1. Technical Field
The invention relates to an adaptive light projector system for motor vehicle headlights, which by changing the position and profile of a diaphragm inside the light projector system bring about changes in the spatial distribution of light in front of the driver of the vehicle.
2. Discussion
To improve the safety of highway traffic, a refinement is being made in the lighting produced by the headlights of motor vehicles. The new rule of the European Economic Commission ECE R123 makes it possible to use completely new types of light in certain situations, such as motorway beams, town lights, rain lights, etc.
Multifunctional mechanisms for the projector unit are in development, preparation for production, and production, making it possible to achieve these different types of lighting from a single source. These changes in the type of lighting are for the most part accomplished by a turning, a shifting, or a change in the trimming diaphragm of the light beam.
Examples of such a solution are the patents Hella “Varilis” (DE 102 16 678, DE 199 09 413 or EP 1 052 446 A2), Valeo (FR 2 815 310 A2, U.S. Pat. No. 6,623,149 B2), Koito (U.S. Pat. Nos. 5,339,226 and 5,343,371), and Automotive Lighting.
The major drawbacks of these layouts are their considerable complexity, expense, and slow operation.
The aforementioned drawbacks have been eliminated by the design of a simple adaptive projection system for the headlights of motor vehicles with a direct drive from a step motor, or a d.c. motor with transmission.
The adaptive projection system for the headlights of motor vehicles comprises a reflector, a light source, a lens and a diaphragm system consisting of a fixed and a movable part and a mechanism for providing a change in the position of the movable part of the diaphragm system by turning of the diaphragm to achieve different types of light beams. The movable part of the diaphragm system is a thin-wall optical diaphragm generally in the shape of a hyperboloid, which also includes the specific designs in the shape of a cylinder or cone, which is firmly attached to the shaft of a motor, this attachment of the optical diaphragm being made firm by means of stanchions on both sides of the motor. The optical diaphragm then turns around the motor in its movement.
To screen out unwanted light beneath the diaphragm cap, the fixed part of the diaphragm system is used, namely, a front and rear screening wall. The front and rear screening wall effectively screen out stray light getting beneath the optical diaphragm from all directions.
The purpose of this invention is to create a complex, yet simple, and extremely reliable mechanism of this kind that allows changes in the spatial distribution of light being output.
Thus, the subject of this invention is an adaptive projection system for the headlights of motor vehicles, consisting of a reflector with light source, a diaphragm system having an optical diaphragm and an diaphragm cap, a lens and a mechanism for producing a change in the position of the optical diaphragm for different types of lighting, and an electric motor for driving this mechanism. The optical diaphragm—a thin-wall concave shell in the shape of a hyperboloid, including the possibility of a cylindrical or conical sector—is firmly fastened at both sides by means of stanchions to the output shaft 20 of the electric motor, which is placed in a central position relative to the mechanism and rotates in a half-circle around it, while the axis of rotation in the basic design is generally spatially deviating from the transverse axis of the projector and the optical diaphragm is fixed in various defined positions of its rotation, while the shaft of the motor together with both stanchions and the optical diaphragm form a rigid frame, enhancing the robustness of the structure, and it is thus possible to use a standard motor with ordinary (small) diameter of output shaft 20 without any modifications.
The motor, which is in a central position thanks to the attachment of the optical diaphragm by the stanchions on either side of the motor, can be modified, as opposed to the symmetrical design, for better stopping ability by shifting the motor past the axis of symmetry 22 on the margin of the diaphragm cap 24 outside of the projecting part (per
The optical diaphragm advantageously has the shape of a sector with angle less than 180° in cross section and the maximum travel while the diaphragm turns is likewise less than 180° and therefore a free angle remains for securing the motor relative to the reflector of the projector by means of a lug.
For driving the basic symmetrical variant of the mechanism per
The individual optical cuts on the optical diaphragm are advantageously adapted to the limited useful travel and the position for the distance light is situated at one of the two end positions.
Attachment of the electric motor to the frame is advantageously done by means of a relatively narrow, but strong and rigid lug, which limits the deviation of the turning of the diaphragm cap and prevents the diaphragm cap from turning in a full revolution.
Further scope of applicability of the present invention will become apparent from the following detailed description, claims, and drawings. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.
The present invention will become more fully understood from the detailed description given here below, the appended claims, and the accompanying drawings in which:
The adaptive projection system for the headlights of motor vehicles is installed in the projector unit of a headlight (
The optical diaphragm 1 is provided with various cutouts and projections arranged to produce trimming of the respective light beams upon their rotation (see
The optical diaphragm 1 thus turns about an axis 9, in the basic design advantageously a slanting axis for better installation conditions for the motor 3.
In the case of a horizontal axis 9 (see
The motor 3 for reasons of installation is advantageously displaced asymmetrically to the side where the space used for the installation of the motor 3 widens or enlarges (see
On the other hand, the variant with cylindrical optical diaphragm has a structural advantage in the symmetry of the mechanism 14.
It is advantageous to design the optical diaphragm 1 simply as a shell (see
By using almost straight trimming edges of the optical diaphragm 1 (see
The most decreased part of the optical diaphragm 1 can be used for the distance beam (see
The Z-cuts (see
In terms of simplicity and speed, it is advantageous to turn the optical diaphragm 1 directly by an electric step motor 3. To increase the precision and power of the electric motor, one can use an electric step motor or d.c. electric motor with transmission.
For an electric step motor 3 drive, the adaptive projector system will be outfitted with at least one sensor 7 at the end of the range of the working positions to carry out a reset of the electric motor 3. Resetting of the electric motor 3 by reaching the sensor 7 is necessary to ensure a precise position.
If a dc motor 3 with integrated transmission is used, it will be outfitted with a potentiometer (comparator) 8, plotting the position of the optical diaphragm 1. This will guarantee a precise position for the optical diaphragm 1 and its lighting function at each moment of driving.
The benefit of the solution is its considerable simplicity (optical diaphragm 1 firmly attached by stanchions 2 and simply turning about the electric motor 3) along with full complexity of the solution (it is possible to place large numbers of practically arbitrary trimming cuts of the light beam on the surface of the optical diaphragm 1).
The mechanism 14 is optically and functionally optimized in terms of the installation, the optical diaphragm 1 turning about the axis of rotation 9, while variants of different deflections of the axis of rotation 9 let one achieve optimal optical and design characteristics, such as avoiding a collision between the electric motor 3 and the reflector 6 (see
Since the optical diaphragm 1 “runs around” the motor in its movement and therefore we try to outfit the optical diaphragm 1 with the largest possible number of optical corrective functions, including the best quality distance beam, only a small usable angle remains for attachment of the motor 3 in the projector unit.
This is resolved in that the motor 3 is attached by a narrow, but very strong lug 4 (see
The foregoing discussion discloses and describes an exemplary embodiment of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the true spirit and fair scope of the invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2009-501 | Jul 2009 | CZ | national |
Number | Name | Date | Kind |
---|---|---|---|
5339226 | Ishikawa | Aug 1994 | A |
5343371 | Kobayashi et al. | Aug 1994 | A |
6623149 | Leleve | Sep 2003 | B2 |
7090385 | Sugimoto | Aug 2006 | B2 |
7201505 | Sugimoto et al. | Apr 2007 | B2 |
7364331 | Tajima | Apr 2008 | B2 |
7618173 | Sugimoto et al. | Nov 2009 | B2 |
7736037 | Losak et al. | Jun 2010 | B2 |
7901121 | Ohshio et al. | Mar 2011 | B2 |
7914190 | Kim et al. | Mar 2011 | B2 |
7922376 | Tatara et al. | Apr 2011 | B2 |
7926992 | Kim et al. | Apr 2011 | B2 |
8459849 | Grimm et al. | Jun 2013 | B2 |
20090109697 | Kim et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
199 09 413 | Sep 2000 | DE |
102 16 678 | Dec 2003 | DE |
1 052 446 | Nov 2000 | EP |
2 815 310 | Apr 2002 | FR |
Number | Date | Country | |
---|---|---|---|
20110026265 A1 | Feb 2011 | US |