1. Technical Field
The present disclosure relates to driving LED (Light-Emitting Diode) lamps and, more specifically, to adaptively dimming the LED lamps.
2. Description of the Related Arts
A wide variety of electronics applications now use LED lamps. These applications include architectural lighting, automotive head and tail lights, backlights for liquid crystal display devices, flashlights, and electronic signs. Compared to conventional lighting sources, like incandescent lamps and fluorescent lamps, LED lamps have significant advantages. These advantages include high efficiency, good directionality, color stability, high reliability, long life time, small size, and environmental safety. In fact, these advantages have helped drive the adoption of LED lamps in applications that traditionally use incandescent lamps.
In some applications, however, LED lamps have not been adopted as being suitable replacements compared to other lighting methods. For example, in applications where the brightness of the light source is adjusted, such as in a dimmable lighting system, methods employed to drive an incandescent lamp, if applied to an LED lamp, may cause the LED lamp to prematurely turn off when the LED lamp is in an ON phase, resulting in a perceivable flicker. Techniques employed to reduce flicker include adding multiple sink current paths to a TRIAC dimmer to provide additional current to the dimmer to reduce flicker and meet the TRIAC dimmer turn-on current demands. But these techniques increase power loss and lack the ability to adapt to changes in system operating conditions.
TRIAC dimmers may be used to adjust the brightness of an LED lamp. To turn on (i.e., trigger), a TRIAC dimmer uses about 100-200 mA to keep the TRIAC dimmer in conduction during the triggering operating mode. Once triggered, the TRIAC dimmer enters into another operating mode called the TRIAC conduction operating mode, where the TRIAC dimmer continues to conduct until the current conducted by the TRIAC dimmer drops below a threshold current level (e.g., 5-20 mA). During TRIAC conduction operating mode, if the conduction current drops below the threshold current level, the TRIAC dimmer will turn off, resulting in a perceivable flicker in the LED lamp. To supply the current demands of the TRIAC dimmer during the triggering operating mode and to maintain TRIAC dimmer conduction after the TRIAC dimmer is triggered, the disclosed LED controller employs a single sink current path to adaptively provide current to the TRIAC dimmer based on the operating conditions of the LED lamp system. The disclosed embodiments dynamically adjust the amount of additional current (i.e., bleeder current) supplied to the TRIAC dimmer based on the TRIAC dimmer operating mode. A TRIAC dimmer current controller continually senses the TRIAC dimmer current loading, determines a TRIAC dimmer operating mode based on the detected current, compares the detected current with a threshold current value called a TRIAC holding current, and adjusts the amount of bleeder current based on the difference between the detected current and the threshold current value. By continually sensing the TRIAC dimmer current loading, the LED controller regulates the amount of bleeder current supplied to the TRIAC dimmer through the sink path in accordance with the TRIAC dimmer operating mode.
During the triggering operating mode, the TRIAC dimmer current loading is greater than the TRIAC holding current, and the controller outputs a control signal to turn off the bleeder current. After the triggering operating mode, the controller regulates the bleeder current to supply the threshold current level used to maintain TRIAC dimmer conduction. When the LED lamp current is sufficient to maintain TRIAC dimmer conduction, the disclosed LED controller does not provide additional current to the TRIAC dimmer using the sink current path. On the other hand, when the LED lamp current falls below the threshold current level, the LED controller increases the amount of bleeder current to maintain TRIAC conduction. Accordingly, during TRIAC conduction operating mode, the disclosed LED controller ensures that the TRIAC dimmer is not multi-firing by detecting a threshold current at which the TRIAC dimmer maintains conduction, and adaptively adjusting the current in the sink current path based on the sensed TRIAC dimmer current.
The disclosed embodiments include a controller for an LED lamp that adaptively adjusts the level of current applied to a LED lamp dimmer, such as a TRIAC dimmer, through a sink current path included in the dimmer controller in accordance with a sensed TRIAC dimmer current loading. Once the TRIAC dimmer is triggered, the controller regulates the current level, referred to as “bleeder current” through the additional current branch to maintain a threshold level, called a holding current. The LED controller sets the holding current level by sensing the TRIAC dimmer current loading to detect when the TRIAC dimmer stops conducting current or conducts insufficient current to remain on for an entire conduction cycle (i.e., multi-fires). The detected current level condition is stored as the TRIAC dimmer holding current level. The stored holding current level may be continually adjusted by sensing the TRIAC dimmer current loading at specified interval to accommodate changes in system operating conditions.
To adaptively adjust the current level applied to a TRIAC dimmer to maintain the holding current level during TRIAC conduction operating mode, the LED controller compares the sensed TRIAC dimmer current loading with the stored holding current threshold. If the sensed TRIAC dimmer current loading is greater than the stored holding current threshold, the LED controller reduces the level of additional current applied to a TRIAC dimmer through a sink current path included in the dimming controller to zero. In other words, when the LED lamp current is greater than the holding current sufficient for the TRIAC dimmer to maintain conduction, the LED controller turns off additional current applied to a TRIAC dimmer through the sink current path. If, on the other hand, the sensed TRIAC dimmer current loading is less than the stored holding current threshold, the LED controller supplies additional current to a TRIAC dimmer through the sink current path to a level equal to the stored holding current threshold.
Additionally, because the disclosed LED controller continually senses the TRIAC dimmer current, the LED controller can sense increased TRIAC dimmer current demands that occur after the TRIAC dimmer is trigger and supply the increased current demands using a single sink current path. As the operation of the TRIAC dimmer transitions to the reduced current demands of maintaining the dimmer holding current, the disclosed LED controller reduces the level of current supplied to the TRIAC dimmer through the sink current path from fully ON to OFF, in steps of 1% of the current level when the TRIAC dimmer is fully ON. Such a technique is beneficial because a single sink current path included in an LED controller is used to supply both heavy and light TRIAC dimmer current demands, while adaptively adjusting the current level in the sink current path based on the sensed current demands of the TRIAC dimmer.
By adaptively adjusting the level of current in the sink current path, the LED controller prevents the TRIAC dimmer current loading level from dropping below the stored holding current threshold. In turn, the LED controller reduces perceivable flickering of the LEDs throughout the dimming range, and causes the LED brightness to respond quickly and smoothly when the TRIAC dimmer switch is adjusted from a startup condition to an active condition.
The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings and specification. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter.
The teachings of the present disclosure can be readily understood by considering the following detailed description in conjunction with the accompanying drawings.
The Figures (FIG.) and the following description relate to embodiments of the present disclosure by way of illustration only. It should be noted that from the following discussion, alternative embodiments of the structures and methods disclosed herein will be readily recognized as viable alternatives that may be employed without departing from the principles of the present disclosure.
Reference will now be made in detail to several embodiments of the present disclosure, examples of which are illustrated in the accompanying figures. It is noted that wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict embodiments of the present disclosure for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the embodiments of the disclosure described herein.
One example of a dimmer switch is described in U.S. Pat. No. 7,936,132, which is incorporated by reference in its entirety. In one embodiment, the dimmer switch 25 employs phase angle switching to adjust the LED lamp circuit 100 lamp input voltage 30 by using a TRIAC circuit. A TRIAC is a bidirectional device that can conduct current in either direction when it is triggered, or turned on. Once triggered, the TRIAC dimmer continues to conduct until the current drops below a certain threshold, called a holding current. For the internal timing of a TRIAC dimmer to function properly, current is drawn from the TRIAC dimmer switch 25 in a regulated manner that provides a smooth transition in light intensity level output of the LED lamp circuit 100 without perceivable flicker.
The LED lamp circuit 100 controls dimming of LED lamps to achieve desired dimming based on the dimming input signal 20. The LED lamp circuit 100 adaptively controls dimming in a manner that reduces or eliminates perceivable flickering of the LEDs throughout the dimming range, and will cause the LED lamp brightness to respond quickly and smoothly when the TRIAC dimmer switch 25 is adjusted. In an embodiment, the LED lamp circuit 100 includes an input filter 110, a bridge rectifier 120, an LED controller 130, a power converter 140, and one or more LED lamps 150.
The input filter 110 filters the lamp input voltage 30 to reduce noise by limiting electromagnetic interference (EMI) and in-rush current. In one implementation, the input filter 110 is a resistor-inductor (RL) circuit. In other implementations, the input filter 110 includes one or a combination of other discrete circuit elements, and digital circuitry to limit EMI and instantaneous input current drawn by the LED lamp circuit 100 when LED lamp circuit 100 is turned on. The bridge rectifier 120 generates a rectified input voltage 115 from the filtered lamp input voltage 30. The power converter 140 comprises a transformer including a primary winding coupled to an input voltage and a secondary winding coupled to an output of the power converter 140. The power converter 140 also includes a switch coupled to the primary winding of the transformer. In operation, current through the primary winding of the power converter 140 is generated while the switch is turned on and is not generated while the switch is turned off. The power converter 140 further includes a controller configured to generate a control signal to turn on the switch responsive to the control signal being in a first state and to turn off the switch responsive to the control signal being in a second state. In one implementation, the states of the control signal include a logic “1” and a logic “0.” In other implementations, the states of the control signal include at least two different analog signal levels.
The LED controller 130 regulates the output current provided to the power converter 140 to control the operation of the LED lamp 150. As previously described and as further described in conjunction with
LED Controller
The LED controller 130 adaptively adjusts the level of current in the sink current path between the TRIAC dimmer 25 and the power converter 140 to regulate the TRIAC dimmer 25 current level under various operating conditions. For example, in a first operating mode, which occurs within several hundred microseconds after the TRIAC dimmer 25 is triggered, the TRIAC dimmer 25 loading current transitions from a heavy current level (e.g., in a range from 100-200 mA) to a light current level (e.g., 45 mA). While in a second operating mode, the TRIAC dimmer loading current is maintained at a level that meets or exceeds the holding current. To adapt to various operating conditions and system specifications, the LED controller 130 senses the TRIAC dimmer current loading signal 115, compares the value sensed TRIAC dimmer current loading signal 115 with the stored holding current of the TRIAC dimmer 25, and adjusts the TRIAC dimmer current loading signal 115 to prevent the TRIAC dimmer current loading level from dropping below the stored holding current threshold level as further described in conjunction with
The input current sensor 310 senses the input current to power converter 140, and provides the output signal 320, which corresponds to the sensed input current. The bleeder current controller 340 receives the output signal 320 and outputs a control signal 350 for regulating the level of current applied to the TRIAC dimmer 25 using the sink current path included in LED controller 310. The output signal 320 is a voltage signal that corresponds to the voltage across the sense resistor Rdc. The voltage across the sense resistor Rdc is a function of the input current to the power converter 140, labeled “E” in
The LED controller 130 further includes a bleeder current controller 340 configured to receive the output signal 320 from the input current sensor 310 and generate an output control signal 350. The control signal 350 controls the operation of the switch Q1 to regulate the amount of current conducted by the bleeder current path. In one embodiment, the bleeder current controller 340 receives the analog output signal 320 from the input sensor 310 and converts the received analog signal to a digital signal for processing by a dimming controller included in the bleeder current controller 340 as further described in conjunction with
In some embodiments, the bleeder current controller 340 includes storage elements (e.g., one or a combination of volatile or nonvolatile memory elements) to store calibration settings, holding current settings, or other parameters for the operation of the LED system 100. For example, the bleeder current controller 340 may store holding current of the TRIAC dimmer 25 detected, during a calibration process, by the input current sensor 310.
The holding current level may vary between TRIAC dimmer devices. Accordingly, in some embodiments, the LED controller 130 may perform a calibration process to detect the holding current for the TRIAC dimmer 25. For example, during a calibration process, the LED controller 130 senses the TRIAC dimmer current loading when the TRIAC dimmer 25 turns off or multi-fires, and outputs the sensed current level to bleeder current controller 340, where the sensed current level is stored as the holding current level reference. By detecting the holding current level, the LED controller 130 can effective regulate a variety of TRIAC dimmers used in different types of operating conditions without the need to be preprogrammed with the holding current level parameters for the particular TRIAC dimmer.
In one embodiment, the holding current level reference may be changed by performing a subsequent sensing of the TRIAC dimmer current loading when the TRIAC dimmer turns off. In some embodiments, LED controller 130 initiates sensing responsive to a change in operating conditions, such as a change in temperature. In other embodiments, LED controller 130 initiates sensing of the TRIAC dimmer current loading when the TRIAC dimmer 25 turns off periodically, such as after a specified or calculated period of time or interval. Such a calibration scheme is beneficial because it uses a sensed value of the holding current for a particular TRIAC dimmer to apply the minimum level of bleeder current to the TRIAC dimmer 25 to sustain its conduction. In another embodiment, the holding current level reference may be provided to the LED controller 130 by a source external to the LED controller 130, or may be adjusted based on other system parameters, such as semiconductor manufacturing process parameters or temperature parameters.
Vout=G*Vdc+(1+G)Vref (1)
where G represents any integer, Vdc represents the voltage across the sense resistor Rdc, and Vref represents the voltage of the reference voltage applied to the non-inverting terminal of the operational amplifier 315. The feedback resistor R_trim may be a programmable resistive element, such as a digital potentiometer with sufficient impedance range and resolution to match the resistance of the external resistor R1. Also, the resistance value of the feedback resistor R_trim may be adjusted by the LED controller 130 during calibration to adjust the value of the holding current level for different TRIAC dimmers by adjusting the ratio of R1 to R_trim. Further, the LED controller 130 may share the trim values used to adjust the impedance value of the feedback resistor R_trim with other trimmed resistors included in the reference generating circuit that generates the reference signal Vref.
Because the output of the operational amplifier 315 generates a positive voltage, the reference signal Vref may be a positive voltage. Such a configuration is beneficial because the current conducted by the TRIAC dimmer 25 is negative, which in turn causes the voltage across the sense resistor Rdc to be a negative voltage; a negative voltage may be challenging to measure directly for a single polarity power supply system. The amplified output Vout 320 of the operational amplifier 315 is coupled to the input of the bleeder current controller 340.
In stage 2, the LED controller 130 seeks to maintain the sensed TRIAC dimmer current loading at the holding current level by incrementally adjusting the value of the bleeder current to ensure that sensed current is maintained at value substantially equal to the holding current. For example, as shown in stage 2 of
By dynamically adjusting the bleeder current based on the an accurate measure of the sensed TRIAC dimmer input current loading, the disclosed embodiments provide a sufficient amount of current to sustain the operation of a TRIAC dimmer during current loading and holding current optimization modes. Also, because the bleeder current may be adjusted with high resolution (e.g., 1% of the total adjustment range of the bleeder current), the disclosed embodiments enable a smooth transition between operating modes to maintain to the TRIAC dimmer performance during these transitions. And further, because the TRIAC dimmer current loading is continually sensed, the disclosed embodiments can minimize power loss resulting from applying excessive bleeder current.
Upon reading this disclosure, those of skill in the art will appreciate still additional alternative designs for controlling dimming of an LED lamp using an adaptive holding current adjustment. Thus, while particular embodiments and applications of the present disclosure have been illustrated and described, it is to be understood that the disclosure is not limited to the precise construction and components disclosed herein and that various modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method and apparatus of the present disclosure disclosed herein without departing from the spirit and scope of the disclosure.
This application claims priority under 35 U.S.C. §119(e) from U.S. Provisional Application No. 61/735,484, filed on Dec. 10, 2012, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7936132 | Quek et al. | May 2011 | B2 |
8111017 | Lin et al. | Feb 2012 | B2 |
8610375 | Chang et al. | Dec 2013 | B2 |
20120104970 | Okubo et al. | May 2012 | A1 |
20120188794 | Chang et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
102573209 | Jul 2012 | CN |
102625514 | Aug 2012 | CN |
2482439 | Aug 2012 | EP |
2011-3467 | Jan 2011 | JP |
2011-108018 | Jun 2011 | JP |
2011-124163 | Jun 2011 | JP |
2012-178310 | Sep 2012 | JP |
WO 2011114261 | Sep 2011 | WO |
Entry |
---|
Chinese First Office Action, Chinese Application No. 2013106710118, May 22, 2015, 15 pages. |
European Extended Search Report, European Application No. 13196476.9, May 22, 2014, 7 pages. |
Japanese Office Action, Japanese Application No. 2013-254956, Sep. 16, 2014, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20140159616 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61735484 | Dec 2012 | US |