981; 28 Pages.
Response to Office Action dated Jul. 22, 2015 corresponding to U.S. Appl. No. 14/034,981; Response filed on Dec. 22, 2015; 14 Pages.
Office Action dated Sep. 1, 2015 corresponding to U.S. Appl. No. 14/230,414; 13 Pages.
Response to Office Action dated Sep. 1, 2015 corresponding to U.S. Appl. No. 14/230,414; Response filed on Jan. 14, 2016; 10 Pages.
Restriction Requirement dated Sep. 24, 2015 corresponding to U.S. Appl. No. 14/230,405; 8 Pages.
Response to Restriction Requirement dated Sep. 24, 2015 corresponding to U.S. Appl. No. 14/230,405; Response filed Oct. 6, 2015; 1 Page.
Office Action dated Dec. 1, 2015 corresponding to U.S. Appl. No. 14/230,405; 17 Pages.
Office Action dated Feb. 4, 2016 corresponding to U.S. Appl. No. 14/037,577; 26 Pages.
Notice of Allowance dated Feb. 10, 2016 corresponding to U.S. Appl. No. 14/494,899; 19 Pages.
Notice of Allowance dated Feb. 26, 2016 corresponding to U.S. Appl. No. 14/230,414; 8 Pages.
Final Office Action dated Apr. 6, 2016 corresponding to U.S. Appl. No. 14/034,981; 38 Pages.
Notice of Allowance and Issue Fee due dated Apr. 18, 2019 for U.S. Appl. No. 15/076,946; 11 Pages.
Non-Final Office Action dated Dec. 6, 2018 for U.S. Appl. No. 15/076,946; 27 Pages.
U.S. Non-Final Office Action dated Dec. 1, 2017 for U.S. Appl. No. 14/979,890; 10 Pages.
U.S. Non-Final Office Action dated Dec. 11, 2017 for U.S. Appl. No. 15/196,447; 54 Pages.
U.S. Non-Final Office Action dated Dec. 14, 2017 for U.S. Appl. No. 15/076,946; 28 Pages.