In the following description, for purposes of explanation and non-limitation, specific details are set forth, such as particular nodes, functional entities, techniques, protocols, standards, etc. in order to provide an understanding of the described technology. It will be apparent to one skilled in the art that other embodiments may be practiced apart from the specific details disclosed below. For example, while example embodiments are described in the context of signal strength measurements obtained from different geographical locations in a particular coverage area, e.g., one or more cells, the disclosed technology may also be applied to filtering any measurement parameter associated with a received radio signal. In other instances, detailed descriptions of well-known methods, devices, techniques, etc. are omitted so as not to obscure the description with unnecessary detail. Individual function blocks are shown in the figures. Those skilled in the art will appreciate that the functions of those blocks may be implemented using individual hardware circuits, using software programs and data in conjunction with a suitably programmed microprocessor or general purpose computer, using applications specific integrated circuitry (ASIC), and/or using one or more digital signal processors (DSPs).
In general, the Kalman filter estimates a process state using a form of feedback control. The filter estimates the process state at some time and then obtains feedback in the form of state measurements. As such, the basic equations for the Kalman filter fall into two groups: time update equations and measurement update equations. The time update equations project forward in time the current state and error covariance estimates to obtain the a priori estimates for the next time step. The measurement update equations provide feedback to incorporate a new measurement into the a priori estimate to obtain an improved a posteriori estimate. The time update equations can be thought of as predictor equations, while the measurement update equations can be thought of as corrector equations. In the ongoing Kalman filtering cycle, the time update projects current state estimate ahead in time. The measurement update then adjusts or corrects the projected estimate by an actual measurement at that time.
A signal strength measurements processor, such as processor 14 shown in
A non-limiting, example adaptive Kalman filtering process that may be employed by the adaptive Kalman filter 32 is now described in conjunction with the flowcharts in
First, a moving averaging of the surveyed data in array S is determined for a relatively long window to generate an array C (step S1). In one non-limiting example, the relatively long window might be on the order of 6000 wavelengths of the received radio signal. Wavelength is used as the window measure in order to make the measurement “distance” independent of wavelength. In other words, the same number of data samples are averaged for the same number of wavelength changes. The data in array C corresponds to the average signal strength of the surveyed data over a large time scale.
Kalman filtering requires that the average expected signal strength be reduced to 0 dBm. But as mentioned in the background, this condition is usually not satisfied in signal strength measurement situations, i.e., the average signal strength is usually not zero. Consequently, the average signal strength values in the data array C are subtracted from the initial data array S to produce an adapted average signal strength array I (step S2) that has an average signal strength of approximately 0 dBm.
A moving average of a portion of the adapted average signal strength array I is determined over a portion window with a relatively short length to generate a median data array A (step S3). Continuing with wavelength as the unit of window length, a non-limiting example of a relatively short window length might be on the order of 40 wavelengths. Step S3 is similar to the window-based median or average filtering described in the background.
A moving averaging window of the adapted average signal strength array I is determined over a window with an intermediate length to generate a new data array B1 (step S4). Continuing with wavelength as the units of window measurement, a non-limiting example of a relatively short window length might be on the order of 500 wavelengths. The data array B 1 can be viewed as a low pass filtered version of the adapted average signal strength array I without any fast fading components and with possibly some but not all of the slow fading components removed. The low pass filtered data are used to adjust the Kalman filtered result to improve the accuracy and performance of the filtering process.
Next, several Kalman filtering parameters are estimated based on the current signal strength measurement data. In static Kalman filtering, these Kalman filtering parameters would be assumed to be constant, even though in real world applications, that those parameter values change with time and/or geography. One example of such a variable Kalman filtering parameter is a fast fading variance of the median data array A. The fast fading variance D of the short term median data array A is determined by subtracting A from the long term average or median data array I (step S5). D can be determined in accordance with the following: D=(I-A-mean(I-A))2. Another variable Kalman filtering parameter is a slow fading variance E of the median data array A which is determined in step S6. In other words, E is an estimate of the median data variance without fast fading. E can be determined in accordance with the following: E=(A-mean(A))2.
Another variable Kalman filtering parameter is a correlation coefficient parameter. The signal measurement data includes signal measurement data associated with a radio signal received at multiple different geographical positions. The correlation coefficient parameter represents a degree of correlation between signal measurement data at each geographical position at a first time and signal measurement data at that geographical position at a second time. That correlation coefficient is determined in several steps. First, the autocorrelation F of the fast fading variance D is determined (step S7). Then, a variable X can be determined in accordance with the following: X=1/(2LogF) in order to identify the cross-correlation coefficient. X is then used to calculate the correlation coefficient “a” in step S9. As one example, “a” can be determined in accordance with the following: a=e−Di/X, where Di is the distance in wavelength between the signal strength measurements.
Kalman filtering is then performed on the measurement data I to produce a new measurement data array I′ using the procedures described in conjunction with
Sp(it)=a*I(it−1).
An a posteriori prediction of minimum mean squared error (MMSE), Mp(it), of the signal strength estimation is determined in step S22 as follows:
Mp(it)=a2*Mp(it−1)+(1−a2)*E.
A Kalman gain K(it) is determined in step S23 as follows:
K(it)=Mp(it)/(D(it)+Mp(it)).
A filtered a posteriori estimate I(it) of the signal strength is determined in step S24 as follows:
I(it)=Sp(it)+K(it)*(I(it)−Sp(it)).
An a priori MMSE of the signal strength estimation for the next iteration is determined in step S25 as follows:
Mp(it)=(1−K(it))*Mp(it).
The graphs in
In many network management applications, more accurately filtered signal strength data is desirable. For example, because transmission properties, such as modulation/coding and power, should be arranged according to the long term characteristics of the signal rather than the short term. The long term characteristics are presented better by the filtered signal.
Indeed,
Another benefit of the adaptive Kalman filtering approach is that much less data is needed to support this filtering as compared to the median filtering method.
Another non-limiting example implementation of adaptive filtering is illustrated in
There are many advantageous applications for the adaptive Kalman filtering technology. In recent years, the impact of adaptive antennas and array processing to the overall performance of a wireless communication system has become very important. Adaptive or smart antennas include an antenna array combined with space and time diversity processing. The processing of signals from different antennas helps to improve performance both in terms of capacity and quality by, in particular, decreasing co-channel interference. A key issue for good performance for adaptive antenna systems is to have reliable reference inputs. These references include antenna array element positions and characteristics, direction of arrival information, planar properties, and the dimensionality of incoming radio signals. In particular, adaptive antenna systems require accurate estimations of the direction of arrival (DOA) for a desired received signal as well as interfering signals. Once the arrival directions are estimated accurately for these signals, then processing in space, time, or other domains may be accomplished in order to improve the systems performance.
While there are different approaches and algorithms for estimating direction of arrival with various complexities and resolutions, all these methods require averaging signal strength from different directions in order to remove the effects of noise and fast fading. Indeed, existing direction of arrival determination approaches rely on averaging the power levels for a given time interval, and once the power levels in each direction have been averaged, then the desired direction of arrival calculation algorithm is executed. Notably, the resolution performance is limited by the number of signal strength samples taken for averaging. As the number of samples increases, so does the delay in the system, which is typically undesirable in most telecommunication applications. But by using the adaptive Kalman filtering technology, the required number of samples for a given reliability is significant reduced, which decreases the delay.
Another non-limiting example application of adaptive Kalman filtering of signal strength data is to adaptive modulation and/or coding. Signal strength estimation is important in the decision of modulation and coding of modem radio communication systems such as High Speed Downlink Packet Access (HSDPA), Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE). In these adaptive architectures, the carrier-to-interference (C/I) levels as well as signal quality indicator (SQI) values are reported for each UE position. However, these C/I and SQI values should be filtered in order to remove the effects of fast fading.
Yet another non-limiting example application of adaptive Kalman filtering of signal strength data is to power control. For example, it has been shown that in CDMA systems, for various power control algorithms, a one dB reduction in local mean signal strength estimation may result in an accommodation of an additional five users. Since fast fading components change with distance on the order of wavelengths, local mean signal strength is used in many power control algorithms. Satellite communication systems are effected by fast fading as well, especially in the downlink. In these and in other situations, power control algorithms are employed to reduce transmitted power, (a very important resource) and reduce interference. In fact, any system that experiences fast fading and requires power control based on average signal strength levels can benefit from the adaptive Kalman filtering technique, unless the power control mechanism is fast enough to compensate for fast fading.
Although various embodiments have been shown and described in detail, the claims are not limited to any particular embodiment or example. None of the above description should be read as implying that any particular element, step, range, or function is essential such that it must be included in the claims scope. Reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” The scope of patented subject matter is defined only by the claims. The extent of legal protection is defined by the words recited in the allowed claims and their equivalents. All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. No claim is intended to invoke paragraph 6 of 35 USC §112 unless the words “means for” or “step for” are used. Furthermore, no feature, component, or step in the present disclosure is intended to be dedicated to the public regardless of whether the feature, component, or step is explicitly recited in the claims.
This application claims the priority and benefit of U.S. Provisional patent application 60/836,376, filed Aug. 9, 2006, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60836376 | Aug 2006 | US |