The present invention relates to systems and methods for producing light. More specifically, the invention relates to systems and methods for dynamically adapting a produced light in response to varying factors.
Current lighting devices often employ digital lighting technologies such as light-emitting diodes (LEDs) that generally feature longer operating lives, cheaper operating costs, and wider color ranges than those of legacy lighting devices such as incandescent lamps and fluorescent lamps. However, changing ambient light conditions (e.g., seasonal differences, time of day, subjects in motion) can cause lighting device emissions of a given color to be absorbed by the surrounding environment rather than reflected for perception by the user of the lighting device. Such “light waste” operates counter to the longevity, affordability, and efficiency of lighting devices. Advancements in generation of colored light and adaptation to ambient light hold promise for combating light waste.
Current lighting devices are generally capable of generating light within a diverse color range by combining the emissions of various colored primary light sources. Commonly, devices that combine light to create various colors employ light sources that include red, green, and blue (RGB) colored lights, which are known in the art as primary additive colors or primaries. Additional colors may be created though the combination of these primaries. By combining two primary additive colors in substantially equal quantities, the secondary colors of cyan, magenta, and yellow may be created. Combining all three primary colors may produce white. By varying the luminosity of each color emitted, approximately the full color gamut may be produced.
In general, using fewer lights to produce the full color gamut translates to lower lighting system design and operation costs. For example, in a lighting system that utilizes LEDs, operating every LED at full luminosity to produce a white output color may require using an undesirably large amount of energy and also may produce an excessive amount of heat. Therefore, to emit light of virtually any color within the full color gamut without suffering the shortcomings of the prior art, lighting device implementations in the art are known to add a white light source to supplement the primary color light sources.
U.S. Pat. No. 7,728,846 to Higgins et al. discloses converting an input three-color image data set into an output four-color image data set, where one of the output colors present is white. By including an additional white light source, the white light may provide additional brightness without requiring the primary light sources to operate at full luminosity. However, by adding a new lighting source, the disclosed implementation may not operate with optimal efficiency characteristics based on environmental factors. Furthermore, the disclosed implementation requires the use of light sources defined within the full color gamut to reproduce light in various colors, contributing to inefficient operation.
U.S. Pat. No. 7,324,076 to Lee et al. similarly discloses the use of three or more primary lights in an adaptive lighting solution that receives a user-selected color point, derives tristimulus values for the color point, and controls a plurality of LED drivers for an LED light source to achieve the user-selected color point. However, if the user-selected color point is outside a color selection range of the LED light source, the event is merely flagged as an error and no alternative operation is described. Furthermore, like the Higgins patent, the use of three or more primary light sources to reproduce light in various colors results in operational inefficiency compared to implementations employing fewer than three light sources.
International Pub. No. WO 2006/001221 by Nagai et al. discloses a method for altering the light source color of room illumination in accordance with the season, time of day, and occasion. The illumination source emits light in a light source color created as a result of sufficiently mixing white light from white LEDs and orange light from orange LEDs. However, the light source color is variable without deviating much from a state close to natural light, and without regard for possible absorption of the produced color by the environment surrounding the light source.
A need exists for a light adapter that may accept a source signal defining a selected color, and that may efficiently manipulate less than three color points generated by primary light sources along with a white color point generated by a high efficacy light source to produce a selected color. Additionally, a lighting device with the ability to adapt to a selected color would be able to dynamically increase its efficiency by allowing for reduced light absorption by the lighting device's environment, which is more desirable to both consumers and producers. More specifically, a need exists for a lighting device with the ability to adapt to its environment so that more of its produced light is reflected rather than absorbed, increasing efficiency. Additionally, such a lighting device may need to adapt multiple times to account for changes in its environment.
This background information is provided to reveal information believed to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.
With the foregoing in mind, embodiments of the present invention are related to methods and systems for advantageously adapting the light emissions of a lighting device to enhance a color identified in the environment surrounding the lighting device. More specifically, color adaptation as implemented in the present invention, may allow for increased energy efficiency during lighting device operation by tailoring emissions to a selected color that may be reflected back into an illuminable space. The present invention may further allow for less light absorption by the environment, advantageously resulting in greater brightness as perceived by a user of the lighting device. The present invention may further allow for mixing of the emissions of two color points plus a white color point not only to achieve a selected color but also to minimize power consumption and heat production.
These and other objects, features, and advantages according to the present invention are provided by an adaptive light system to control a lighting device. The adaptive light system may include a color matching engine and a controller operatively coupled to the color matching engine. The adaptive light system may also include a plurality of light sources each configured to emit a source light in a source wavelength range. Each of the plurality of light sources may be operatively coupled to the controller. It is preferable that at least one of the plurality of light sources is a white light.
The color matching engine may determine a dominant wavelength of a selected color. The color matching engine may also determine a combination of at least two of the plurality of light sources that emit a combined wavelength that approximately matches the dominant wavelength of the selected color. The controller may be configured to operate the combination of at least two of the plurality of light sources to emit the combined wavelength, wherein at least one of the plurality of light sources is the white light. Each of the plurality of light sources may be provided by a light emitting diode (LED).
The adaptive light system may also include a color capture device that may transmit a source color signal designating the selected color. In one embodiment, the color capture device may be a handheld device such as a mobile phone, a tablet computer, and a laptop computer. In another embodiment, the color capture device may be a sensor device such as an optical sensor, a color sensor, and a camera.
The adaptive light system may also include a conversion engine that may be coupled to the color capture device and may be configured to perform a conversion operation that operates to receive the selected color. The conversion engine also may determine RGB values of the selected color, and may convert the RGB values of the selected color to XYZ tristimulus values.
The color matching engine may define the dominant wavelength of the selected color as a boundary intersect value that may lie within the standardized color space. The boundary intersect value may be collinear with the XYZ tristimulus values of the selected color and with the tristimulus values of a white point such that the boundary intersect value may be closer to the selected color than to the white point.
The color matching engine may identify a subset of colors within the source wavelength ranges of the source lights emitted by the plurality of light sources, such that the subset of colors may combine to match the dominant wavelength of the selected color. The color matching engine also may choose two of the subset of colors to combine to match the dominant wavelength of the selected color. The choice of colors may include a first color value that may be greater than the dominant wavelength of the selected color, and a second value that may be lesser than the dominant wavelength of the selected color. None of the remaining subset of colors may have a source wavelength nearer to the dominant wavelength of the selected color than either of the first color value and the second color value.
In another embodiment, the choice of colors may include a first color value that may be lesser than the dominant wavelength of the selected color. None of the subset of colors may have a source wavelength greater than the first color value, and none of the subset of colors may have a source wavelength lesser than a second color value.
In yet another embodiment, the choice of colors may include a second color value that may be greater than the dominant wavelength of the selected color. None of the subset of colors may have a source wavelength lesser than the second color value, and none of the subset of colors may have a source wavelength greater than a source wavelength of the first color value.
The color matching engine also may define a color line that contains the XYZ tristimulus values of the selected color and the XYZ tristimulus values of the white point, and also a matching line containing XYZ tristimulus values of the first color and XYZ tristimulus values of the second color. The color matching engine may also identify an intersection point of the color line and the matching line. The color matching engine may also determine a percentage of the first color value and a percentage of the second color value to combine to match the dominant wavelength of the color represented by the intersection point.
The color matching engine may also calculate a ratio of the first color and the second color to combine, and may scale the ratio of the first and second colors to sum to 100%. The color matching engine may also determine a Y value for a combined monochromatic color point that may represent a combination of the first color, the second color, and all remaining monochromatic colors emitted by the light sources.
The color matching engine may also determine XYZ tristimulus values for a combined phosphor color point representing a combination of all phosphor colors emitted by the light sources. The color matching engine may determine a percentage of each of the combination of all phosphor colors needed to match the combined phosphor color point, and may choose a combination of the first color, the second color, all remaining monochromatic colors, and all phosphor colors with a lowest sum of the percentages required to match the selected color.
The color matching engine may also determine XYZ tristimulus values for the combined phosphor color point, and may populate an inverted matrix to contain the XYZ tristimulus values of each of the combination of all phosphor colors. The color matching engine may also multiply the inverted matrix by the XYZ tristimulus values of the combined phosphor color point, and may identify every combination of the first color, the second color, all remaining monochromatic colors, and all phosphor colors to adapt to the selected light. The color matching engine may discard any resultant combination that contains a negative percentage.
A method aspect of the present invention is for adapting a source light. The method may comprise receiving a source color signal representing a selected color, and converting the source color signal to a value representing a dominant wavelength of the selected color. The method may further comprise determining a combination of and percentages of the plurality of light sources that may be combined to emit a combined wavelength that approximately matches the selected color. The method may further comprise operating the two or more light sources along with a white light to emit an adapted light that includes the combined wavelength.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Those of ordinary skill in the art realize that the following descriptions of the embodiments of the present invention are illustrative and are not intended to be limiting in any way. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure. Like numbers refer to like elements throughout.
Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following embodiments of the invention are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
In this detailed description of the present invention, a person skilled in the art should note that directional terms, such as “above,” “below,” “upper,” “lower,” and other like terms are used for the convenience of the reader in reference to the drawings. Additionally, in the following detailed description, reference may be made to the driving of light emitting diodes, or LEDs. A person of skill in the art will appreciate that the use of LEDs within this disclosure is not intended to be limited to the any specific form of LED, and should be read to apply to light emitting semiconductors in general. Accordingly, skilled artisans should not view the following disclosure as limited to the any particular light emitting semiconductor device, and should read the following disclosure broadly with respect to the same. Also, a person skilled in the art should notice this description may contain other terminology to convey position, orientation, and direction without departing from the principles of the present invention.
Referring now to
Referring now to
A source signal representing the selected color may be conveyed to the lighting device 110 using a color capture device (for example, and without limitation, a sensor 120 and/or a user interface 130 on a remote computing device). More specifically, a color capture device implemented as a sensor 120 may be configured to detect and to transmit to the lighting device 110 color information from the ambient lighting environment that may be located within an illumination range of the light source 118. For example, and without limitation, a sensor 120 may be an environment sensor such as an optical sensor, a color sensor, and a camera. Alternatively or in addition to use of a sensor 120, a user interface 130 on a remote computing device may be configured to convey color information from a user whose visual region of interest may be within an illumination range of the light source 118. For example, and without limitation, the medium for conveyance of color information from the user interface 130 of a remote computing device to the lighting device 110 may be a network 140.
Continuing to refer to
The conversion engine 112 and the color matching engine 114 may cause the processor 111 to query the data store 113 for color information detected by a color capture device 120, 130, and may interpret that information to identify color points within the lighting capability of the light source 118 that may be used advantageously to enhance a selected color in the environment. More specifically, the conversion engine 112 may perform a conversion operation to convert the source signal to a format that may be interpreted by the matching engine 114 to facilitate a comparison of the selected color to spectral capabilities supported by the light source 118. The controller 116 may cause the processor 111 to query the data store 113 for supported color points identified to enhance the selected color, and may use this retrieved information to generate signals directing the tuning of the spectral output of the light source 118. For example, and without limitation, the controller 116 may generate output signals that may be used to drive a plurality of LEDs in the light source 118.
Referring now to flowchart 200 of
The derived color space specified by x, y, and Y is known as the CIE xyY color space. To return to a three-dimensional representation, the X and Z tristimulus values may be calculated from the chromaticity values x and y and the Y tristimulus value as shown below in Expression B.
Beginning at Block 205, a color capture device 120, 130 may select a color to which the emissions of the lighting device 110 are to be adapted (Block 210). The conversion engine 112 may convert the RGB values of the selected color to the XYZ tristimulus values 310 of the selected color at Block 220. A skilled artisan will recognize that RGB values are representative of additive color mixing with primary colors of red, green, and blue over a transmitted light. The present disclosure may discuss the adaptive light system 100 of the present invention as converting a selected color, which may be defined in the RGB color space, into a signal generated by the controller 116 comprising three numbers independent of their spectral compositions, that may be defined as XYZ tristimulus values 310. However, a person of skill in the art also will appreciate that additional conversions are intended to be included within the scope and spirit of the present invention. A skilled artisan also will appreciate conversion operations may involve converting a selected color into an output signal to drive light emitting devices in a light source 118.
Continuing to refer to
At Block 234, the method then includes a step of the color matching engine 114 determining a subset of colors emitted by the light source 118 that may be combined to match the dominant wavelength of the selected color (Block 234). From that subset, two light colors emitted by the monochromatic LEDs with wavelengths closest to the selected color's dominant wavelength may be paired. For example, and without limitation, one of the pair of combinable monochromatic colors 320 may have a wavelength greater than the selected color's dominant wavelength, while the other combinable monochromatic color 330 may have a wavelength less than the selected color's dominant wavelength (Block 236). A skilled artisan may recognize that the dominant wavelength may be found by plotting the selected color 310 on a CIE 1931 color chart 300, and drawing a line 335 through the selected color 310 and a reference white point 340. The boundary intersection 350 of the line 335 that is closer to the selected color 310 may be defined as the dominant wavelength, while the boundary intersection 352 of the line 335 that is closer to the white point 340 may be defined as the complementary wavelength.
Referring additionally to the magnified area of
Referring to flowchart 244 of
In the above Expression 1,
|ps−p2|=the distance 365 between the selected color point 310 and the second adaptable light color point 330, |ps−p1|=the distance 375 between the selected color point 310 and the first adaptable light color point 320, and
to be mixed to create a combined monochromatic color point characterized by the x and y coordinates of intersection point 360. This ratio may then be scaled to 100% (Block 420). In other words, r1 and r2 may be multiplied by some number such that the greater of the scaled ratio terms R1, and R2 (representing the first color point 320 and the second color point 330, respectively), equals 100.
Continuing to refer to
Y=R1Y1+R2Y2 Expression 2
In the above Expression 2, Y1=the Y value of the first adaptable light color point 320, and Y2=the Y value of the second adaptable light color point 330. The resultant intensity of the combined monochromatic color point 360 may be expressed on a scale from 0 percent to 100 percent, where 100 percent (Ymax) represents the maximum lumen output that the combined monochromatic color point 360 may provide.
After the intensity of the combined monochromatic color point 360 is calculated at Block 430, the tristimulus value for a phosphor color point 355 may be determined at Block 440 by subtracting the xyY value of the selected color point 310 from the xyY value of the white point 340. At Block 450, the intensities of the three phosphor light color points 342, 344, 346 needed to achieve the phosphor color point 355 may be determined by applying an inverted tristimulus matrix containing the tristimulus values of the three phosphor color points 342, 344, 346 multiplied by the tristimulus values of the phosphor color point 355.
If none of the calculated intensity results is determined at Block 452 to contain negative values for the monochromatic light color point 360 (from Block 425) nor for any of the phosphor light color points 342, 344, 346 (from Block 450), then the lowest power load result may be identified as that combination of monochromatic and phosphor color points 360, 342, 344, 346 having the lowest sum of intensities. The result with the lowest sum of intensities, and therefore the least amount of power, may be advantageous in terms of increased efficiency of operation of the lighting device 100. At Block 460, the duty cycle of each monochromatic 320, 330, 332, 334, 336 and phosphor 342, 344, 346 LED may be set by the controller 116 to the intensity determined for each in Block 460, after which the process ends at Block 465.
Continuing to refer to
Upon detection of negative intensity results, the color matching engine 114 may initiate recalculation of all color point intensities by changing the priority of the combined colors (Block 453). If, at Block 454, the latest combined color is determined to have been given priority over other combined colors, then the monochromatic LEDs having the first and second adaptable colors 320, 330 in their spectral outputs are omitted from consideration for intensity reduction (Block 456). Alternatively, if the latest combined color is determined at Block 454 not to have been given priority over other combined colors, then the monochromatic LEDs having the first and second adaptable colors 320, 330 in their spectral outputs are included in consideration for intensity reduction at Block 457. Calculation of reductions in the output intensities of all monochromatic LEDs remaining after completion of the steps at either Block 456 or Block 457 takes place at Block 458. This intensity reduction process is described in greater detail below. The color matching engine 114 may use the updated intensities from Block 458 to repeat attempts to determine the percentage of the color points 320, 330 starting at Block 425. After a limited number of recalculation attempts at Block 458, the process may end at Block 465.
Referring now to the flowchart 458 of
If, at Block 515, the counter is determined not to have reached a limit of six (6) recalculation attempts, then the color matching engine 114 may determine if the counter has reached five (5). If so, then the color matching engine 114 may determine if the latest updated combined color has been assigned priority over other combined colors (Block 527). If priority has been assigned, then the color matching engine 114 may set all non-priority monochromatic intensities to a value of zero (Block 530) before returning to Block 425 (Block 590). If priority is not detected at Block 527, then the color matching engine 114 may set all monochromatic intensities to a value of zero (Block 532) before returning to Block 425 (Block 590).
If, at Block 525, the color matching engine 114 determines the counter has not reached five (5) recalculation attempts, then the color matching engine 114 may determine if the Y value of the monochromatic color point 360 resulted in a negative intensity value for one of the phosphor colors 342, 344, 346 (Block 535). If a negative is detected, then the color matching engine 114 may determine if the latest updated combined color has been given a priority over other combined colors (Block 537). If priority is detected, then the color matching engine 114 may reduce the Y value of the non-priority monochromatic LED colors by 0.5 (Block 540) before returning to Block 425 (Block 590). If priority is not detected, then the color matching engine 114 may reduce the Y value of all monochromatic LED colors by 0.5 (Block 550) before returning to Block 425 (Block 590).
If, at Block 535, the Y value of the monochromatic color point 360 did not result in a negative intensity value for one of the phosphor colors 342, 344, 346, then the color matching engine 114 may determine if the latest updated combined color has been given a priority over other combined colors (Block 547). If priority is detected, then the color matching engine 114 may increase the Y value of the non-priority monochromatic LED colors by 0.5 (Block 560) before returning to Block 425 (Block 590). If no priority is detected, then the color matching engine 114 may increase the Y value of all monochromatic LED colors by 0.5 (Block 562) before returning to Block 425 (Block 590).
Another embodiment of the adaptive light system 100 of the present invention also advantageously includes a controller 116 positioned in communication with a network 140 (e.g., Internet) in order to receive signals to adapt the light source. Additional details regarding communication of signals to the adaptive light system 100 are found below, but can also be found in U.S. Provisional Patent Application Ser. No. 61/486,314 entitled Wireless Lighting Device and Associated Methods, as well as U.S. patent application Ser. No. 13/463,020 entitled Wireless Pairing System and Associated Methods and U.S. patent application Ser. No. 13/269,222 entitled Wavelength Sensing Light Emitting Semiconductor and Associated Methods, the entire contents of each of which are incorporated herein by reference.
There exist many exemplary uses for the adaptive light system 100 according to an embodiment of the present invention. For example, in a case where advantageous reflection a selected color into an illuminable space is desired (e.g., a color of a particular flower at a florist, a display in a store), the light source 118 of the adaptive light system 100 according to an embodiment of the present invention may be readily adapted to emit a light having a particular wavelength suitable for enhancing the selected color.
Referring now to
Referring now to
The adaptable lighting system 100 may also prove advantageous in the field of surgery. Referring now to
A skilled artisan will note that one or more of the aspects of the present invention may be performed on a computing device. The skilled artisan will also note that a computing device may be understood to be any device having a processor, memory unit, input, and output. This may include, but is not intended to be limited to, cellular phones, smart phones, tablet computers, laptop computers, desktop computers, personal digital assistants, etc.
The computer 610 may also include a cryptographic unit 625. Briefly, the cryptographic unit 625 has a calculation function that may be used to verify digital signatures, calculate hashes, digitally sign hash values, and encrypt or decrypt data. The cryptographic unit 625 may also have a protected memory for storing keys and other secret data. In other embodiments, the functions of the cryptographic unit may be instantiated in software and run via the operating system.
A computer 610 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by a computer 610 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may include computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, FLASH memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer 610. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.
The system memory 630 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 631 and random access memory (RAM) 632. A basic input/output system 633 (BIOS), containing the basic routines that help to transfer information between elements within computer 610, such as during start-up, is typically stored in ROM 631. RAM 632 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 620. By way of example, and not limitation,
The computer 610 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives, and their associated computer storage media discussed above and illustrated in
The computer 610 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 680. The remote computer 680 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 610, although only a memory storage device 681 has been illustrated in
When used in a LAN networking environment, the computer 610 is connected to the LAN 671 through a network interface or adapter 670. When used in a WAN networking environment, the computer 610 typically includes a modem 672 or other means for establishing communications over the WAN 673, such as the Internet. The modem 672, which may be internal or external, may be connected to the system bus 621 via the user input interface 660, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 610, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
The communications connections 670 and 672 allow the device to communicate with other devices. The communications connections 670 and 672 are an example of communication media. The communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. A “modulated data signal” may be a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Computer readable media may include both storage media and communication media.
Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/643,316 entitled LUMINAIRE HAVING AN ADAPTABLE LIGHT SOURCE AND ASSOCIATED METHODS filed on May 6, 2012, the entire contents of which are incorporated herein by reference. This application is also related to U.S. patent application Ser. No. 13/234,371 filed Sep. 16, 2011, entitled COLOR CONVERSION OCCLUSION AND ASSOCIATED METHODS, U.S. patent application Ser. No. 13/107,928 filed May 15, 2011, entitled HIGH EFFICACY LIGHTING SIGNAL CONVERTER AND ASSOCIATED METHODS, U.S. patent application Ser. No. 13/174,339 filed Jun. 30, 2011, entitled LED LAMP FOR PRODUCING BIOLOGICALLY-CORRECTED LIGHT, U.S. patent application Ser. No. 12/842,887 filed Jul. 23, 2010, entitled LED LAMP FOR PRODUCING BIOLGICALLY-CORRECTED LIGHT, and U.S. patent application Ser. No. 13/311,300 filed Dec. 5, 2011, entitled TUNABLE LED LAMP FOR PRODUCING BIOLOGICALLY-ADJUSTED LIGHT, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1768812 | Whiting | Jul 1930 | A |
5523878 | Wallace et al. | Jun 1996 | A |
5680230 | Kaburagi et al. | Oct 1997 | A |
5704701 | Kavanagh et al. | Jan 1998 | A |
5813753 | Vriens et al. | Sep 1998 | A |
5997150 | Anderson | Dec 1999 | A |
6140646 | Busta et al. | Oct 2000 | A |
6259572 | Meyer, Jr. | Jul 2001 | B1 |
6341876 | Moss et al. | Jan 2002 | B1 |
6356700 | Strobl | Mar 2002 | B1 |
6450652 | Karpen | Sep 2002 | B1 |
6459919 | Lys et al. | Oct 2002 | B1 |
6528954 | Lys et al. | Mar 2003 | B1 |
6550949 | Bauer et al. | Apr 2003 | B1 |
6561656 | Kojima et al. | May 2003 | B1 |
6577080 | Lys et al. | Jun 2003 | B2 |
6586882 | Harbers | Jul 2003 | B1 |
6594090 | Kruschwitz et al. | Jul 2003 | B2 |
6733135 | Dho | May 2004 | B2 |
6734639 | Chang et al. | May 2004 | B2 |
6762562 | Leong | Jul 2004 | B2 |
6767111 | Lai | Jul 2004 | B1 |
6787999 | Stimac et al. | Sep 2004 | B2 |
6817735 | Shimizu et al. | Nov 2004 | B2 |
6870523 | Ben-David et al. | Mar 2005 | B1 |
6871982 | Holman et al. | Mar 2005 | B2 |
6909377 | Eberl | Jun 2005 | B2 |
6967761 | Starkweather et al. | Nov 2005 | B2 |
6974713 | Patel et al. | Dec 2005 | B2 |
7009343 | Lim et al. | Mar 2006 | B2 |
7034934 | Manning | Apr 2006 | B2 |
7042623 | Huibers et al. | May 2006 | B1 |
7058197 | McGuire et al. | Jun 2006 | B1 |
7070281 | Kato | Jul 2006 | B2 |
7072096 | Holman et al. | Jul 2006 | B2 |
7075707 | Rapaport et al. | Jul 2006 | B1 |
7083304 | Rhoads | Aug 2006 | B2 |
7095053 | Mazzochette et al. | Aug 2006 | B2 |
7144131 | Rains | Dec 2006 | B2 |
7157745 | Blonder et al. | Jan 2007 | B2 |
7178941 | Roberge et al. | Feb 2007 | B2 |
7184201 | Duncan | Feb 2007 | B2 |
7187484 | Mehrl | Mar 2007 | B2 |
7213926 | May et al. | May 2007 | B2 |
7234844 | Bolta et al. | Jun 2007 | B2 |
7246923 | Conner | Jul 2007 | B2 |
7247874 | Bode et al. | Jul 2007 | B2 |
7252408 | Mazzochete et al. | Aug 2007 | B2 |
7255469 | Wheatley et al. | Aug 2007 | B2 |
7261453 | Morejon et al. | Aug 2007 | B2 |
7289090 | Morgan | Oct 2007 | B2 |
7300177 | Conner | Nov 2007 | B2 |
7303291 | Ikeda et al. | Dec 2007 | B2 |
7319293 | Maxik | Jan 2008 | B2 |
7324076 | Lee et al. | Jan 2008 | B2 |
7325956 | Morejon et al. | Feb 2008 | B2 |
7342658 | Kowarz et al. | Mar 2008 | B2 |
7344279 | Mueller et al. | Mar 2008 | B2 |
7349095 | Kurosaki | Mar 2008 | B2 |
7353859 | Stevanovic et al. | Apr 2008 | B2 |
7369056 | McCollough et al. | May 2008 | B2 |
7382091 | Chen | Jun 2008 | B2 |
7382632 | Alo et al. | Jun 2008 | B2 |
7400439 | Holman | Jul 2008 | B2 |
7427146 | Conner | Sep 2008 | B2 |
7429983 | Islam | Sep 2008 | B2 |
7434946 | Huibers | Oct 2008 | B2 |
7436996 | Ben-Chorin | Oct 2008 | B2 |
7438443 | Tatsuno et al. | Oct 2008 | B2 |
7476016 | Kurihara | Jan 2009 | B2 |
7482636 | Murayama et al. | Jan 2009 | B2 |
7497596 | Ge | Mar 2009 | B2 |
7507001 | Kit | Mar 2009 | B2 |
7520607 | Casper et al. | Apr 2009 | B2 |
7520642 | Holman et al. | Apr 2009 | B2 |
7521875 | Maxik | Apr 2009 | B2 |
7524097 | Turnbull et al. | Apr 2009 | B2 |
7528421 | Mazzochete | May 2009 | B2 |
7530708 | Park | May 2009 | B2 |
7537347 | Dewald | May 2009 | B2 |
7540616 | Conner | Jun 2009 | B2 |
7556376 | Ishak et al. | Jul 2009 | B2 |
7556406 | Petroski et al. | Jul 2009 | B2 |
7573210 | Ashdown et al. | Aug 2009 | B2 |
7598686 | Lys et al. | Oct 2009 | B2 |
7598961 | Higgins | Oct 2009 | B2 |
7605971 | Ishii et al. | Oct 2009 | B2 |
7619372 | Garrity | Nov 2009 | B2 |
7626755 | Furuya et al. | Dec 2009 | B2 |
7633093 | Blonder et al. | Dec 2009 | B2 |
7633779 | Garrity et al. | Dec 2009 | B2 |
7637643 | Maxik | Dec 2009 | B2 |
7677736 | Kasazumi et al. | Mar 2010 | B2 |
7678140 | Brainard et al. | Mar 2010 | B2 |
7679281 | Kim et al. | Mar 2010 | B2 |
7684007 | Hull et al. | Mar 2010 | B2 |
7703943 | Li et al. | Apr 2010 | B2 |
7705810 | Choi et al. | Apr 2010 | B2 |
7708452 | Maxik et al. | May 2010 | B2 |
7709811 | Conner | May 2010 | B2 |
7719766 | Grasser et al. | May 2010 | B2 |
7728846 | Higgins et al. | Jun 2010 | B2 |
7732825 | Kim et al. | Jun 2010 | B2 |
7748845 | Casper et al. | Jul 2010 | B2 |
7766490 | Harbers et al. | Aug 2010 | B2 |
7819556 | Heffington et al. | Oct 2010 | B2 |
7828453 | Tran et al. | Nov 2010 | B2 |
7828465 | Roberge et al. | Nov 2010 | B2 |
7832878 | Brukilacchio et al. | Nov 2010 | B2 |
7834867 | Sprague et al. | Nov 2010 | B2 |
7835056 | Doucet et al. | Nov 2010 | B2 |
7841714 | Grueber | Nov 2010 | B2 |
7845823 | Mueller et al. | Dec 2010 | B2 |
7855376 | Cantin et al. | Dec 2010 | B2 |
7871839 | Lee | Jan 2011 | B2 |
7880400 | Zhoo et al. | Feb 2011 | B2 |
7889430 | El-Ghoroury et al. | Feb 2011 | B2 |
7906789 | Jung et al. | Mar 2011 | B2 |
7928565 | Brunschwiler et al. | Apr 2011 | B2 |
7972030 | Li | Jul 2011 | B2 |
7976182 | Ribarich | Jul 2011 | B2 |
7976205 | Grotsch et al. | Jul 2011 | B2 |
8016443 | Falicoff et al. | Sep 2011 | B2 |
8040070 | Myers et al. | Oct 2011 | B2 |
8047660 | Penn et al. | Nov 2011 | B2 |
8049763 | Kwak et al. | Nov 2011 | B2 |
8061857 | Liu et al. | Nov 2011 | B2 |
8070302 | Hatanaka et al. | Dec 2011 | B2 |
8076680 | Lee et al. | Dec 2011 | B2 |
8083364 | Allen | Dec 2011 | B2 |
8096668 | Abu-Ageel | Jan 2012 | B2 |
8096675 | Posselt | Jan 2012 | B1 |
8115419 | Given et al. | Feb 2012 | B2 |
8164844 | Toda et al. | Apr 2012 | B2 |
8182106 | Shin | May 2012 | B2 |
8182115 | Takahashi et al. | May 2012 | B2 |
8188687 | Lee et al. | May 2012 | B2 |
8192047 | Bailey et al. | Jun 2012 | B2 |
8207676 | Hilgers | Jun 2012 | B2 |
8212836 | Matsumoto et al. | Jul 2012 | B2 |
8253336 | Maxik et al. | Aug 2012 | B2 |
8256921 | Crookham | Sep 2012 | B2 |
8274089 | Lee | Sep 2012 | B2 |
8297783 | Kim | Oct 2012 | B2 |
8304978 | Kim et al. | Nov 2012 | B2 |
8310171 | Reisenauer et al. | Nov 2012 | B2 |
8319445 | McKinney et al. | Nov 2012 | B2 |
8324808 | Maxik et al. | Dec 2012 | B2 |
8324823 | Choi et al. | Dec 2012 | B2 |
8324840 | Shteynberg et al. | Dec 2012 | B2 |
8331099 | Geissler et al. | Dec 2012 | B2 |
8337029 | Li | Dec 2012 | B2 |
8378574 | Schlangen et al. | Feb 2013 | B2 |
8401231 | Maxik et al. | Mar 2013 | B2 |
8491165 | Bretschneider et al. | Jul 2013 | B2 |
20020113555 | Lys et al. | Aug 2002 | A1 |
20040052076 | Mueller | Mar 2004 | A1 |
20040093045 | Bolta | May 2004 | A1 |
20040119086 | Yano et al. | Jun 2004 | A1 |
20050189557 | Mazzochete et al. | Sep 2005 | A1 |
20050200295 | Lim | Sep 2005 | A1 |
20050218780 | Chen | Oct 2005 | A1 |
20050267213 | Gold et al. | Dec 2005 | A1 |
20060002108 | Ouderkirk et al. | Jan 2006 | A1 |
20060002110 | Dowling et al. | Jan 2006 | A1 |
20060164005 | Sun | Jul 2006 | A1 |
20060215193 | Shannon | Sep 2006 | A1 |
20060285193 | Kimura et al. | Dec 2006 | A1 |
20070013871 | Marshall et al. | Jan 2007 | A1 |
20070159492 | Lo et al. | Jul 2007 | A1 |
20070262714 | Bylsma | Nov 2007 | A1 |
20080119912 | Hayes | May 2008 | A1 |
20080143973 | Wu | Jun 2008 | A1 |
20080198572 | Medendorp | Aug 2008 | A1 |
20080225520 | Garbus | Sep 2008 | A1 |
20080232084 | Kon | Sep 2008 | A1 |
20080297027 | Miller et al. | Dec 2008 | A1 |
20090059585 | Chen et al. | Mar 2009 | A1 |
20090128781 | Li | May 2009 | A1 |
20090174342 | Maxik | Jul 2009 | A1 |
20090232683 | Hirata et al. | Sep 2009 | A1 |
20090273931 | Ito et al. | Nov 2009 | A1 |
20090303694 | Roth et al. | Dec 2009 | A1 |
20090309513 | Bergman et al. | Dec 2009 | A1 |
20100001652 | Damsleth | Jan 2010 | A1 |
20100006762 | Yoshida et al. | Jan 2010 | A1 |
20100051976 | Rooymans | Mar 2010 | A1 |
20100053959 | Ijzerman et al. | Mar 2010 | A1 |
20100060185 | Van Duijneveldt | Mar 2010 | A1 |
20100076250 | Van Woudenberg | Mar 2010 | A1 |
20100090619 | Adamson et al. | Apr 2010 | A1 |
20100103389 | McVea et al. | Apr 2010 | A1 |
20100157573 | Toda et al. | Jun 2010 | A1 |
20100202129 | Abu-Ageel | Aug 2010 | A1 |
20100213859 | Shteynberg et al. | Aug 2010 | A1 |
20100231131 | Anderson | Sep 2010 | A1 |
20100231863 | Hikmet et al. | Sep 2010 | A1 |
20100244700 | Chong et al. | Sep 2010 | A1 |
20100244724 | Jacobs et al. | Sep 2010 | A1 |
20100244735 | Buelow, II | Sep 2010 | A1 |
20100244740 | Alpert et al. | Sep 2010 | A1 |
20100270942 | Hui et al. | Oct 2010 | A1 |
20100277084 | Lee et al. | Nov 2010 | A1 |
20100277097 | Maxik | Nov 2010 | A1 |
20100277316 | Schlangen | Nov 2010 | A1 |
20100302464 | Raring et al. | Dec 2010 | A1 |
20100308738 | Shteynberg et al. | Dec 2010 | A1 |
20100315320 | Yoshida | Dec 2010 | A1 |
20100320927 | Gray et al. | Dec 2010 | A1 |
20100320928 | Kaihotsu et al. | Dec 2010 | A1 |
20100321641 | Van Der Lubbe | Dec 2010 | A1 |
20110012137 | Lin et al. | Jan 2011 | A1 |
20110037390 | Ko et al. | Feb 2011 | A1 |
20110080635 | Takeuchi | Apr 2011 | A1 |
20110310446 | Komatsu | Dec 2011 | A1 |
20120019138 | Maxik et al. | Jan 2012 | A1 |
20120250137 | Maxik et al. | Oct 2012 | A1 |
20120285667 | Maxik et al. | Nov 2012 | A1 |
20120286700 | Maxik et al. | Nov 2012 | A1 |
20130070439 | Maxik et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
101702421 | May 2010 | CN |
20 2011 000007 | Apr 2012 | DE |
0851260 | Jul 1998 | EP |
1 662 583 | May 2006 | EP |
1671059 | Apr 2007 | EP |
2246611 | Nov 2010 | EP |
2292464 | Sep 2011 | EP |
2008226567 | Sep 2008 | JP |
WO03098977 | Nov 2003 | WO |
WO2004011846 | Feb 2004 | WO |
WO2006001221 | Jan 2006 | WO |
WO 2006105649 | Oct 2006 | WO |
WO2009121539 | Oct 2009 | WO |
WO2012064470 | May 2012 | WO |
WO2012135173 | Oct 2012 | WO |
WO2012158665 | Nov 2012 | WO |
2012067916 | Dec 2012 | WO |
Entry |
---|
U.S. Appl. No. 13/311,300, filed Dec. 2011, Fredric S. Maxik et al. |
U.S. Appl. No. 13/709,942, filed Dec. 2012, Fredric S. Maxik et al. |
U.S. Appl. No. 13/715,085, filed Dec. 2012, Fredric S. Maxik et al. |
U.S. Appl. No. 13/737,606, filed Jan. 2013, Fredric S. Maxik et al. |
U.S. Appl. No. 13/739,665, filed Jan. 2013, Fredric S. Maxik et al. |
U.S. Appl. No. 13/753,890, filed Jan. 2013, Fredric S. Maxik et al. |
U.S. Appl. No. 13/792,354, filed Mar. 2013, Fredric S. Maxik et al. |
U.S. Appl. No. 13/803,825, filed Mar. 2013, Fredric S. Maxik et al. |
U.S. Appl. No. 13/832,459, filed Mar. 2013, Fredric S. Maxik et al. |
U.S. Appl. No. 13/837,643, filed Mar. 2013, Fredric S. Maxik et al. |
U.S. Appl. No. 13/842,875, filed Mar. 2013, Eric Holland et al. |
Akashi, Yukio, et al., Assessment of Headlamp Glare and Potential Countermeasures: Survey of Advanced Front Lighting System (AFS), U.S. Department of Transportation, National Highway Traffic Safety Administration, Contract No. DTNH22-99-D-07005, (Dec. 2005). |
Arthur P. Fraas, Heat Exchanger Design, 1989, p. 60, John Wiley & Sons, Inc., Canada. |
Boeing, (Jul. 6, 2011), International Space Program, S684-13489 Revision A “ISS Interior Solid State Lighting Assembly (SSLA) Specification”, Submitted to National Aeronautics and Space Administration, Johnson Space Center, Contract No. NAS15-10000, pp. 1-60. |
Brainard, et al., (Aug. 15, 2001), “Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor”, The Journal of Neuroscience, 21(16):6405-6412. |
Binnie et al. (1979) “Fluorescent Lighting and Epilepsy” Epilepsia 20(6):725-727. |
Bullough, John, et al., “Discomfort Glare from Headlamps: Interactions Among Spectrum, Control of Gaze and Background Light Level”, Society of Automotive Engineers, Inc., 2003-01-0296, (2003). |
Charamisinau et al. (2005) “Semiconductor laser insert with Uniform Illumination for Use in Photodynamic Therapy” Appl Opt 44(24):5055-5068. |
Derlofske, et al., “Headlamp Parameters and Glare”, Society of Automotive Engineers, Inc., 2004-01-1280, (2004). |
ERBA Shedding Light on Photosensitivity, One of Epilepsy's Most Complex Conditions. Photosensitivity and Epilepsy. Epilepsy Foundation. Accessed: Aug. 28, 2009. http://www.epilepsyfoundation.org/aboutepilepsy/seizures/photosensitivity-/gerba.cfm. |
Figueiro et al. (2004) “Spectral Sensitivity of the Circadian System” Proc. SPIE 5187:207. |
Figueiro et al. (2008) “Retinal Mechanisms Determine the Subadditive Response to Polychromatic Light by the Human Circadian System” Neurosci Lett 438(2):242. |
Gabrecht et al. (2007) “Design of a Light Delivery System for the Photodynamic Treatment of the Crohn's Disease” Proc. SPIE 6632:1-9. |
H. A El-Shaikh, S. V. Garimella, “Enhancement of Air Jet Impingement Heat Transfer using Pin-Fin Heat Sinks”, D IEEE Transactions on Components and Packaging Technology, Jun. 2000, vol. 23, No. 2. |
Happawana et al. (2009) “Direct De-Ionized Water-Cooled Semiconductor Laser Package for Photodynamic Therapy of Esophageal Carcinoma: Design and Analysis” J Electron Pack 131(2):1-7. |
Harding & Harding (1999) “Televised Material and Photosensitive Epilepsy” Epilepsia 40(Suppl. 4):65. |
Hickcox, Sweater K., et al., Lighting Research Center, “Effect of different colored background lighting on LED discomfort glare perception”, Proc. of SPIE, vol. 8484, 848400-1, (2012). |
Jones, Eric D., Light Emitting Diodes (LEDS) for General Lumination, an Optoelectronics Industry Development Association (OIDA) Technology Roadmap, OIDA Report, Mar. 2001, published by OIDA in Washington D.C. |
J. Y. San, C. H. Huang, M. H, Shu, “Impingement cooling of a confined circular air jet”, In t. J. Heat Mass Transf., 1997. pp. 1355-1364, vol. 40. |
Kooi, Frank, “Yellow Lessens Discomfort Glare: Physiological Mechanism(S)”, TNO Human Factors, Netherlands, Contract No. FA8655-03-1-3043, (Mar. 9, 2004). |
Kuller & Laike (1998) “The Impact of Flicker from Fluorescent Lighting on Well-Being, Perfiormance and Physiological Arousal” Ergonomics 41(4):433-447. |
Lakatos (2006) “Recent trends in the epidemiology of Inflammatory Bowel Disease: Up or Down?” World J Gastroenterol 12(38):6102. |
Mace, Douglas, et al., “Countermeasures for Reducing the Effects of Headlight Glare”, The Last Resource, Prepared for The AAA Foundation for Traffic Safety, pp. 1 to 110, (Dec. 2001). |
Mehta, Arpit, “Map Colors of a CIE Plot and Color Temperature Using an RGB Color Sensor”, Strategic Applications Engineer, Maxim Integrated Products, A1026, p. 1-11, (2005). |
N. T. Obot, W. J. Douglas, A S. Mujumdar, “'Effect of Semi-confinement on Impingement Heat Transfer”, Proc. 7th Int. Heat Transf. Conf., 1982, pp. 1355-1364. vol. 3. |
Ortner & Dorta (2006) “Technology Insight: Photodynamic Therapy for Cholangiocarcinoma” Nat Clin Pract Gastroenterol Hepatol 3(8):459-467. |
Rea (2010) “Circadian Light” J Circadian Rhythms 8(1):2. |
Rea et al. (2010) “The Potential of Outdoor Lighting for Stimulating the Human Circadian System” Alliance for Solid-State Illumination Systems and Technologies (ASSIST), May 13, 2010, p. 1-11. |
Rosco Laboratories Poster “Color Filter Technical Data Sheet: #87 Pale Yellow Green” (2001). |
Sivak, Michael, et al., “Blue Content of LED Headlamps and Discomfort Glare”, The University of Michigan Transportation Research Institute, Report No. UMTRI-2005-2, pp. 1-18, (Feb. 2005). |
S. A Solovitz, L. D. Stevanovic, R. A Beaupre, “Microchannels Take Heatsinks to the Next Level”, Power Electronics Technology, Nov. 2006. |
Stevens (1987) “Electronic Power Use and Breast Cancer: A Hypothesis” Am J Epidemiol 125(4):556-561. |
Stockman, Andrew, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches”, Pergamon, Vision Research 39, pp. 2901-2927 (1999). |
Tannith Cattermole, “Smart Energy Class controls light on demand”, Gizmag.com, Apr. 18, 2010 accessed Nov. 1, 2011. |
Topalkara et al. (1998) “Effects of flash frequency and repetition of intermittent photic stimulation on photoparoxysmal responses” Seizure 7(13):249-253. |
Veitch & McColl (1995) “Modulation of Fluorescent Light: Flicker Rate and Light Source Effects on Visual Performance and Visual Comfort” Lighting Research and Technology 27:243-256. |
Wang (2005) “The Critical Role of Light in Promoting Intestinal Inflammation and Crohn's Disease” J Immunol 174 (12):8173-8182. |
Wilkins et al. (1979) “Neurophysical aspects of pattern-sensitive epilepsy” Brain 102:1-25. |
Wilkins et al. (1989) “Fluorescent lighting, headaches, and eyestrain” Lighting Res Technol 21(1):11-18. |
Yongmann M. Chung, Kai H. Luo, “Unsteady Heat Transfer Analysis of an Impinging Jet”, Journal of Heat Transfer—Transactions of the ASME, Dec. 2002, pp. 1039-1048, vol. 124, No. 6. |
Number | Date | Country | |
---|---|---|---|
20130293158 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61643316 | May 2012 | US |