Adaptive powered stapling algorithm with calibration factor

Information

  • Patent Grant
  • 11311295
  • Patent Number
    11,311,295
  • Date Filed
    Friday, April 13, 2018
    6 years ago
  • Date Issued
    Tuesday, April 26, 2022
    2 years ago
Abstract
A surgical system includes: an adapter assembly; an end effector configured to couple to a distal portion of the adapter assembly; and a surgical device configured to couple to a proximal portion of the adapter assembly. The surgical device includes: a power source; a motor coupled to the power source, the motor configured to actuate at least one of the adapter assembly or the end effector; and a controller operatively coupled to the motor and configured to calibrate the motor while at least one of the adapter assembly or the end effector is actuated by the motor.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to surgical devices. More specifically, the present disclosure relates to handheld electromechanical surgical systems for performing surgical procedures having reusable components.


2. Background of the Related Art

Linear clamping, cutting and stapling devices are used in surgical procedures, for example to resect cancerous or anomalous tissue from a gastro-intestinal tract. Conventional clamping, cutting and stapling instruments include a pistol grip-styled structure having an elongated shaft and an end effector having a pair of gripping members disposed at a distal end of the shaft to clamp, cut, and staple tissue. Conventional stapling instruments may also include end effectors having circular stapler attachments. Actuation of the gripping members is usually accomplished by actuating a trigger coupled to the handle, in response to which one of the two gripping members, such as the anvil portion, moves or pivots relative to the elongated shaft while the other gripping element remains fixed. The fixed gripping member includes a staple cartridge and a mechanism for ejecting the staples through the clamped tissue against the anvil portion, thereby stapling the tissue. The end effector may be integrally formed with the shaft or may be detachable allowing for interchangeability of various gripping and stapling members.


A number of surgical device manufacturers have also developed proprietary powered drive systems for operating and/or manipulating the end effectors. The powered drive systems may include a powered handle assembly, which may be reusable, and a disposable end effector that is removably connected to the powered handle assembly.


Many of the existing end effectors for use with existing powered surgical devices and/or handle assemblies are driven by a linear driving force. For example, end effectors for performing endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures, and transverse anastomosis procedures, are actuated by a linear driving force. As such, these end effectors are not compatible with surgical devices and/or handle assemblies that use rotary motion.


Thus, there is a need to ensure compatibility between various systems and as well as ensure proper functionality of all of the drive components based on mechanical limitations of the system as a whole.


SUMMARY

According to one embodiment of the present disclosure, a surgical system includes: an adapter assembly; an end effector configured to couple to a distal portion of the adapter assembly; and a surgical device configured to couple to a proximal portion of the adapter assembly. The surgical device includes: a power source; a motor coupled to the power source, the motor configured to actuate at least one of the adapter assembly or the end effector; and a controller operatively coupled to the motor and configured to calibrate the motor while at least one of the adapter assembly or the end effector is actuated by the motor.


According to one aspect of the above embodiment, the surgical system further includes: a force sensor coupled to at least one of the adapter assembly, the end effector, or the motor, and the force sensor is configured to measure a force imparted on at least one of the adapter assembly, the end effector, or the motor.


According to another aspect of the above embodiment, the force sensor is coupled to the controller and is configured to provide a force measurement signal indicative of the force.


According to a further aspect of the above embodiment, the surgical device further includes a memory coupled to the controller that is configured to store calibration data in the memory based on the force measurement signal. The controller is further configured to operate the motor based on the calibration data.


According to one aspect of the above embodiment, the adapter assembly includes a first storage device, which stores a first value corresponding to operation of the adapter assembly. The controller is further configured to read the first value and to adjust the first value based on the calibration data to obtain an adjusted first value and to operate the motor based on the adjusted first value.


According to another aspect of the above embodiment, the end effector includes a second storage device, which stores a second value corresponding to operation of the adapter assembly. The controller is further configured to read the second value and to adjust the second value based on the calibration data to obtain an adjusted second value and the controller is configured to operate the motor based on the adjusted second value.


According to another embodiment of the present disclosure, a method for controlling a surgical system includes: coupling an adapter assembly to a surgical device; coupling an end effector to the adapter assembly; energizing a motor of the surgical device to actuate at least one of the adapter assembly or the end effector; measuring a parameter associated with actuation of at least one of the adapter assembly or the end effector; and calibrating the motor based on the parameter associated with the actuation of at least one of the adapter assembly or the end effector.


According to one aspect of the above embodiment, the measurement of the parameter is performed by a force sensor coupled to at least one of the adapter assembly, the end effector, or the motor. The measurement of the parameter includes measuring a force imparted on at least one of the adapter assembly, the end effector, or the motor, the force sensor.


According to another aspect of the above embodiment, the method further includes transmitting a force measurement signal indicative of the force to a controller.


According to a further aspect of the above embodiment, the method further includes storing calibration data in a memory coupled to the controller based on the force measurement signal; operating the motor based on the calibration data; reading a value corresponding to operation of at least one of the end effector or the adapter assembly from a storage device associated with at least one of the end effector or the adapter assembly; and operating the motor based on the value adjusted by the calibration data.





DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a surgical system including a handheld surgical device, an adapter assembly, and a circular stapler end effector according to an embodiment of the present disclosure;



FIG. 2 is a perspective view of a surgical system including the handheld surgical device of FIG. 1, an adapter assembly, and a linear stapler end effector according to another embodiment of the present disclosure;



FIG. 3 is a front perspective view, with parts separated, of the handheld surgical device of FIG. 1;



FIG. 4 is a front, perspective view of a power-pack and an inner rear housing of FIG. 3 separated therefrom;



FIG. 5 is a cross-sectional view of the handheld surgical device of FIG. 2 taken along a section line “5-5” of FIG. 2;



FIG. 6 is a perspective view of the adapter assembly of FIG. 1 separated from the handheld surgical device of FIG. 1 according to an embodiment of the present disclosure;



FIG. 7 is a perspective, partially-transparent view of the adapter assembly of FIG. 1 according to an embodiment of the present disclosure;



FIG. 8 is a schematic diagram of the handheld surgical device of FIG. 1 according to the present disclosure; and



FIG. 9 is a flow chart of a method for controlling the handheld surgical device of FIG. 1 according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the presently disclosed surgical devices and adapter assemblies for use with the surgical devices are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the adapter assembly or surgical device, or component thereof, farther from the user, while the term “proximal” refers to that portion of the adapter assembly or surgical device, or component thereof, closer to the user.


The present disclosure provides a powered surgical device including one or more motors configured to actuate a surgical end effector coupled to the surgical device via an adapter assembly. More specifically, the powered surgical device is configured to couple to an adapter assembly, which in turn, couples to the end effector. One or more force sensors are embedded in one or more of the surgical device, the adapter assembly, and/or the end effector and are configured to monitor the forces imparted on various mechanical components of each of them. The force sensors are configured to provide force measurements to a controller of the surgical device, which then utilizes the measured force to calibrate operation of its motors.


The surgical device according to the present disclosure is configured to monitor the position of various mechanical components, e.g., those of surgical device, the adapter, and the end effector. The powered surgical device is also configured to monitor and react accordingly to forces measured during usage by a force sensor. In particular, the powered surgical device implements an adaptive stapling algorithm executable by the controller in which the surgical device monitors mechanical forces and adjusts the motor speed in response thereto. Execution of the algorithm decreases the motor speed to reduce forces and thus can provide benefits such as improved reliability, better staple formation, and stronger staple lines to reduce leaks. The algorithm may also utilize a shut off force value utilized by the controller to ensure proper functionality of the surgical device without exceeding mechanical limits of the system (e.g., powered surgical device, adapter assembly, and end effector) as a whole.


The powered surgical device according to the present disclosure is also configured to perform force calibration of the powered surgical device, adapter assembly, and/or end effector, which allows for quantifying inherent forces seen within the surgical system that are specific to the components (e.g., adapter assembly and end effector) being used. The measured force is used as a delta factor by the motor control algorithm during the stapling process. The delta factor encompasses variables associated with each of the components of the system, such as the type of the end effector, movement of the end effector, articulation angle, type of tissue, and reloads inclusive of a buttress reinforcement material, and the like. This allows the powered surgical device to incorporate such factors into its motor control algorithm as well as adjust the acceptable force range and/or motor movement based on this factor.


As illustrated in FIG. 1, a surgical system 2 according to the present disclosure includes a surgical device 100, which is shown as a powered hand held electromechanical instrument, configured for selective attachment to a plurality of different types of end effectors 400 having a circular stapler reload 401 and anvil 402. In particular, surgical device 100 is configured for selective connection with an adapter 200, and, in turn, adapter 200 is configured for selective connection with the end effector 400.



FIG. 2 illustrates another embodiment of a surgical system 2′ which also includes the surgical device 100 of FIG. 1, but utilizes a different type of an adapter 200′ that is suitable for use with end effectors 400′ or single use loading units (“SULU's”), such as a linear stapler end effectors. Thus, the surgical device 100 is configured to operate with a variety of types of end effectors 400 or 400′ and corresponding adapters 200 or 200′.


With reference to FIGS. 2-5, surgical device 100 includes a power-pack 101 (FIG. 3), and an outer shell housing 10 (FIG. 2) configured to selectively receive and enclose the power-pack 101. Outer shell housing 10 includes a distal half-section 10a and a proximal half-section 10b. The proximal half-section 10b pivotably connected to distal half-section 10a by a hinge 16 located along an upper edge of distal half-section 10a and proximal half-section 10b such that distal and proximal half-sections 10a, 10b are divided along a plane that traverses a longitudinal axis defined by adapter 200. When joined, distal and proximal half-sections 10a, 10b define a shell cavity 10c (FIG. 3) for receiving power-pack 101.


With reference to FIG. 3, each of distal and proximal half-sections 10a, 10b includes a respective upper shell portion 12a, 12b, and a respective lower shell portion 14a, 14b. Lower shell portion 14a includes a closure tab 18a configured to engage a closure tab 18b of the lower shell portion 14b to selectively secure distal and proximal half-sections 10a, 10b to one another and for maintaining shell housing 10 in a closed configuration.


Distal half-section 10a of shell housing 10 also includes a connecting portion 20 configured to couple to a corresponding drive coupling assembly 210 of adapter 200 (FIG. 6). Specifically, the connecting portion 20 includes a recess 21 configured to receive a portion of drive coupling assembly 210 of adapter 200 when adapter 200 is mated to surgical device 100. Connecting portion 20 of distal half-section 10a also defines three apertures 22a, 22b, 22c and an elongate slot 24 formed in a distally facing surface thereof.


Distal half-section 10a of shell housing 10 also includes a plurality of buttons such as a toggle control button 30. In embodiments, toggle control button 30 may be a two-axis control stick configured to be actuated in a left, right, up and down direction. The toggle control button 30 may also be depressible (e.g., along a third axis).


Distal half-section 10a of shell housing 10 may also support a plurality of other buttons such as a right-side pair of control buttons and a left-side pair of control button. These buttons and other components are described in detail in U.S. Patent Application Publication No. 2016/0310134, the entire disclosure of which is incorporated by reference herein.


With reference to FIG. 3, shell housing 10 includes a sterile barrier plate 60 removably supported in distal half-section 10a. The sterile barrier plate 60 interconnects the power-pack 101 and the adapter 200. Specifically, sterile barrier plate 60 is disposed behind connecting portion 20 of distal half-section 10a and within shell cavity 10c of shell housing 10. Plate 60 includes three coupling shafts 64a, 64b, 64c rotatably supported therein. Each coupling shaft 64a, 64b, 64c extends through a respective aperture 22a, 22b, 22c of connecting portion 20 of distal half-section 10a of shell housing 10.


Plate 60 further includes an electrical pass-through connector 66 supported thereon. Pass-through connector 66 extends through aperture 24 of connecting portion 20 of distal half-section 10a when sterile barrier plate 60 is disposed within shell cavity 10c of shell housing 10. Coupling shafts 64a, 64b, 64c and pass-through connector 66 electrically and mechanically interconnect respective corresponding features of adapter 200 and the power-pack 101.


During use, the shell housing 10 is opened (i.e., distal half-section 10a is separated from proximal half-section 10b about hinge 16), power-pack 101 is inserted into shell cavity 10c of shell housing 10, and distal half-section 10a is pivoted about hinge 16 to a closed configuration. In the closed configuration, closure tab 18a of distal half-section 10a engages closure tab 18b of proximal half-section 10b. Following a surgical procedure, shell housing 10 is opened and the power-pack 101 is removed from shell cavity 10c of shell housing 10. The shell housing 10 may be discarded and the power-pack 101 may then be disinfected and cleaned.


Referring to FIGS. 3-5, power-pack 101 includes an inner handle housing 110 having a lower housing portion 104 and an upper housing portion 108 extending from and/or supported on lower housing portion 104. The inner handle housing 110 also includes a distal half-section 110a and a proximal half-section 110b, which define an inner housing cavity 110c (FIG. 4) for housing a power-pack core assembly 106 (FIG. 4). Power-pack core assembly 106 is configured to control the various operations of surgical device.


With reference to FIG. 4, distal half-section 110a of inner handle housing 110 supports a distal toggle control interface 130 that is operatively engaged with toggle control button 30 of shell housing 10, such that when power-pack 101 is disposed within shell housing 10, actuation of toggle control button 30 exerts a force on toggle control interface 130. Distal half-section 110a of inner handle housing 110 also supports various other control interfaces which operatively engage other buttons of shell housing 10.


With reference to FIGS. 4 and 5, power-pack core assembly 106 includes a battery circuit 140, a motor controller circuit 143, a main controller circuit 145, a main controller 147, and a rechargeable battery 144 configured to supply power to any of the electrical components of surgical device 100. Power-pack core assembly 106 further includes a display screen 146 supported on main controller circuit 145. Display screen 146 is visible through a clear or transparent window 110d disposed in proximal half-section 110b of inner handle housing 110.


Power-pack core assembly 106 further includes a first motor 152 (FIG. 5), a second motor 154 (FIG. 4), and a third motor 156 (FIG. 5) each electrically connected to controller circuit 143 and battery 144. Motors 152, 154, 156 are disposed between motor controller circuit 143 and main controller circuit 145. Each motor 152, 154, 156 is controlled by a respective motor controller (not shown) that are disposed on motor controller circuit 143 and are coupled to a main controller 147. The main controller 147 is also coupled to memory 141 (FIG. 8), which is also disposed on the motor controller circuit 143. The main controller 147 communicates with the motor controllers through an FPGA, which provides control logic signals (e.g., coast, brake, etc. and any other suitable control signals). The motor controllers output corresponding energization signals to their respective motors 152, 154, 156 using fixed-frequency pulse width modulation (PWM) or any other suitable control signals.


Power-pack core assembly 106 also includes an electrical receptacle 149. Electrical receptacle 149 is in electrical connection with main controller board 145 via a second ribbon cable (not shown). Electrical receptacle 149 defines a plurality of electrical slots for receiving respective electrical contacts extending from pass-through connector 66 of plate 60 (FIG. 3) of shell housing 10.


Each motor 152, 154, 156 includes a respective motor shaft 152a, 152b, 152c extending therefrom. Each motor shaft 152a, 152b, 152c may have a recess defined therein having a tri-lobe transverse cross-sectional profile for receiving proximal ends of respective coupling shaft 64a, 64b, 64c of plate 60 of shell housing 10.


Rotation of motor shafts 152a, 152b, 152c by respective motors 152, 154, 156 actuates shafts and/or gear components of adapter 200 in order to perform various operations of surgical device 100. In particular, motors 152, 154, 156 of power-pack core assembly 106 are configured to actuate shafts and/or gear components of adapter 200 in order to selectively actuate components of the end effector 400, to rotate end effector 400 about a longitudinal axis, and to pivot the end effector 400 about a pivot axis perpendicular to the longitudinal axis defined by the adapter 200.


With reference to FIGS. 6 and 7, the adapter 200 includes an outer knob housing 202 and an outer tube 206 extending from a distal end of knob housing 202. Knob housing 202 is configured and adapted to connect to connecting portion 20 of shell housing 10 of surgical device 100 via the drive coupling assembly 210 as described above. The outer tube 206 is configured for selective connection with the end effector 400 (FIG. 1).


The drive coupling assembly 210 extends proximally from the knob housing 202 and includes a plurality of rotatable connector sleeves 218, 220, 222. The drive coupling assembly 210 is configured to couple to the recess 21 of the connecting portion 20 of the shell housing 10. The adapter 200′ is configured to couple to the surgical device 100 in a similar manner. A connector 290 of the adapter assembly 200 is configured to mate with the pass-through connector 66 of the surgical device 100. Once the adapter 200 is mated to the surgical device 100, the coupling shafts 64a, 64b, 64c of the surgical device 100 engage the corresponding rotatable connector sleeves 218, 220, 222. Each of connector sleeves 218, 222, 220 is configured to interconnect respective first, second and third coupling shafts 64a, 64b, 64c of surgical device 100 with respective proximal drive shafts (not shown) of adapter 200. Each of the proximal drive shafts is configured to actuate various components of the adapter 200, the end effector 400, and/or the anvil 402.


With reference to FIG. 7, the connector sleeve 218 is coupled to a rotatable proximal drive shaft 281, which is in turn coupled to a second rotatable drive shaft 282, that is coupled to a trocar assembly 270. For brevity only the mechanical linkages coupled to the connector sleeve 218 are shown. The trocar assembly 270 is selectively couplable to a trocar member 274 or the anvil assembly 402. The adapter 200 also includes a force sensor 292 disposed in support block 294 that is fixedly coupled within the outer tube 206. The force sensor 292 is configured to measure and monitor forces imparted on the trocar member 274 during extension and retraction thereof. In addition, the force sensor 292 is also configured to monitor forces imparted on any other movable components of the adapter 200 that are mechanically coupled to the force sensor 292. The force sensor 292 is coupled to the main controller 147 of the surgical device 100 using a wired or a wireless connection. A wired connection may be any suitable wired interface (e.g., 1-wire) through the connector 290 and the pass-through connector 66. Wireless connection may be implemented any suitable electromagnetic wave communication protocol, such as BLUETOOTH®, near-field communication protocols, radio-frequency identification protocols, and the like. In embodiments, the force sensor 292 may be disposed within the adapter assembly 200′, the end effectors 400 or 400′, and/or the surgical device 100.


With reference to FIG. 8, a schematic diagram of the power-pack 101 is shown. For brevity, only one of the motors 152, 154, 156 is shown, namely, motor 152. The motor 152 is coupled to the battery 144. In embodiments, the motor 152 may be coupled to any suitable power source configured to provide electrical energy to the motor 152, such as an AC/DC transformer.


The battery 144 and the motor 152 are coupled to the motor controller circuit 143 which controls the operation of the motor 152 including the flow of electrical energy from the battery 144 to the motor 152. The motor controller circuit 143 includes a plurality of sensors 408a, 408b, . . . 408n configured to measure operational states of the motor 152, the battery 144, or any other components of the system 2. The sensors 408a-n may include the force sensor 290, voltage sensors, current sensors, temperature sensors, telemetry sensors, optical sensors, and combinations thereof. The sensors 408a-408n may measure voltage, current, and other electrical properties of the electrical energy supplied by the battery 144. The sensors 408a-408n may also measure angular velocity (e.g., rotational speed) as revolutions per minute (RPM), torque, temperature, current draw, and other operational properties of the motor 152. Angular velocity may be determined by measuring the rotation of the motor 152 or a drive shaft (not shown) coupled thereto and rotatable by the motor 152. Position of various axially movable drive shafts may also be determined by using various linear sensors disposed in or in proximity to the shafts or extrapolated from the RPM measurements. In embodiments, torque may be calculated based on the regulated current draw of the motor 152 at a constant RPM. In further embodiments, the motor controller circuit 143 and/or the controller 147 may measure time and process the above-described values as a function thereof, including integration and/or differentiation, e.g., to determine the rate of change in the measured values.


The motor controller circuit 143 is also coupled to the controller 147, which includes a plurality of inputs and outputs for interfacing with the motor controller circuit 143. In particular, the controller 147 receives measured sensor signals from the motor controller circuit 143 regarding operational status of the motor 152 and the battery 144 and, in turn, outputs control signals to the motor controller circuit 143 to control the operation of the motor 152 based on the sensor readings and specific algorithm instructions, which are discussed in more detail below. The controller 147 is also configured to accept a plurality of user inputs from a user interface (e.g., switches, buttons, touch screen, etc. coupled to the controller 147).


With reference to FIGS. 1, 2, and 8, each of the end effectors 400 or 400′ include a storage device 404 which stores data pertaining to the end effector 400 or 400′, respectively. The storage device 404 may include non-volatile storage medium (e.g., EEPROM) that is configured to store any data pertaining to the end effector 400 or 400′, including but not limited to, usage count, identification information, model number, serial number, staple size, stroke length, maximum actuation force, minimum actuation force, factory calibration data, and the like.


With continued reference to FIGS. 1 and 2, each of the adapters 200 and 200′ also include a storage device 304, similar to the storage device 404. The storage device 304 is configured to store any data pertaining to the adapters 200 and 200′, including but not limited to, designation of which of the rotatable connector sleeves 218, 220, 222 correspond to specific functions of the end effector 400 or 400′ (e.g., mapping connector sleeves 218, 220, 222 to functions), usage count, identification information, model number, serial number, identification information, model number, serial number, maximum and/or minimum actuation force for each of the rotatable connector sleeves 218, 220, 222, factory calibration data, and the like.


The storage devices 304 and 404 are configured to communicate with the main controller 147 of the surgical device 100 using a wired or a wireless connection. A wired connection may be any suitable wired interface (e.g., 1-wire) through the connector 290 and the pass-through connector 66. In embodiments, the storage devices 304 and 404 may also be used to authenticate the attached component, e.g., the adapter 200 or 200′, the end effector 400 or 400′.


The present disclosure provides for an apparatus and method for controlling the surgical device 100 or any other powered surgical instrument, including, but not limited to, linear powered staplers, circular or arcuate powered staplers, graspers, electrosurgical sealing forceps, rotary tissue morcellating devices, and the like. In particular, the surgical device 100 is configured to adjust the speed of the motor 152 based on force measurements, including calibration, from the force sensor 292. The force feedback may be utilized during any operation of the motor 152, e.g., whether the motor 152 is actuating articulation of the end effector 400′, ejecting staples from the end effector 400 or 400′, moving the anvil 402, etc. In addition, to using continuous force feedback during operation of the motor 152, the surgical device 100 is also configured to calibrate the motor 152 based on the adapter 200 or 200′ along with the end effector 400 or 400′ to account for inherent mechanical losses associated with each individual component attached to the surgical device 100 (e.g., adapter 200 or 200′, the end effector 400 or 400′). In embodiments, the surgical device 100 may also utilize calibration data stored on the storage device 304 and/or storage device 404. The calibration data may be used in conjunction with force calibration performed by the surgical device 100 as described in further detail below.



FIG. 9 shows a method according to the present disclosure of operating the surgical device 100. The method is described below with respect to the adapter 200 and the end effector 400, but is applicable with respect to adapter 200′ and the end effector 400′ or any other suitable attachments. Initially, the adapter 200 is coupled to the surgical device 100. The surgical device 100, and namely, main controller 147 verifies that the adapter 200 is authentic based on the data stored on the storage device 304. After verification, the main controller 147 may also read additional data from the storage device 304, such as calibration data, maximum actuation force data, etc.


The main controller 147 commences a first calibration process for the adapter 200. This includes actuating each of the coupling shafts 64a, 64b, 64c to rotate connector sleeves 218, 222, 220 and their corresponding drive trains. While each of the connector sleeves 218, 222, 220 are actuated, the force sensor 292 measures force imparted on the drive trains. Calibration may include obtaining a reference force measurement while driving the connector sleeves 218, 222, 220 in a first direction until their respective mechanical limits are reached and then returning the connector sleeves 218, 222, 220 back to their starting position or until another mechanical limit is reached. In embodiments, each or all of the connector sleeves 218, 222, 220 may be calibrated. The encountered force for each of the mechanical limits of the connector sleeves 218, 222, 220 is stored in the memory 141. In addition, the main controller 147 also records the force imparted on the drive trains of the adapter 200 for the duration of calibration, namely, the force associated while the connector sleeves 218, 222, 220 are actuated between mechanical limits. Since the adapter 200 is not acting on any mechanical loads, e.g., the end effector 400 and/or tissue, the measured force corresponds to the force required to drive only the components of the adapter 200, which is stored as a first (e.g., adapter) force calibration data.


After the calibration of the adapter 200, the end effector 400 is coupled to the adapter 200. The surgical device 100, and namely, main controller 147 verifies that the end effector 400 is authentic based on the data stored on the storage device 404. After verification, the main controller 147 may also read additional data from the storage device 404, such as calibration data, maximum actuation force data, etc.


The main controller 147 commences a second calibration process for the end effector 400 and/or the anvil 402. This includes actuating each of the coupling shafts 64a, 64b, 64c to rotate connector sleeves 218, 222, 220 and their corresponding drive trains while the end effector 400 and/or the anvil 402 are attached to the adapter 200. While each of the connector sleeves 218, 222, 220 are actuated, the force sensor 292 measures the forces imparted on the drive trains while actuating the end effector 400 and/or the anvil 402. Calibration may include obtaining reference force measurements while driving the connector sleeves 218, 222, 220 in a first direction until mechanical limits of the end effector 400 and/or the anvil 402 are reached and then returning the articulation shaft back to the starting position or until another mechanical limit is reached. The encountered force for each of the mechanical limits is stored in the memory 141. In addition, the main controller 147 also records the force imparted on the drive trains of the adapter 200 for the duration of calibration, namely, the force associated while the end effector 400 and/or the anvil 402 are actuated between mechanical limits. Since during the second calibration the adapter 200 is actuating the end effector 400 and/or the anvil 402, the measured force corresponds to the combined force that is used to drive various components of the adapter 200 as well as those of the end effector 400 and/or the anvil 402, which is stored as a second (e.g., combined) force calibration data.


In embodiments, the first and second calibration processes may be performed as a single sequence, namely, the first calibration may be omitted and combined with the second calibration, such that a single calibration occurs after the adapter 200 is coupled to the surgical device 100, and the end effector 400 with the anvil 402 is coupled to the adapter 200) to obtain the combined force calibration data. In further embodiments, the controller 147 may determine the calibration data for the end effector 400 and/or the anvil 402 based on the difference between the first and second calibration data.


The controller 147 also uses the first and/or second force calibration data to adjust values loaded from the storage device 304 and/or 404. In addition to the values loaded from the storage device 304 and/or 404, the controller 147 also uses the first and/or second force calibration data to adjust threshold values stored in memory 141. Each of the individual sequences (e.g., cutting, stapling, articulation, etc.) may include a plurality of corresponding force threshold values. The threshold values are stored in the memory 141 and are used by the controller 147 to control each of the sequences. One of the threshold values may be a maximum force value beyond which operation of the motor 152 may result in damage to the surgical device 100, the adapter 200, end effector 400, and/or anvil 402. In embodiments, each one of these components may have its own individual maximum threshold force value that may be stored in the storage device 304 or 404, respectively, and read by the controller 147 as described above.


The controller 147 uses the measured first and/or second calibration data to adjust the stored threshold values in memory 141. Adjustment of threshold values may include using the calibration data to derive offset values, which are then used to modify the threshold values. Offset values derived from the calibration data may then be used to adjust the threshold values by using any suitable mathematical function defining the relationship between calibration data and threshold values.


Once calibration is performed and the threshold values are updated based on the first and and/or second calibration data, the system 2 may be used to perform the surgical procedure. The motor 152 is energized to actuate various components of the adapter 200 as well as the end effector 400 and/or anvil 402 based on user's input commands. During operation, the force is continuously measured by the force sensor 292. The collected force data is utilized to control the stapling, cutting, articulation, and any other sequences that the surgical device 100 is programmed to perform. In embodiments, the force thresholds may be used to execute specific functions and/or subsequences used during certain operational sequences, such as a first threshold may be used to determine whether a clamping sequence is complete, a second threshold may be used to determine if a stapling sequence is complete, and a third threshold may be used to determine if a cutting sequence is complete.


In embodiments, the controller 147 may also continuously compare measured force from the force sensor 290 such that it does not exceed the maximum force threshold. The maximum force threshold is continuously monitored by the controller 147 based on the feedback from the force sensor 292. This acts as a so-called “watchdog” function to ensure safe functionality of the system 2. Thus, if the maximum threshold is exceeded, the controller 147 terminates the operational sequence by cutting off supply of electrical current to the motor 152 and/or notifying the user of the error.


It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

Claims
  • 1. A surgical system comprising: an adapter assembly including a first storage device;an end effector configured to couple to a distal portion of the adapter assembly, the end effector including a second storage device; anda surgical device configured to couple to a proximal portion of the adapter assembly, the surgical device including: a power source;a motor coupled to the power source, the motor configured to actuate at least one of the adapter assembly or the end effector;a memory; anda controller operatively coupled to the motor and configured to: calibrate the motor during a first calibration while the adapter assembly is actuated by the motor, without the end effector being coupled to the adapter assembly;measure a first parameter associated with actuation of the adapter assembly;calibrate the motor during a second calibration while the end effector is coupled to the adapter assembly and the end effector is actuated by the motor;measure a second parameter associated with actuation of the end effector;obtain calibration data during the first calibration and the second calibration based on the first parameter and second parameter;store calibration data in the memory in response to calibration of the motor; andupdate at least one of the first storage device or the second storage device based on the calibration data.
  • 2. The surgical system according to claim 1, further comprising: a force sensor coupled to at least one of the adapter assembly, the end effector, or the motor, the force sensor configured to measure a force imparted on at least one of the adapter assembly, the end effector, or the motor.
  • 3. The surgical system according to claim 2, wherein the force sensor is coupled to the controller and is configured to provide a force measurement signal indicative of the force.
  • 4. The surgical system according to claim 3, wherein the calibration data is based on the force measurement signal.
  • 5. The surgical system according to claim 4, wherein the controller is further configured to operate the motor based on the calibration data.
  • 6. The surgical system according to claim 4, wherein the first storage device stores a first value corresponding to operation of the adapter assembly.
  • 7. The surgical system according to claim 6, wherein the controller is further configured to read the first value and to adjust the first value based on the calibration data to obtain an adjusted first value.
  • 8. The surgical system according to claim 7, wherein the controller is further configured to operate the motor based on the adjusted first value.
  • 9. The surgical system according to claim 4, wherein the second storage device stores a second value corresponding to operation of the adapter assembly.
  • 10. The surgical system according to claim 9, wherein the controller is further configured to read the second value and to adjust the second value based on the calibration data to obtain an adjusted second value.
  • 11. The surgical system according to claim 10, wherein the controller is configured to operate the motor based on the adjusted second value.
  • 12. A method for controlling a surgical system comprising: coupling an adapter assembly to a surgical device, the adapter assembly including a first storage device; energizing a motor of the surgical device during a first calibration to actuate at least one of the adapter assembly;measuring a first parameter associated with actuation of the adapter assembly;coupling an end effector to the adapter assembly, the end effector including a second storage device;energizing the motor of the surgical device during a second calibration to actuate the end effector;measuring a second parameter associated with actuation of the end effector;obtaining calibration data based on the first parameter and the second parameter;storing calibration data in a memory coupled to a controller; andupdating at least one of the first storage device or the second storage device based on the calibration data.
  • 13. The method according to claim 12, wherein the measurement of the first parameter and the second parameter is performed by a force sensor coupled to at least one of the adapter assembly, the end effector, or the motor.
  • 14. The method according to claim 13, wherein measurement of the first parameter and the second parameter includes measuring a force imparted on at least one of the adapter assembly, the end effector, or the motor, the force sensor.
  • 15. The method according to claim 14, further comprising transmitting a force measurement signal indicative of the force to the controller.
  • 16. The method according to claim 15, further comprising: generating the calibration data based on the force measurement signal.
  • 17. The method according to claim 16, further comprising operating the motor based on the calibration data.
  • 18. The method according to claim 17, further comprising: reading a value corresponding to operation of at least one of the end effector or the adapter assembly from a storage device associated with at least one of the end effector or the adapter assembly; andoperating the motor based on the value adjusted by the calibration data.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/506,180, filed May 15, 2017, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (746)
Number Name Date Kind
37165 Gary Dec 1862 A
2245994 McWane Jun 1941 A
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3079606 Bobrov et al. Mar 1963 A
3111328 Rito et al. Nov 1963 A
3209754 Brown Oct 1965 A
3273562 Brown Sep 1966 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3528693 Pearson et al. Sep 1970 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3744495 Johnson Jul 1973 A
3759336 Marcovitz et al. Sep 1973 A
3862631 Austin Jan 1975 A
3949924 Green Apr 1976 A
4060089 Noiles Nov 1977 A
4162399 Hudson Jul 1979 A
4204623 Green May 1980 A
4217902 March Aug 1980 A
4263903 Griggs Apr 1981 A
4275813 Noiles Jun 1981 A
4331277 Green May 1982 A
4428376 Mericle Jan 1984 A
4429695 Green Feb 1984 A
4444181 Wevers et al. Apr 1984 A
4454875 Pratt et al. Jun 1984 A
4456006 Wevers et al. Jun 1984 A
4485816 Krumme Dec 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4508253 Green Apr 1985 A
4508523 Leu Apr 1985 A
4522206 Whipple et al. Jun 1985 A
4534350 Golden et al. Aug 1985 A
4535772 Sheehan Aug 1985 A
4566620 Green et al. Jan 1986 A
4570623 Ellison et al. Feb 1986 A
4606343 Conta et al. Aug 1986 A
4606344 Di Giovanni Aug 1986 A
4610383 Rothfuss et al. Sep 1986 A
4612923 Kronenthal Sep 1986 A
4612933 Brinkerhoff et al. Sep 1986 A
D286422 Dickerson Oct 1986 S
4627437 Bedi et al. Dec 1986 A
4635637 Schreiber Jan 1987 A
4662371 Whipple et al. May 1987 A
4671280 Dorband et al. Jun 1987 A
4705038 Sjostrom et al. Nov 1987 A
4712550 Sinnett Dec 1987 A
4719917 Barrows et al. Jan 1988 A
4722685 de Estrada et al. Feb 1988 A
4724839 Bedi et al. Feb 1988 A
4805617 Bedi et al. Feb 1989 A
4807628 Peters et al. Feb 1989 A
4823807 Russell et al. Apr 1989 A
4852558 Outerbridge Aug 1989 A
4874181 Hsu Oct 1989 A
4913144 Del Medico Apr 1990 A
4960420 Goble et al. Oct 1990 A
4962877 Hervas Oct 1990 A
4990153 Richards Feb 1991 A
4994073 Green Feb 1991 A
4995877 Ams et al. Feb 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5089009 Green Feb 1992 A
5108422 Green et al. Apr 1992 A
5114399 Kovalcheck May 1992 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5143453 Weynant nee Girones Sep 1992 A
5152744 Krause et al. Oct 1992 A
5203864 Phillips Apr 1993 A
5207697 Carusillo et al. May 1993 A
5209756 Seedhom et al. May 1993 A
5246443 Mai Sep 1993 A
5258008 Wilk Nov 1993 A
5271543 Grant et al. Dec 1993 A
RE34519 Fox et al. Jan 1994 E
5282829 Hermes Feb 1994 A
5300081 Young et al. Apr 1994 A
5301061 Nakada et al. Apr 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5312024 Grant et al. May 1994 A
5313935 Kortenbach et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5330486 Wilk Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5342376 Ruff Aug 1994 A
5350355 Sklar Sep 1994 A
5356064 Green et al. Oct 1994 A
5359993 Slater et al. Nov 1994 A
5364001 Bryan Nov 1994 A
5381943 Allen et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5431323 Smith et al. Jul 1995 A
5464144 Guy et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5478344 Stone et al. Dec 1995 A
5482100 Kuhar Jan 1996 A
5485947 Olson et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5497933 DeFonzo et al. Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5507743 Edwards et al. Apr 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5527235 Kuroda et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571285 Chow et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5584835 Greenfield Dec 1996 A
5601224 Bishop et al. Feb 1997 A
5601558 Torrie et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609560 Ichikawa et al. Mar 1997 A
5624452 Yates Apr 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5634926 Jobe Jun 1997 A
5642848 Ludwig et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5658312 Green et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5665085 Nardella Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5667527 Cook Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673841 Schulze et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5692668 Schulze et al. Dec 1997 A
5693042 Boiarski et al. Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5702447 Walch et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5713896 Nardella Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5716366 Yates Feb 1998 A
5720753 Sander et al. Feb 1998 A
5725529 Nicholson et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728116 Rosenman Mar 1998 A
5730757 Benetti et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5738474 Blewett Apr 1998 A
5755726 Pratt et al. May 1998 A
5759171 Coelho et al. Jun 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5785713 Jobe Jul 1998 A
5788698 Savornin Aug 1998 A
5797536 Smith et al. Aug 1998 A
5810811 Fates et al. Sep 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5829662 Mien et al. Nov 1998 A
5830121 Enomoto et al. Nov 1998 A
5849023 Mericle Dec 1998 A
5849028 Chen Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5863159 Lasko Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5891156 Gessner et al. Apr 1999 A
5893813 Yamamoto Apr 1999 A
5895396 Day et al. Apr 1999 A
5906607 Taylor et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5911121 Andrews Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5928222 Kleinerman Jul 1999 A
5944717 Lee et al. Aug 1999 A
5944736 Taylor et al. Aug 1999 A
5954159 Nakamura Sep 1999 A
5954259 Viola et al. Sep 1999 A
5961521 Roger Oct 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5968044 Nicholson et al. Oct 1999 A
5976171 Taylor Nov 1999 A
5980518 Carr et al. Nov 1999 A
5980548 Evans et al. Nov 1999 A
5991355 Dahlke Nov 1999 A
5991650 Swanson et al. Nov 1999 A
5992724 Snyder Nov 1999 A
5993454 Longo Nov 1999 A
5997552 Person et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007550 Wang et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6013077 Harwin Jan 2000 A
6015417 Reynolds, Jr. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6030410 Zurbrugg Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6051007 Hogendijk et al. Apr 2000 A
6063078 Wittkampf May 2000 A
6063095 Wang et al. May 2000 A
6077246 Kullas et al. Jun 2000 A
6079606 Milliman et al. Jun 2000 A
6080150 Gough Jun 2000 A
6083242 Cook Jul 2000 A
6090123 Culp et al. Jul 2000 A
6092422 Binnig et al. Jul 2000 A
6109500 Alli et al. Aug 2000 A
6113592 Taylor Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6126651 Mayer Oct 2000 A
6127811 Shenoy et al. Oct 2000 A
6129547 Cise et al. Oct 2000 A
6132425 Gough Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6166538 D'Alfonso Dec 2000 A
6179840 Bowman Jan 2001 B1
6187009 Herzog et al. Feb 2001 B1
6187019 Stefanchik et al. Feb 2001 B1
6190401 Green et al. Feb 2001 B1
6193501 Masel et al. Feb 2001 B1
6202914 Geiste et al. Mar 2001 B1
6217573 Webster Apr 2001 B1
6228534 Takeuchi et al. May 2001 B1
6231565 Tovey et al. May 2001 B1
6236874 Devlin et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6258111 Ross et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6264653 Falwell Jul 2001 B1
6281471 Smart Aug 2001 B1
6288534 Starkweather et al. Sep 2001 B1
6290701 Enayati Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6295330 Skog et al. Sep 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6346104 Daly et al. Feb 2002 B2
6348061 Whitman Feb 2002 B1
6355066 Kim Mar 2002 B1
6364884 Bowman et al. Apr 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6387092 Burnside et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6402766 Bowman et al. Jun 2002 B2
6412279 Coleman et al. Jul 2002 B1
6425903 Voegele Jul 2002 B1
6434507 Clayton et al. Aug 2002 B1
6436097 Nardella Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6436110 Bowman et al. Aug 2002 B2
6443973 Whitman Sep 2002 B1
6447517 Bowman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6497707 Bowman et al. Dec 2002 B1
6505768 Whitman Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6524316 Nicholson et al. Feb 2003 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6540751 Enayati Apr 2003 B2
6544273 Harari et al. Apr 2003 B1
6554852 Oberlander Apr 2003 B1
6562071 Jarvinen May 2003 B2
6578579 Burnside et al. Jun 2003 B2
6601748 Fung et al. Aug 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6616821 Broadley et al. Sep 2003 B2
6629986 Ross et al. Oct 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6651669 Burnside Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6656177 Truckai et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6669705 Westhaver et al. Dec 2003 B2
6696008 Brandinger Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6736085 Esnouf May 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6899538 Matoba May 2005 B2
6900004 Satake May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6926636 Luper Aug 2005 B2
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6979328 Baerveldt et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7000819 Swayze et al. Feb 2006 B2
7032798 Whitman et al. Apr 2006 B2
7044353 Mastri et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7091683 Smith et al. Aug 2006 B1
7097089 Marczyk Aug 2006 B2
7097858 Hill et al. Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7122029 Koop et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7186966 Al-Ali Mar 2007 B2
7193519 Root et al. Mar 2007 B2
7217269 El-Galley et al. May 2007 B2
7220232 Suorsa et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7240817 Higuchi Jul 2007 B2
7241270 Horzewski et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7303108 Shelton, IV Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7335169 Thompson et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8303581 Arts et al. Nov 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8623000 Humayun et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8657174 Fates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8752749 Moore et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9064653 Prest et al. Jun 2015 B2
9113875 Viola et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
20010031975 Whitman et al. Oct 2001 A1
20020025891 CoIosky et al. Feb 2002 A1
20020049454 Whitman et al. Apr 2002 A1
20020103489 Ku Aug 2002 A1
20020111641 Peterson et al. Aug 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030073981 Whitman et al. Apr 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030120306 Burbank et al. Jun 2003 A1
20030139746 Groiso Jul 2003 A1
20030165794 Matoba Sep 2003 A1
20040094597 Whitman et al. May 2004 A1
20040111012 Whitman Jun 2004 A1
20040193146 Lee et al. Sep 2004 A1
20040232199 Shelton et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20050000867 Haynes et al. Jan 2005 A1
20050006429 Wales et al. Jan 2005 A1
20050006430 Wales Jan 2005 A1
20050006431 Shelton et al. Jan 2005 A1
20050006434 Wales et al. Jan 2005 A1
20050010235 VanDusseldorp Jan 2005 A1
20050023324 Doll et al. Feb 2005 A1
20050067458 Swayze et al. Mar 2005 A1
20050070925 Shelton et al. Mar 2005 A1
20050070958 Swayze et al. Mar 2005 A1
20050072827 Mollenauer Apr 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050131442 Yachia et al. Jun 2005 A1
20050139636 Schwemberger et al. Jun 2005 A1
20050145674 Sonnenschein et al. Jul 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050178813 Swayze et al. Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050192609 Whitman et al. Sep 2005 A1
20050228341 Edgerley Oct 2005 A1
20050247753 Kelly et al. Nov 2005 A1
20060022014 Shelton et al. Feb 2006 A1
20060022015 Shelton et al. Feb 2006 A1
20060074405 Malackowski Apr 2006 A1
20060097025 Milliman et al. May 2006 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060151567 Roy Jul 2006 A1
20060175375 Shelton et al. Aug 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070029364 Kruszynski et al. Feb 2007 A1
20070039995 Schwemberger et al. Feb 2007 A1
20070039996 Mather et al. Feb 2007 A1
20070039997 Mather et al. Feb 2007 A1
20070049435 Jinno et al. Mar 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070084896 Doll et al. Apr 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070101474 Skottheim et al. May 2007 A1
20070101475 Skottheim May 2007 A1
20070102472 Shelton May 2007 A1
20070102473 Shelton et al. May 2007 A1
20070125826 Shelton Jun 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070158385 Hueil et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175952 Shelton et al. Aug 2007 A1
20070175953 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175956 Swayze et al. Aug 2007 A1
20070175957 Shelton et al. Aug 2007 A1
20070175958 Shelton et al. Aug 2007 A1
20070175959 Shelton et al. Aug 2007 A1
20070175960 Shelton et al. Aug 2007 A1
20070175962 Shelton et al. Aug 2007 A1
20070175964 Shelton et al. Aug 2007 A1
20070187453 Smith et al. Aug 2007 A1
20070219563 Voegele Sep 2007 A1
20070265640 Kortenbach et al. Nov 2007 A1
20070278277 Wixey et al. Dec 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029571 Shelton et al. Feb 2008 A1
20080029572 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080029576 Shelton et al. Feb 2008 A1
20080029577 Shelton et al. Feb 2008 A1
20080048002 Smith et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110957 McBride et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080164296 Shelton et al. Jul 2008 A1
20080167670 Shelton et al. Jul 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090185419 Seong et al. Jul 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20100069942 Shelton, IV Mar 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110017801 Zemlok et al. Jan 2011 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110290855 Moore et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098968 Aranyi et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130240596 Whitman Sep 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140144970 Aranyi et al. May 2014 A1
20140200851 Weir Jul 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150209035 Zemlok Jul 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160100829 Modesitt et al. Apr 2016 A1
20160100839 Marczyk Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
20170202607 Shelton, IV Jul 2017 A1
Foreign Referenced Citations (98)
Number Date Country
2008229795 Apr 2009 AU
2451558 Jan 2003 CA
101234033 Aug 2008 CN
101856251 Oct 2010 CN
102028509 Apr 2011 CN
102247182 Nov 2011 CN
102008053842 May 2010 DE
0537570 Apr 1993 EP
0634144 Jan 1995 EP
0647431 Apr 1995 EP
0648476 Apr 1995 EP
0686374 Dec 1995 EP
0705571 Apr 1996 EP
0738501 Oct 1996 EP
1690502 Aug 2006 EP
1723913 Nov 2006 EP
1736112 Dec 2006 EP
1759652 Mar 2007 EP
1769754 Apr 2007 EP
1772105 Apr 2007 EP
1813199 Aug 2007 EP
1813203 Aug 2007 EP
1813207 Aug 2007 EP
1813211 Aug 2007 EP
1908412 Apr 2008 EP
1917929 May 2008 EP
1943954 Jul 2008 EP
1943956 Jul 2008 EP
1943958 Jul 2008 EP
1943976 Jul 2008 EP
1952769 Aug 2008 EP
2005898 Dec 2008 EP
2027819 Feb 2009 EP
2044890 Apr 2009 EP
2055243 May 2009 EP
2090247 Aug 2009 EP
2098170 Sep 2009 EP
2100561 Sep 2009 EP
2100562 Sep 2009 EP
2165664 Mar 2010 EP
2236098 Oct 2010 EP
2245994 Nov 2010 EP
2263568 Dec 2010 EP
2272443 Jan 2011 EP
2316345 May 2011 EP
2324776 May 2011 EP
2329773 Jun 2011 EP
2333509 Jun 2011 EP
2377472 Oct 2011 EP
2462878 Jun 2012 EP
2462880 Jun 2012 EP
2491872 Aug 2012 EP
2586382 May 2013 EP
2606834 Jun 2013 EP
2668910 Dec 2013 EP
2676615 Dec 2013 EP
2777518 Sep 2014 EP
2815705 Dec 2014 EP
2942028 Nov 2015 EP
2333509 Feb 2010 ES
2861574 May 2005 FR
H0347249 Feb 1991 JP
08038488 Feb 1996 JP
2005125075 May 2005 JP
2010253272 Nov 2010 JP
2011078772 Apr 2011 JP
2011224368 Nov 2011 JP
20120022521 Mar 2012 KR
9729694 Aug 1997 WO
9740760 Nov 1997 WO
9915086 Apr 1999 WO
199952489 Oct 1999 WO
0072760 Dec 2000 WO
0072765 Dec 2000 WO
03000138 Jan 2003 WO
03026511 Apr 2003 WO
03030743 Apr 2003 WO
03065916 Aug 2003 WO
03077769 Sep 2003 WO
03090630 Nov 2003 WO
2004032760 Apr 2004 WO
2004107989 Dec 2004 WO
2006042210 Apr 2006 WO
2007016290 Feb 2007 WO
2007026354 Mar 2007 WO
2007030753 Mar 2007 WO
2007118179 Oct 2007 WO
2007137304 Nov 2007 WO
2008131362 Oct 2008 WO
2008133956 Nov 2008 WO
2009039506 Mar 2009 WO
2007014355 Apr 2009 WO
2009132359 Oct 2009 WO
2009143092 Nov 2009 WO
2009149234 Dec 2009 WO
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
2016171947 Oct 2016 WO
Non-Patent Literature Citations (68)
Entry
Extended European Search Report corresponding to EP No. 12 18 6177.7, completed Aug. 14, 2013 and dated Aug. 23, 2013; (8 pp).
Partial European Search Report corresponding to EP No. 13 17 1742.3, completed Sep. 17, 2013 and dated Sep. 25, 2013; (8 pp).
Partial European Search Report corresponding to EP No. 13 17 2400.7, completed Sep. 18, 2013 and dated Oct. 2013; (7 pp).
Extended European Search Report corresponding to EP No. 13 17 5475.6, completed Sep. 23, 2013 and dated Oct. 2013; (8 pp).
Extended European Search Report corresponding to EP No. 13 17 5478.0, completed Sep. 24, 2013 and dated Oct. 2, 2013; (6 pp).
Extended European Search Report corresponding to EP No. 13 17 5479.8, completed Sep. 27, 2013 and dated Oct. 10, 2013; (7 pp).
Partial Extended European Search Report corresponding to EP 13 17 5477.2, completed Oct. 7, 2013 and dated Oct. 15, 2013; (7 pp).
Extended European Search Report corresponding to EP No. 08 25 2703.7, completed Oct. 23, 2008 and dated Oct. 31, 2008; (7 pp).
European search Report from Appl. No. 13177163.6 dated Nov. 15, 2013. (8 pp).
Extended European Search Report from EP Application No. 13172400.7 dated Jan. 21, 2014.
Extended European Search Report from EP Application No. 13189026.1 dated Jan. 31, 2014.
The extended European Search Report from Application No. EP 13177163.6 dated Feb. 6, 2014.
Extended European Search Report from Application No. EP 13175477.2 dated Feb. 6, 2014.
Extended European Search Report from Application No. EP 13169998.5 dated Feb. 24, 2014.
Extended European Search Report corresponding to EP 13176805.3, dated Nov. 4, 2013.
Extended European Search Report from Application No. EP 13171742.3 dated Jan. 3, 2014.
European Search Report dated Dec. 1, 2016, issued in EP Application No. 06771999.
European Search Report No. 13189650.8 dated Sep. 10, 2014.
European Search Report No. 14185097.4 dated Jan. 27, 2015.
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837 dated Dec. 21, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
Chinese Office Action dated Oct. 24, 2017 in corresponding Chinese Patent Application No. 201410479971.9 together with English translation, 12 pages.
Australian Examination Report dated Apr. 26, 2018 in corresponding Australian Patent Application No. 2014218366.
Australian Examination Report dated May 14, 2018 in corresponding Australian Patent Application No. 2014218361.
Japanese Office Action dated May 17, 2018 in corresponding Japanese Patent Application No. 2014-187528, together with English translation.
European Search Report dated Apr. 17, 2007 for Corresponding Patent Application EP06026840.
International Search Report for corresponding PCT Application—PCTIUS06/2I 524—dated May 28, 2008 (4 Pages).
Detemple, P., “Microtechnology in Modern Health Care”, Med Device Technol. 9(9):18-25 (1998).
European Search Report for corresponding EP 08252703.7 dated Oct. 31, 2008 (3 pages).
European Search Report dated Feb. 27, 2009 for Corresponding Patent Application 08253-184.9.
European Search Report for corresponding EP 08252703.7 dated Oct. 11, 2008 (7 pages).
International Search Report corresponding to PCT/US2005/027266, completed May 30, 2008 and dated Jun. 18, 2008; (2 pp.).
Extended European Search Report corresponding to EP 08 25 2703.7, completed Oct. 23, 2008 and dated Oct. 31, 2008; (7 pp.).
Extended European Search Report corresponding to EP 08 25 3184.9, completed Feb. 12, 2009 and dated Feb. 27, 2009; (3 pp.).
Extended European Search Report corresponding to EP 10 25 0228.3, completed May 20, 2010 and dated Jun. 1, 2010; (6 pp.).
Extended European Search Report corresponding to EP 10 25 2037.6, completed Mar. 1, 2011 and dated Mar. 9, 2011; (3 pp.).
Extended European Search Report corresponding to EP 10 25 1968.3, completed on Jul. 4, 2011 and dated Jul. 14, 2011; (12 pp.).
Extended European Search Report corresponding to EP 11 15 2266.0, completed Jul. 15, 2011 and dated Jul. 28, 2011; (3 pp.).
Extended European Search Report corresponding to EP 11 25 0462.6, completed Jul. 20, 2011 and dated Jul. 28, 2011; (6 pp.).
Extended European Search Report corresponding to EP 11 25 0771.0, completed Feb. 7, 2012 and dated Feb. 17, 2012; (3 pp.).
Extended European Search Report corresponding to EP 06 78 8914.7, completed May 3, 2012 and dated May 11, 2012; (8 pp.).
Partial European Search Report corresponding to EP 12 18 6177.7, completed Jan. 30, 2013 and dated Feb. 12, 2013; (6 pp.).
Extended European Search Report corresponding to EP No. 11 17 8021.9, dated Jun. 4, 2013; (3 pp).
Extended European Search Report corresponding to EP No. 13 16 3033.7, completed Jun. 27, 2013 and dated Jul. 15, 2013; (8 pp).
Extended European Office Action dated Oct. 16, 2018 issued in corresponding EP Appln. No. EP18172025.
Related Publications (1)
Number Date Country
20180325517 A1 Nov 2018 US
Provisional Applications (1)
Number Date Country
62506180 May 2017 US