Embodiments relate generally to elevator systems, and more particularly, to adaptive power control for elevator systems.
Power savings are desirable in practically all electrically powered systems, including elevator systems. Existing elevator power savings systems are rather inflexible; they are either active or inactive at any given time. These systems typically involve switching off parts of an elevator system's electrical system. Each of these parts has a reactivation time to transition from a powered off state to a powered on state. In elevator systems, parts are reactivated to answer an elevator car call, for example. Existing power savings systems do not balance power saving and reactivation time in an efficient manner.
An exemplary embodiment is a system for managing power in an elevator system, the system including an elevator controller; an elevator car in communication with the controller; a component associated with the elevator car; a power management system in communication with the controller; and a database in communication with the power management system, the database including a power profile; wherein the power management system provides power commands to the elevator controller to enter a power savings mode in response to the power profile, the controller sending a power off signal to the component in response to the power command.
Another exemplary embodiment is a method for managing power in an elevator system, the method including storing a custom power profile, the custom power profile identifying a component to be turned off during a power savings mode; determining a time; determining if the custom power profile is to be applied in response to the time; sending a power command to an elevator controller in response to the component identified in the custom power profile; and sending a power off signal to the component in response to the power command.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the invention are apparent from the following detailed description, taken in conjunction with the accompanying drawings, in which:
The detailed description of the invention describes exemplary embodiments of the invention, together with some of the advantages and features thereof, by way of example with reference to the drawings.
Elevator car 102 includes a number of electrically powered components that may be controlled through power-on and power-off signals from controller 104. A car light 108 provides interior lighting for the elevator car 102. A door drive 110 includes an electric motor and is used to open and close elevator doors when elevator car 102 is at a landing. An elevator car fixture 112 may include destination inputs in the form of buttons or a touchscreen. A position reference system 114 travels with elevator car 102 and includes sensors to determine when the elevator car 102 is positioned properly with respect to a landing. It is understood that elevators car 102 may include a number of other components.
A power management system 120 is in communication with controller 104. Power management system 120 may be implemented by a general-purpose computer executing a program stored in a storage medium to perform the processes described herein. Alternatively, power management system 120 may be implemented as part of controller 104, as a standalone component, or as a combination of the two. Power management system 120 accesses a database 122 to store and retrieve power profiles. Database 122 may be internal to power management system 120 or accessed over a network. An interface 128 is provided to the power management system 120 to allow a user to activate one or more power profiles and generate custom power profiles. The user interface 128 may be remotely located from the power management system 120 and access the power management system 120 over a network. For example, user interface 128 may use a web browser to access the power management system 120 over the Internet. User access to the power management system 120 may be controlled through the use of passwords, etc.
Database 122 stores power profiles that indicate which components of the elevator system are to be powered off, and at what times, in order to provide power savings. The power profiles may include pre-established power profiles 124 and custom power profiles 126.
Field 204 may include a graded power profile based on the occurrence or lack of occurrence of certain events. For example, power profile 3 in
Field 208 indicates a reactivation time to transition from the power savings mode implemented by the power profile to a standard operational mode, where all components of the elevator system are powered. The reactivation time represents the time needed to power the components back on after being powered off in the power savings mode. The reactivation time is helpful in selecting a power profile, as wait times for an elevator can be a source of dissatisfaction with elevator users. During periods of high elevator usage, a power profile having a low reactivation time should be used, if any power savings mode is applied at all.
Field 210 identifies a threshold of activity that will cause the power management system 120 to exit power savings mode and enter standard operational mode. The threshold in
Database 122 includes pre-established power profiles 124 and custom power profiles 126. The pre-established power profiles 124 may be provided by the supplier of the power management system 120 and correspond to expected traffic patterns for elevator system 100 in typical installations. The pre-established power profiles 124 may be designed for pre-defined types of installations, e.g. office building, residential, hotel, low-rise, mid-rise, hi-rise, etc.
Custom power profiles 126 may be generated in multiple ways. An authorized user may access power management system 120 through user interface 128 and program a custom power profile 126 manually. This may include the user designating the times for field 202, the components to be turned off for field 204, the threshold for field 210 and whether the profile is active in field 212. The power management system 120 may automatically compute the power savings for field 206 and the reactivation time for field 208 based on the components to be turned off. Based on the computed power savings and reactivation time, the user may modify the components to be turned off.
A custom power profile 126 may also be generated based on a user's designation of a desired level of power savings. That is, a user may specify a desired power savings specifically (95 W, 110 W, etc.) or generally (25%, 50%, 67%, etc.), and based on the specified level, the power management system 120 may generate a custom power profile 126. It is understood, that the power management system 120 may also allow a user to designate components that should or should not be used by the power management system 120 to achieve the desired power savings. The power management system 120 may also generate custom power profiles 126 based on a specified maximum reactivation time. It is further understood, that the power management system 120 may be configured to generate custom power profiles 126 based on any of these or other criteria alone or in combination.
A custom power profile 126 may also be generated through an adaptive learning process executed by the power management system 120. The power management system 120 may monitor elevator system usage over a period of time (e.g., two weeks) and record usage based on time of day and day of week. Based on the amount of usage, the power management system 120 determines a custom power profile 126. In general, the custom power profile 126 will shut off more components (and have a higher reactivation time) during periods of lower expected elevator usage and shut off fewer components (and have a lower reactivation time) during periods of higher expected elevator usage. A custom power profile 126 may continuously adapt to usage of the elevator system 100, to account for changes in elevator usage patterns (e.g., seasonal changes, daylight savings time, etc.).
While
If no power profile is active for the current time, flow proceeds to 304 where power management system 120 selects standard power mode. Standard power mode may be an operational mode where no components are shut off in an attempt to provide power savings. Alternatively, a user may set any other profile as a default profile to be used as a standard power mode. Controller 104 may issue a power on signal to components of the elevator system upon entering the standard power mode. This typically corresponds to periods of high usage of the elevator system 100, where reactivation times are to be avoided. Flow proceeds to 300 where process repeats.
If at 302 a power profile is active for the current time, flow proceeds to 306 where power management system 120 issues power commands to controller 104 to enter a power savings mode in response to the power profile. The power commands from power management system 120 indicate which components of the elevator system 100 are to be powered off. Controller 104 then issues a power off signal to the components identified by power management system 120.
At 308 power management system 120 determines if activity of the elevator system 100 exceeds a threshold associated with the power profile. Power management system 120 is in communication with controller 104 and detects elevator calls. If the elevator system activity exceeds the threshold, this indicates that the system should transition to standard power mode to avoid reactivation time delays. In this case, flow proceeds to 304. Otherwise, flow proceeds to 300 where the process repeats.
Embodiments provide adaptive control of power savings including a scaling of power savings and reactivation time. Several levels of power reduction are available, with each level defined by power reduction capability and reactivation time. The use of multiple power profiles enables a stepwise reduction of power consumption together with a stepwise increase of reactivation time. Custom power profiles can be adjusted by the user to balance between power savings and reactivation time. Custom power profiles may also be adaptively learned based on elevator system usage.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Where certain features have been described in conjunction with one embodiment of the invention, it is understood that these features may be used with alternative embodiments of the invention, whether described or understood. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/039264 | 5/24/2012 | WO | 00 | 11/20/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/176670 | 11/28/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6243548 | Hebert et al. | Jun 2001 | B1 |
6681899 | Hong | Jan 2004 | B1 |
7755223 | Fitzgibbon | Jul 2010 | B2 |
7866446 | Lindegger | Jan 2011 | B2 |
7942246 | Saarikoski | May 2011 | B2 |
8528701 | Schwarzentruber | Sep 2013 | B2 |
8662257 | Chasteen | Mar 2014 | B2 |
8794390 | Chasteen | Aug 2014 | B2 |
8869947 | Harkonen | Oct 2014 | B2 |
9016440 | Finschi | Apr 2015 | B2 |
9212030 | Finschi | Dec 2015 | B2 |
9327940 | Hanninen | May 2016 | B2 |
9376289 | Herkel | Jun 2016 | B2 |
9440819 | Rossignol | Sep 2016 | B2 |
20050273638 | Kaiju et al. | Dec 2005 | A1 |
20070295566 | Lindegger | Dec 2007 | A1 |
20100258383 | Saarikoski et al. | Oct 2010 | A1 |
20120212323 | Skaaksrud et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
H07247061 | Sep 1995 | JP |
2009091099 | Apr 2009 | JP |
2009154618 | Dec 2009 | WO |
Entry |
---|
European Search Report for application EP 12877130.0 , dated Jun. 6, 2015, 5 pages. |
Extended European Search Report for application EP 14182197.5, dated Feb. 5, 2015, 22 pages. |
Lopez de Ipina, Diego, et al., “TRIP: A low-cost vision-based location system for ubiquitous computing”, Personal and Ubiquitous Computing, May 1, 2002, pp. 206-219. |
International Search Report for application PCT/US2012/039264, dated Feb. 26, 2013, 5 pages. |
Written Opinion for application PCT/US2012/039264, dated Feb. 26, 2013, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20150144434 A1 | May 2015 | US |