1. Field of the Invention
The present invention relates generally to personal audio devices such as headphones that include adaptive noise cancellation (ANC), and, more specifically, to architectural features of an ANC system in which performance of the ANC system is measured and used to adjust operation.
2. Background of the Invention
Wireless telephones, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as MP3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing adaptive noise canceling (ANC) using a reference microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.
However, performance of the ANC system in such devices is difficult to monitor. Since the ANC system may not always be adapting, if the position of the device with respect to the user's ear changes, the ANC system may actually increase the ambient noise heard by the user.
Therefore, it would be desirable to provide a personal audio device, including a wireless telephone that implements adaptive noise cancellation and can monitor performance to improve cancellation of ambient sounds.
The above-stated objectives of providing a personal audio device having adaptive noise cancellation and can further monitor performance to improve cancellation of ambient sounds is accomplished in a personal audio system, a method of operation, and an integrated circuit.
The personal audio device includes an output transducer for reproducing an audio signal that includes both source audio for playback to a listener, and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer. The personal audio device also includes the integrated circuit to provide adaptive noise-canceling (ANC) functionality. The method is a method of operation of the personal audio system and integrated circuit. A reference microphone is mounted on the device housing to provide a reference microphone signal indicative of the ambient audio sounds. The personal audio system further includes an ANC processing circuit for adaptively generating an anti-noise signal from the reference microphone signal using an adaptive filter, such that the anti-noise signal causes substantial cancellation of the ambient audio sounds. An error signal is generated from an error microphone located in the vicinity of the transducer, by modeling the electro-acoustic path through the transducer and error microphone with a secondary path adaptive filter. The estimated secondary path response is used to determine and remove the source audio components from the error microphone signal. The ANC processing circuit monitors ANC performance by computing a ratio of a first indication of a magnitude of the error signal including effects of the anti-noise signal to a second indication of the magnitude of the error microphone signal without the effects of the anti-noise signal. The ratio is used as an indication of ANC gain, which can be compared to a threshold or otherwise used to evaluate ANC performance and take further action.
The foregoing and other objectives, features, and advantages of the invention will be apparent from the following, more particular, description of the preferred embodiment of the invention, as illustrated in the accompanying drawings.
The present disclosure is directed to noise-canceling techniques and circuits that can be implemented in a personal audio system, such as a wireless telephone. The personal audio system includes an adaptive noise canceling (ANC) circuit that measures the ambient acoustic environment and generates a signal that is injected into the speaker or other transducer output to cancel ambient acoustic events. A reference microphone is provided to measure the ambient acoustic environment, which is used to generate an anti-noise signal provided to the speaker to cancel the ambient audio sounds. An error microphone measures the ambient environment at the output of the transducer to minimize the ambient sounds heard by the listener using an adaptive filter. Another secondary path adaptive filter is used to estimate the electro-acoustic path through the transducer and error microphone so that source audio can be removed from the error microphone output to generate an error signal, which is then minimized by the ANC circuit. A monitoring circuit computes a ratio of the error signal to the reference microphone output signal or other indication of the magnitude of the reference microphone signal, to provide a measure of ANC gain. The ANC gain measure is an indication of ANC performance, which is compared to a threshold or otherwise evaluated to determine whether the ANC system is operating effectively, and to take further action, if needed.
Referring now to
Wireless telephone 10 includes adaptive noise canceling (ANC) circuits and features that inject an anti-noise signal into speaker SPKR to improve intelligibility of the distant speech and other audio reproduced by speaker SPKR. A reference microphone R is provided for measuring the ambient acoustic environment, and is positioned away from the typical position of a user's mouth, so that the near-end speech is minimized in the signal produced by reference microphone R. A third microphone, error microphone E is provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by speaker SPKR close to ear 5 at an error microphone reference position ERP, when wireless telephone 10 is in close proximity to ear 5. Exemplary circuits 14 within wireless telephone 10 include an audio CODEC integrated circuit 20 that receives the signals from reference microphone R, near speech microphone NS and error microphone E and interfaces with other integrated circuits such as an RF integrated circuit 12 containing the wireless telephone transceiver. In alternative implementations, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit.
In general, the ANC techniques disclosed herein measure ambient acoustic events (as opposed to the output of speaker SPKR and/or the near-end speech) impinging on reference microphone R, and by also measuring the same ambient acoustic events impinging on error microphone E. The ANC processing circuits of illustrated wireless telephone 10 adapt an anti-noise signal generated from the output of reference microphone R to have a characteristic that minimizes the amplitude of the ambient acoustic events at error microphone E, i.e. at error microphone reference position ERP. Since acoustic path P(z) extends from reference microphone R to error microphone E, the ANC circuits are essentially estimating acoustic path P(z) combined with removing effects of an electro-acoustic path S(z). Electro-acoustic path S(z) represents the response of the audio output circuits of CODEC IC 20 and the acoustic/electric transfer function of speaker SPKR, including the coupling between speaker SPKR and error microphone E in the particular acoustic environment. The coupling between speaker SPKR and error microphone E is affected by the proximity and structure of ear 5 and other physical objects and human head structures that may be in proximity to wireless telephone 10, when wireless telephone 10 is not firmly pressed to ear 5. Since the user of wireless telephone 10 actually hears the output of speaker SPKR at a drum reference position DRP, differences between the signal produced by error microphone E and what is actually heard by the user are shaped by the response of the ear canal, as well as the spatial distance between error microphone reference position ERP and drum reference position DRP. While the illustrated wireless telephone 10 includes a two microphone ANC system with a third near speech microphone NS, some aspects of the techniques disclosed herein may be practiced in a system that does not include separate error and reference microphones, or a wireless telephone using near speech microphone NS to perform the function of the reference microphone R. Also, in personal audio devices designed only for audio playback, near speech microphone NS will generally not be included, and the near speech signal paths in the circuits described in further detail below can be omitted.
Referring now to
Referring now to
To implement the above, an adaptive filter 34A has coefficients controlled by a SE coefficient control block 33, which updates based on correlated components of downlink audio signal ds and an error value. SE coefficient control block 33 correlates the actual downlink speech signal ds with the components of downlink audio signal ds that are present in error microphone signal err. Adaptive filter 34A is thereby adapted to generate a signal from downlink audio signal ds, that when subtracted from error microphone signal err, contains the content of error microphone signal err that is not due to downlink audio signal ds in error signal e.
In ANC circuit 30A, there are several oversight controls that sequence the operations of ANC circuit 30A. As such, not all portions of ANC circuit 30A operate continuously. For example, SE coefficient control block 33 can generally only update the coefficients provided to secondary path adaptive filter 34A when source audio d is present, or some other form of training signal is available. W coefficient control block 31 can generally only update the coefficients provided to adaptive filter 32 when response SE(z) is properly trained. Since movement of wireless telephone 10 on ear 5 can change response SE(z) by 20 dB or more, changes in ear position can have dramatic effects on ANC operation. For example, if wireless telephone 10 is pressed harder to ear 5, then the anti-noise signal may be too high in amplitude and produce noise boost before response SE(z) can be updated, which will not occur until downlink audio is present. Since response W(z) will not be properly trained until after SE(z) is updated, the problem can persist. Therefore, it would be desirable to determine whether ANC circuit 30A is operating properly, i.e., that anti-noise signal anti-noise is effectively canceling the ambient sounds.
ANC circuit 30A includes a pair of low-pass filters 38A-38B, which filter error signal e and reference microphone signal ref, respectively, to provide signals indicative of low-frequency components of error microphone signal err and reference microphone signal ref. ANC circuit 30A may also include a pair of band-pass (or high-pass) filters 39A-39B, which filter error signal e and reference microphone signal ref, respectively, to provide signals indicative of high-frequency components of microphone signal err and reference microphone signal ref. The pass-band of band-pass filters 39A-39B generally begins at the stop-band frequency of low-pass filters 38A-38B, but overlap may be provided. A magnitude E of error microphone signal err when the anti-noise signal is active is given by:
E
ANC
ON
=R*P(z)−R*W(z)*S(z),
where R is the magnitude of reference microphone signal ref. When the anti-noise signal is muted, the magnitude of error microphone signal err is:
E
ANC
OFF
=R*P(z)
Defining “ANC gain”, G, as the ratio EANC
E
ANC
ON
=R*1−R*W(z)*S(z) and EANC
G=E
ANC
ON
/E
ANC
OFF
=[R−R*W(z)*S(z)]/R=EANC
Defining “ANC gain”, G, as the ratio EANC
In contrast to acoustic path response P(z), acoustic path response S(z) changes substantially with ear pressure and position, but by determining the magnitudes (E, R) of reference microphone signal ref and error microphone signal err below a predetermined frequency, for example, 500 Hz, the value of the “ANC gain” G=E/R can be measured during a time in which acoustic path response S(z) is unchanging. A control block 39 mutes the anti-noise signal output of adaptive filter 32 by asserting a control signal mute, which controls a muting stage 35. An ANC gain measurement block 37 measures a magnitude E of error signal e, which is the error microphone signal corrected to remove source audio d present in error microphone signal err and uses the measured magnitude as indication of magnitude E. Alternatively error microphone signal err could be used to determine an indication of magnitude E when source audio d is absent or below a threshold amplitude.
Since the ANC system acts to minimize magnitude E=R*P(z)−R*W(z)*S(z), if the ANC system is canceling noise effectively, then E/R will be small. If leakage correction is present, the above relationship remains unchanged since, when including leakage in the model, R is replaced in the above relationship with R+E*L(z), where L(z) is the leakage, then
E/R=(R+E*L(z))*(P(z)−W(z)*S(z))/(R+E*L(z)),
which is also equal to
P(z)−W(z)*S(z)
and thus can also be approximated by G=E/R. One exemplary algorithm that may be implemented by ANC circuit 30A filters error microphone signal err and reference microphone signal ref and calculates E/R from the magnitudes of the filtered signals after SE(z) and W(z) have been trained. The initial value of E/R is saved as G0. The value of E/R=G is subsequently monitored and if G-G0>threshold, an off-model condition is detected. The actions described below can be taken in response to detecting the off-model condition. In another algorithm, the frequency range differences described above with respect to
Another algorithm that can provide additional information about whether response SE(z) is correctly modeling acoustic path S(z) and whether response W(z) is also properly adapted, uses the frequency-dependent behavior of Path P(z) to advantage. A first ratio is computed from magnitudes of the low-pass filtered versions of error signal e and reference microphone signal ref, to yield GL=EL/RL, where EL is the magnitude of the low-pass filtered version of error signal err produced by low-pass filter 38A and RL is the magnitude of the low-pass filtered version of reference microphone signal ref produced by low-pass filter 38B. A second ratio is computed from magnitudes of the band-pass filtered versions of error signal e and reference microphone signal ref, to yield GH=EH/RH, where EH is the magnitude of the band-pass filtered version of error signal e produced by band-pass filter 39A and RH is the magnitude of the band-pass filtered version of reference microphone signal ref produced by band-pass filter 39B. At a time when response SE(z) of adaptive filter 34A and response W(z) of adaptive filter 32 are known to be well-adapted, the values of GH and GL can be stored as GH0 and GL0, respectively. Subsequently, when either or both of GH and GL changes, the changes can be compared to corresponding thresholds THRH, THRL, respectively, to reveal the conditions of the ANC system as shown in Table 1.
If only the high-frequency ANC gain has exceeded a threshold change amount, that is an indication that only response SE(z) of adaptive filter 34A needs to be updated, which reduces the time required to adapt the ANC system, and also avoids the need for a training signal to train response SE(z) of adaptive filter 34A, since adaptive filter 34A can generally only be adapted when source audio d of sufficient magnitude is available, or otherwise when a training signal can be injected without causing disruption audible to the listener.
In response to detecting the off-model condition/poor ANC gain conditions above, several remedial actions can be taken by control block 39 of
Now referring to
Referring now to
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form, and details may be made therein without departing from the spirit and scope of the invention.
This U.S. patent application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/779,266 filed on Mar. 13, 2013.
Number | Date | Country | |
---|---|---|---|
61779266 | Mar 2013 | US |