Adaptive resolution and projection format in multi-direction video

Information

  • Patent Grant
  • 10754242
  • Patent Number
    10,754,242
  • Date Filed
    Friday, June 30, 2017
    6 years ago
  • Date Issued
    Tuesday, August 25, 2020
    3 years ago
Abstract
Techniques are described for implementing format configurations for multi-directional video and for switching between them. Source images may be assigned to formats that may change during a coding session. When a change occurs between formats, video coders and decoder may transform decoded reference frames from the first format to the second format. Thereafter, new frames in the second configuration may be coded or decoded predictively using transformed reference frame(s) as source(s) of prediction. In this manner, video coders and decoders may use intra-coding techniques and achieve high efficiency in coding.
Description
BACKGROUND

The present disclosure relates to coding/decoding systems for multi-directional imaging system and, in particular, to use of coding techniques that originally were developed for flat images, for multi-directional image data.


In multi-directional imaging, a two-dimensional image represents image content taken from multiple fields of view. Omnidirectional imaging is one type of multi-directional imaging where a single image represents content viewable from a single vantage point in all directions—360° horizontally about the vantage point and 360° vertically about the vantage point. Other multi-directional images may capture data in fields of view that are not fully 360°.


Modern coding protocols tend to be inefficient when coding multi-directional images. Multi-directional images tend to allocate real estate within the images to the different fields of view essentially in a fixed manner. For example, in many multi-directional imaging formats, different fields of view may be allocated space in the multi-directional image equally. Some other multi-directional imaging formats allocate space unequally but in a fixed manner. And, many applications that consume multi-directional imaging tend to use only a portion of the multi-directional image during rendering, which causes resources spent to code un-used portions of the multi-directional image to be wasted.


Accordingly, the inventors recognized a need to improve coding systems to increase efficiency of multi-directional image data.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a system finding application in which embodiments of the present disclosure.



FIG. 2 is a functional block diagram of a coding system according to an embodiment of the present disclosure.



FIG. 3 is a functional block diagram of a decoding system according to an embodiment of the present disclosure.



FIG. 4 illustrates exemplary relationships among a source image and image formats according to an embodiment of the present disclosure.



FIG. 5 illustrates exemplary relationships among a source image and image formats according to another embodiment of the present disclosure.



FIG. 6 illustrates exemplary relationships among a source image and image formats according to a further embodiment of the present disclosure.



FIG. 7 illustrates exemplary relationships among a source image and image formats according to another embodiment of the present disclosure.



FIG. 8 illustrates a method according to an embodiment of the present disclosure.



FIG. 9 illustrates a method according to an embodiment of the present disclosure.



FIG. 10 illustrates a communication flow according to an embodiment of the present disclosure.



FIG. 11 is a timeline illustrating impact of an exemplary format switch according to an embodiment of the present disclosure.



FIG. 12 is a timeline illustrating impact of another exemplary format switch according to an embodiment of the present disclosure.



FIG. 13 is a functional block diagram of a coding system according to an embodiment of the present disclosure.



FIG. 14 is a functional block diagram of a decoding system according to an embodiment of the present disclosure.



FIG. 15 illustrates an exemplary computer system finding application in which embodiments of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure provide techniques for implementing organizational configurations for multi-directional video and for switching between them. Source images may be assigned to formats that may change during a coding session. When a change occurs between formats, video coders and decoder may transform decoded reference frames from the first configuration to the second configuration. Thereafter, new frames in the second configuration may be coded or decoded predictively using transformed reference frame(s) as source(s) of prediction. In this manner, video coders and decoders may use inter-coding techniques and achieve high efficiency in coding.



FIG. 1 illustrates a system 100 in which embodiments of the present disclosure may be employed. The system 100 may include at least two terminals 110, 120 interconnected via a network 130. The first terminal 110 may have an image source that generates multi-directional video. The terminal 110 also may include coding systems and transmission systems (not shown) to transmit coded representations of the multi-directional video to the second terminal 120, where it may be consumed. For example, the second terminal 120 may display the multi-directional video on a local display, it may execute a video editing program to modify the multi-directional video, it may integrate the multi-directional into an application (for example, a virtual reality program), it may present the multi-directional video in head mounted display (for example, virtual reality applications) or it may store the multi-directional video for later use.



FIG. 1 illustrates components that are appropriate for unidirectional transmission of multi-directional video, from the first terminal 110 to the second terminal 120. In some applications, it may be appropriate to provide for bidirectional exchange of video data, in which case the second terminal 120 may include its own image source, video coder and transmitters (not shown), and the first terminal 110 may include its own receiver and display (also not shown). If it is desired to exchange multi-directional video bi-directionally, then the techniques discussed hereinbelow may be replicated to generate a pair of independent unidirectional exchanges of multi-directional video. In other applications, it would be permissible to transmit multi-directional video in one direction (e.g., from the first terminal 110 to the second terminal 120) and transmit “flat” video (e.g., video from a limited field of view) in a reverse direction.


In FIG. 1, the terminals 110, 120 are illustrated as an omnidirectional camera and a computer display, respectively, but the principles of the present disclosure are not so limited. Embodiments of the present disclosure find application with laptop computers, tablet computers, smart phones, servers, media players, virtual reality head mounted displays, augmented reality display, hologram displays, and/or dedicated video conferencing equipment. The network 130 represents any number of networks that convey coded video data among the terminals 110-120, including, for example, wireline and/or wireless communication networks. The communication network 130 may exchange data in circuit-switched and/or packet-switched channels. Representative networks include telecommunications networks, local area networks, wide area networks and/or the Internet. For the purposes of the present discussion, the architecture and topology of the network 130 is immaterial to the operation of the present disclosure unless explained hereinbelow.



FIG. 2 is a functional block diagram of a coding system 200 according to an embodiment of the present disclosure. The system 200 may include an image source 210, an image processing system 220, a video coder 230, a video decoder 240, a reference picture store 250, a predictor 260, and a transmitter 270. The image source 210 may generate image data as a multi-directional image, containing image data of fields of view that extend around a reference point in multiple directions. Typical image sources are multi-directional and omnidirectional cameras, and also computer applications that generate multi-directional image data, for example, as computer graphics. The image processing system 220 may convert the image data from a source representation to a representation that will be coded by the video coder 230. The video coder 230 may generate a coded representation of its input video data, typically by exploiting spatial and/or temporal redundancies in the video data. The video coder 230 may output a coded representation of the video data that consumes less bandwidth than the input data when transmitted and/or stored. For example, the transmitter 270 may transmit the coded data to another terminal (e.g., terminal 120 in FIG. 1).


The video decoder 240 may invert coding operations performed by the video encoder 230 to obtain a reconstructed picture from the coded video data. Typically, the coding processes applied by the video coder 230 are lossy processes, which cause the reconstructed picture to possess various errors when compared to the original picture. The video decoder 240 may reconstruct picture data of select coded pictures, which are designated as “reference pictures,” and store the decoded reference pictures in the reference picture store 250. In the absence of transmission errors, the decoded reference pictures will replicate decoded reference pictures obtained by a decoder at the receiving terminal 120 (FIG. 1).


The predictor 260 may select prediction references for new input pictures as they are coded. For each portion of the input picture being coded (called a “pixel block” for convenience), the predictor 260 may select a coding mode and identify a portion of a reference picture that may serve as a prediction reference search for the pixel block being coded. The coding mode may be an intra-coding mode, in which case the prediction reference may be drawn from a previously-coded (and decoded) portion of the picture being coded. Alternatively, the coding mode may be an inter-coding mode, in which case the prediction reference may be drawn from another previously-coded and decoded picture.


When an appropriate prediction reference is identified, the predictor 260 may furnish the prediction data to the video coder 230. The video coder 230 may code input video data differentially with respect to prediction data furnished by the predictor 260. Typically, prediction operations and the differential coding operate on a pixel block-by-pixel block basis. Prediction residuals, which represent pixel-wise differences between the input pixel blocks and the prediction pixel blocks, may be subject to further coding operations to reduce bandwidth further.


The video coder 230, the video decoder 240, the reference picture store 250 and the predictor 260 each operate on video frames in a formatted representation that is determined by the image processor 220. In an embodiment, the format may change from time to time during a coding session and, in response, the format of previously-coded reference frames may change correspondingly.


As indicated, the coded video data output by the video coder 230 should consume less bandwidth than the input data when transmitted and/or stored. The coding system 200 may output the coded video data to a transmitter 270 that may transmit the coded video data across a communication network 130 (FIG. 1). Alternatively, the coded video data may be output to a storage device (also not shown) such as an electronic-, magnetic- and/or optical storage medium.



FIG. 3 is a functional block diagram of a decoding system 300 according to an embodiment of the present disclosure. The system 300 may include a receiver 310, a video decoder 320, an image processing system 330, a video sink 340, a reference picture store 350, and a predictor 360. The receiver 310 may receive coded video data from a channel, for example, from a network 130 (FIG. 1) and may route the coded video data to the video decoder 320. The video decoder 320 may decode the coded video data, obtaining recovered video data therefrom. The recovered frame data may be output to the image processing system 330 which may convert recovered frame data from the format used during coding to another format as appropriate for the video sink 340. The video sink 340 may consume the recovered frame data for purposes within the terminal 120 in which the decoding system 300 resides. For example, the video sink 340 may represent a video display device where the recovered video may be rendered. Alternatively, the video sink 340 may represent an application program (such as a gaming program, a video editing program or a video conferencing program) that will use the recovered video.


Recovered frame data of reference frames may be stored in the reference picture store 350 for use in decoding later-received frames. The predictor 360 may respond to prediction information contained in coded video data to retrieve prediction data and supply it to the video decoder 320 for use in decoding new frames. As indicated, video coding operations often code pixel blocks from within a source image differentially with respect to prediction data. In a video decoder 320, the differential coding processes may be inverted—coded pixel block data may be decoded and then added to prediction data that the predictor 360 retrieves from the reference picture store 350.


In ideal operating conditions, where channel errors do not cause loss of information between a coding system 200 (FIG. 2) and a decoding system 300 (FIG. 3), then the reference picture stores 250, 350 of the two systems 200, 300 will be synchronized. That is, the reference picture stores 250, 350 will have the same content when a given frame from a source video sequence is coded by the video coder 230 (FIG. 2) and when that same frame is decoded by the video decoder 320 (FIG. 3). Over time, as frames from the video sequence are coded and decoded, new frames from the video sequence will be designated as reference frames. Typically, the reference picture stores 250, 350 may have a predetermined capacity that defines how many references frames may serve as candidates for prediction at any given time. The coding system 200 and the decoding system 300 may operate according to a common protocol that determines when new frames are designated to serves as reference frames and condition by which older reference frames are evicted from the reference picture stores 250, 350 in favor of new reference frames.


As discussed, the image processing system 220 (FIG. 2) may define organizational formats for source video for use when the video is coded by a video decoder. Once a format is assigned to a given frame, the video coder 230, the video decoder 240, the reference picture store 250 and the predictor of the coding system 200 may operate on the frame using the assigned format. Similarly, the video decoder 320, the reference picture store 350 and the predictor 360 of the decoding system 300 also operate on the frame using the assigned format. In this manner, a coding system 200 and a decoding system 300 may alter the video formats used for coding as circumstances warrant.


Coding formats may vary based on the organization of views contained therein, based on the resolution of the views and based on projections used to represent the views. The coding formats may vary adaptively based on operating conditions at the coding system 200 and/or decoding system 300. Changes among the coding formats may occur at a frame level within a coding session. Alternatively, the coding formats may change at a slice-level, tile-level, group of frames-level or track-level within a coding session. Several exemplary image formats are described below.



FIG. 4 illustrates exemplary relationships among source images and coded image formats according to an embodiment of the present disclosure. In the embodiment of FIG. 4, an omnidirectional camera 410 may generate image data in a cube map format 420 where image data from differential spatial regions 411-416 about the camera 410 are assigned to different regions 421-426 in the source image 420. For convenience, the regions have been labeled as “front,” “left,” “back,” “right,” “top,” and “bottom” respectively. Thus, image data from a front region 411 may occupy a predetermined location 421 in the cube map format of the source image 420. Similarly, image data from the left, back, right, top and bottom regions 412-416 occupy respective locations 422-426 in the cube map source image 420. Typically, image data in each region 421-426 of a cube map format image 420 will appear as traditional “flat” image data as if the data of each region were captured from a planar surface about the camera 400. Perspective discontinuities, however, typically exist on content between the regions 421-426.



FIG. 4 illustrates a first exemplary image format 430 that may be created from the source image 420 and used for coding. In this example, content of a front region 431 may be assigned a larger area within the formatted image than the regions 432-436 corresponding to the other fields of view. Thus, as compared to the source image where each region 421-426 has the same size as every other region, the first exemplary formatted image 430 assigns the front region 431 with a higher priority than the other regions 432-436, which results in the front region 431 being given a larger size than those other regions 432-436.



FIG. 4 illustrates a second exemplary formatted image format 440 that may be created from the source image 420. In this example, content of a right region 444 may be assigned a larger area within the formatted image than the regions 441-443, 445-446 corresponding to the other fields of view. Thus, as compared to the source image where each region 421-426 has the same size as every other region, the second exemplary formatted image 440 assigns the right region 444 with a higher priority than the other regions 441-443, 445-446, which results in the right region 444 being given a larger size than those other regions 441-443, 445-446.


As discussed, an image processing system 220 (FIG. 2) may assign a format to source video data before is it coded by a video coder 230. Moreover, the image processing system 220 may alter the format assignments to source video data at various points during operation of a video coder 230. In one embodiment, an image processor 220 may toggle between different formats such as those shown in FIG. 4. Thus, an image processor 220 may select one or more portions of a source image 420 to have higher priority than other portion(s) of the source image. The higher-priority portions may be assigned a relatively larger size within the image than the other portions and, thus, have higher resolution than the non-selected portions.


As applied to the source image 420 illustrated in FIG. 4, an image processor 220 may select any of the front region 421, the left region 422, the back region 423, the right region 424, the top region 425 and the bottom region 426 to have a higher priority and assign the selected region to occupy a larger space than the non-selected regions within a formatted image. And, of course, the selection of the higher priority region may change at various times during operation of the video coder 230 (FIG. 2).



FIG. 5 illustrates exemplary relationships among source images and coding formats according to another embodiment of the present disclosure. In the example of FIG. 5, an image source may generate a source image 510 in an equirectangular image format. In this format, multi-directional image content may be represented in two dimensions as if it were captured from a cylindrical surface about a camera (not shown). The capture operation may cause distortion of image data from different fields of view. For example, image content typically considered top and bottom image data may be stretched to occupy the full width of the two dimensional image spaces that they occupy. Image content that corresponds to front, left, back and right fields of view may exhibit distortions from two dimensional representations; the distortions typically become more exaggerated at distances farther removed from an “equator” of the image.



FIG. 5 illustrates an exemplary pair of formats 530, 540 that may be created from the source image 510. In this example, the source image 510 may be partitioned in predetermined portions P1-P8, as shown in a partitioned image 520. Thereafter, different ones of portions P1-P8 may be assigned higher priority than the other portions in the formatted image.


In the example of FIG. 5, the formatted image 530 illustrates portions P2 and P6 having been selected as higher priority portions than portions P1, P3-P5 and P7-P8. The formatted image 540 illustrates portions P3 and P7 having been selected as higher priority portions than portions P1-P2, P4-P6 and P8. In each case, the higher priority portions are assigned relatively larger space than the non-selected portions and, thus, have higher resolution than the non-selected portions.



FIG. 6 illustrates exemplary relationships among source images and coding formats according to another embodiment of the present disclosure. In the example of FIG. 6, a stereoscopic camera 600 may generate a source image 610 in a stereoscopic image format having left eye and right eye images 612, 614. The source image 610 may be transformed into a formatted image 620 using alterations of projection, resolution and/or organization. In the example illustrated in FIG. 6, the right eye image 624 is shown having been transformed from a native representation to an equirectangular representation.


Frame formats used for coding also may alter other aspects of captured video data. For example, frame formats may project image from their source projection to an alternate projection. FIG. 7 illustrates an example of one such formatting operation applied to the frame format of FIG. 5. In this example, a native projection of an image 710 causes image content of top and bottom fields of view 714, 714 to be stretched across the entire width of the source image 710. The image content of the top and bottom fields of view may be re-projected into smaller regions 732, 734. The re-projected data may be projected from its native representation 710 to a spherical projection 720, where image content of the top and bottom fields of view 712, 714 are projected to corresponding locations 722, 724 in a spherical projection 720. Once projected to a spherical representation, the image content of the top and bottom fields of view 722, 724 may be projected to respective representations 732, 734 in the formatted image 730.


When projecting image data from the native representation to the spherical projection, an image processor 220 (FIG. 2) may transform pixel data at locations (x,y) within the top and bottom views 712, 714 to locations (θ, φ) along a spherical projection 720 according to a transform such as:

θ=α·x+θ0, and  (Eq. 1.)
φ=β·y+φ0, where  (Eq. 2.)

θ and φ respectively represents the longitude and latitude of a location in the spherical projection 720, α, β are scalars, θ0, φ0 represent an origin of the spherical projection 720, and x and y represent the horizontal and vertical coordinates of source data in top and bottom views 712, 714 of the source image 710.


The image processor 220 (FIG. 2) may perform a transform of image data in the spherical projection 720 to image data for the top and bottom regions 732, 734 through counter-part transform techniques. Image data for the top region 732 may be derived from spherical projection data corresponding to a first pole 722 of the spherical projection 720. Similarly, image data for the bottom region 734 may be derived from spherical projection data corresponding to a second pole 720 of the spherical projection 720. Specifically, pixel locations (θ,φ) in the spherical projection 720 may map to locations (x,y,z) in a three-dimensional Cartesian space as follows:

x=r*sin(φ)*cos(θ),  (Eq. 3.)
y=r*sin(φ)*sin(θ)  (Eq. 4.)
z=r*cos(φ), where  (Eq. 5.)

r represents a radial distance of the point φ from a center of the respective polar region 722, 724.



FIG. 8 illustrates a method 800 according to an embodiment of the present disclosure. The method 800 may become operative when an image processor effects a switch between a first formatted representation of video data to a second representation. When a switch occurs, the method 800 may transform reference frames stored by a coding system from an old format to a new format (box 810). Thereafter, the method 800 may code input frames with reference to the transformed reference frames (box 820). The transformed reference frames will match the format of the input frame. The method 800 may determine whether the coded input frame is designated as a reference frame (box 830). If so, the method 800 may decode the coded reference frame and store a recovered reference frame obtained therefrom to the decoded picture buffer (box 840). The method 800 may repeat operation of boxes 820-840 as long as the image processor generates frames according to the new format.


It is expected that, over time, as new input frames are coded and designated as reference frames, that decoded reference frames will replace the transformed reference frames in the decoded picture buffer. Thus, any coding inefficiencies that might be obtained from use of the transformed reference frames will be overcome by the ordinary eviction policies under which the decoded picture buffer operates.



FIG. 9 illustrates a method 900 according to an embodiment of the present disclosure. The method 900 may become operative at a decoding system that operates on coded video data, when the decoding system encounters signaling in the coded video data that identifies a switch between a first format of video data to a second format. When a switch occurs, the method 900 may transform reference frames stored by the decoding system from an old format to a new format (box 910). Thereafter, the method 900 may decode coded frames with reference to the transformed reference frames (box 920). The transformed reference frames will match the format of the coded frames. The method 900 may determine whether the coded frame is designated as a reference frame (box 930). If so, the method 900 may store a recovered reference frame obtained therefrom to the decoded picture buffer (box 940). The method 900 may repeat operation of boxes 920-940 as long as coded video data is presented according to the new format.


It is expected that, over time, as new coded frames are decoded and reference frames are obtained therefrom, that decoded reference frames will replace the transformed reference frames in the decoded picture buffer. Thus, any coding inefficiencies that might be obtained from use of the transformed reference frames will be overcome by the ordinary eviction policies under which the decoded picture buffer operates.


Switching may be triggered in a variety of ways. In a first embodiment, activity at a decoding terminal 120 (FIG. 1) may identify an area of interest, which may be reported to the first terminal 110. For example, many video rendering environments do not render all content of multi-directional video simultaneously. Instead, a sub-portion of the video may be selected rendered based on operator control or local rendering conditions. In such a case, for example, if an operator selects a sub-portion of the video to be rendered, an image processor 220 in a coding system 200 (FIG. 2) may define a format that prioritizes the selected content.


In another embodiment, an image processor 220 may assign priority to region(s) of a multi-directional image based on characteristics of the image data itself. For example, image analysis may identify regions within an input frame that indicates the presence of relatively close objects (identified by depth analyses of the frame) or motion activity occurs (identified by motion analysis of the frame). Such regions may be selected as high priority regions of the image and a format that prioritizes these regions(s) may be defined for coding.


In a further embodiment, an image processor 220 may select frame formats based on estimates of distortion among candidate frame formats and selecting one of the frame formats that minimizes distortion under a governing coding rate. For example, a governing coding rate may be imposed by a bit rate afforded by a channel between a coding system 200 and a decoding system 300. Distortion estimates may be calculated for eligible frame formats based on candidate viewing conditions, for example, estimates of how often a segment of video is likely to be viewed. Dynamic switching may be performed when an eligible frame format is identified that is estimated to have lower distortion than another frame format that is then being used for coding.



FIG. 10 illustrates a communication flow 1000 between a pair of terminals 110, 120 according to an embodiment of the present disclosure. The terminals 110, 120 initially may exchange messaging 1010 identifying parameters of a coding session between them. As part of this signaling, an encoding terminal 110 may define a format for coded video (box 1015) and may provide a format configuration message 1020 identifying a format that was selected. Thereafter, the encoding terminal 110 may pack source video frames according to the selected format (box 1025) and may code the formatted frames (box 1030). The encoding terminal 110 may transmit the coded frames to the decoding terminal 1020, where they are decoded (box 1040) and, as appropriate, formatted into an output configuration (box 1045) that is suitable for its use at the decoding terminal 120.


The encoding terminal 110 may determine whether its format should be switched (box 1050). If the encoding terminal 110 determines that the format should be switched, the encoding terminal 110 may send a new message 1055 to the decoding terminal 120 identifying the new configuration. In response to the format configuration message 1055 both terminals 110, 120 may repack reference frames stored in their decoded picture buffers according to the new configuration (boxes 1060, 1065). The operations 1025-1065 may repeat for as long as necessary under the coding session.



FIG. 11 is a timeline illustrating impact of an exemplary format switch at a video coder 1110, the video coder's reference picture store 1120, a video decoder 1130 and the decoder's reference picture store 1140 according to an embodiment of the present disclosure. In this example, a first set of input video frames IF1-IFN of a video sequence are assigned a first format and a second set of input video frames, beginning with input frame IFN+1, are assigned a second format.


The coding session may begin at a time t1, when a first frame is coded. At this point, the reference picture store 1120 likely will be empty (because the input frame IF1 is the first frame to be processed). The input frame IF1 may be coded by intra-coding and output from the video coder. The coded input frame IF1 likely will be designated as a reference frame and, therefore, it may be decoded and stored to the reference picture store as reference frame RF1.


Input frames IF2-IFN may be coded according to the first format, also. The video coder 1110 may code the input frames predictively, using reference frames from the reference picture store 1120 as bases for prediction. The coded input frames IF2-IFN may output from the video coder 1110. Select coded input frames IF2-IFN may be designated as reference frames and stored to the reference picture store 1120. Thus, at time t2, after the input frame IFN is coded, the reference picture store 1120 may store reference frames RF1-RFM.


The input frames' format may change to the second format when input frame IFN+1 is coded by the video coder. In response, the reference frames RF1-RFM may be transformed from a representation corresponding to the first format to a representation corresponding to the second format. The input frame IFN+1 may be coded predictively using select transformed frame(s) TF1-TFM as prediction references and output from the video coder. If the coded input frame IFN+1 is designated as a reference frame, it may be decoded and stored to the reference picture store as reference frame RFN+1 (not shown).


At the video decoder 1130, decoding may begin at a time t4, when a first coded frame is decoded. At this point, the reference picture store 1140 will be empty because the input frame IF1 is the first frame to be processed. The input frame IF1 may be decoded and output from the video decoder 1130. The decoded frame IF1 likely will have been designated as a reference frame and, therefore, it may be stored to the reference picture store 1140 as reference frame RF1.


Coded input frames IF2-IFN may be decoded according to the first format, also. The video decoder 1130 may decode the input frames according to the coding modes applied by the video coder 1110, using reference frames from the reference picture store 1140 as bases for prediction when so designated. The decoded input frames IF2-IFN may be output from the video decoder 1130. Decoded input frames IF2-IFN that are designated as reference frames also may be stored to the reference picture store 1140. Thus, at time t5, after the coded input frame IFN is decoded, the reference picture store 1140 may store reference frames RF1-RFM.


In this example, the frames' format changes to the second format when the coded input frame IFN+1 is decoded by the video decoder 1130. In response, the reference frames RF1-RFM may be transformed from a representation corresponding to the first format to a representation corresponding to the second format. The coded input frame IFN+1 may be coded predictively using designated transformed frame(s) TF1-TFM as prediction references and output from the video decoder 1130. If the decoded input frame IFN+1 is designated as a reference frame, it may be stored to the reference picture store 1140 as reference frame RFN+1 (not shown).


Note that, in the foregoing example, there are no constraints on the timing between the coding events at times t1-t3 and the decoding events at times t4-t6. The principles of the present disclosure apply equally as well to real time coding scenarios, which may be appropriate for “live” video feeds, and also to store-and-forward coding scenarios, where video may be coded for storage and then delivered to decoding devices on demand.


Transforms of reference pictures may be performed in a variety of different ways. In a simple example, a region of image data that is being “demoted” in priority may be spatially downscaled according to the size differences between the region that the demoted content occupies in the reference frame and the region that the demoted content occupies in the transform frame. For example, the front region F in reference frame RF1 is demoted when generating transform frame TF1; it may be downscaled according to the size differences that occur due to this demotion.


Similarly, a region of image data that is “promoted” in priority may be spatially upsampled according to the size differences between the region that the promoted content occupies in the reference frame and the region that the promoted content occupies in the transform frame. For example, in FIG. 11, the right region R in reference frame RF1 is promoted when generating the transform frame TF1; it may be upscaled according to the size differences that occur due to this promotion.


Although not illustrated in FIG. 11, formats can involve promotions and demotions of content among different sizes. Thus, although the first format illustrates the left, back, right, top and bottom regions each occupying the same size as each other, embodiments of the present disclosure permit these lower-priority regions to have different sizes from each other. Thus, format may define multiple tiers of priority—for example, a high, medium and low tier—with each tier having a respective size. In practice, it is expected that system designers will develop systems where the number of tiers and the relative sizes among these tiers are tailored to fit their individual needs.



FIG. 12 is a timeline illustrating impact of another exemplary format switch at a video coder 1210, the video coder's reference picture store 1220, a video decoder 1230 and the decoder's reference picture store 1240 according to an embodiment of the present disclosure. In this example, a first set of input video frames IF1-IFN of a video sequence are assigned a first format and a second set of input video frames, beginning with input frame IFN+1, are assigned a second format. In this example, the first format uses equirectangular formatted images and the second format converts top and bottom fields of view from the equirectangular image to smaller regions as shown in the example of FIG. 7.


As in the prior example, a coding session may begin at a time t1, when a first frame is coded. At this point, the reference picture store 1220 likely will be empty (because the input frame IF1 is the first frame to be processed). The input frame IF1 may be coded by intra-coding and output from the video coder. The coded input frame IF1 likely will be designated as a reference frame and, therefore, it may be decoded and stored to the reference picture store as reference frame RF1.


Input frames IF2-IFN may be coded according to the first format, also. The video coder 1210 may code the input frames predictively, using reference frames from the reference picture store 1220 as bases for prediction. The coded input frames IF2-IFN may output from the video coder 1210. Select coded input frames IF2-IFN may be designated as reference frames and stored to the reference picture store 1220. Thus, at time t2, after the input frame IFN is coded, the reference picture store 1220 may store reference frames RF1-RFM.


The input frames' format may change to the second format when input frame IFN+1 is coded by the video coder. In response, the reference frames RF1-RFM may be transformed from a representation corresponding to the first format to a representation corresponding to the second format. The input frame IFN+1 may be coded predictively using select transformed frame(s) TF1-TFM as prediction references and output from the video coder. If the coded input frame IFN+1 is designated as a reference frame, it may be decoded and stored to the reference picture store as reference frame RFN+1 (not shown).


At the video decoder 1230, decoding may begin at a time t4, when a first coded frame is decoded. At this point, the reference picture store 1240 will be empty because the input frame IF1 is the first frame to be processed. The input frame IF1 may be decoded and output from the video decoder 1230. The decoded frame IF1 likely will have been designated as a reference frame and, therefore, it may be stored to the reference picture store 1240 as reference frame RF1.


Coded input frames IF2-IFN may be decoded according to the first format, also. The video decoder 1230 may decode the input frames according to the coding modes applied by the video coder 1210, using reference frames from the reference picture store 1240 as bases for prediction when so designated. The decoded input frames IF2-IFN may be output from the video decoder 1230. Decoded input frames IF2-IFN that are designated as reference frames also may be stored to the reference picture store 1240. Thus, at time t5, after the coded input frame IFN is decoded, the reference picture store 1240 may store reference frames RF1-RFM.


In this example, the frames' format changes to the second format when the coded input frame IFN+1 is decoded by the video decoder 1230. In response, the reference frames RF1-RFM may be transformed from a representation corresponding to the first format to a representation corresponding to the second format. The coded input frame IFN+1 may be coded predictively using designated transformed frame(s) TF1-TFM as prediction references and output from the video decoder 1230. If the decoded input frame IFN+1 is designated as a reference frame, it may be stored to the reference picture store 1240 as reference frame RFN+1 (not shown).


As in the prior example, there are no constraints on the timing between the coding events at times t1-t3 and the decoding events at times t4-t6. The principles of the present disclosure apply equally as well to real time coding scenarios, which may be appropriate for “live” video feeds, and also to store-and-forward coding scenarios, where video may be coded for storage and then delivered to decoding devices on demand.



FIG. 13 is a functional block diagram of a coding system 1300 according to an embodiment of the present disclosure. The system 1300 may include a pixel block coder 1310, a pixel block decoder 1320, an in-loop filter system 1330, a reference picture store 1340, a predictor 1350, a controller 1360, and a syntax unit 1370. The pixel block coder and decoder 1310, 1320 and the predictor 1350 may operate iteratively on individual pixel blocks of a picture that has been formatted according to a governing format. The predictor 1350 may predict data for use during coding of a newly-presented input pixel block. The pixel block coder 1310 may code the new pixel block by predictive coding techniques and present coded pixel block data to the syntax unit 1370. The pixel block decoder 1320 may decode the coded pixel block data, generating decoded pixel block data therefrom. The in-loop filter 1330 may perform various filtering operations on a decoded picture that is assembled from the decoded pixel blocks obtained by the pixel block decoder 1320. The filtered picture may be stored in the reference picture store 1340 where it may be used as a source of prediction of a later-received pixel block. The syntax unit 1370 may assemble a data stream from the coded pixel block data which conforms to a governing coding protocol.


The pixel block coder 1310 may include a subtractor 1312, a transform unit 1314, a quantizer 1316, and an entropy coder 1318. The pixel block coder 1310 may accept pixel blocks of input data at the subtractor 1312. The subtractor 1312 may receive predicted pixel blocks from the predictor 1350 and generate an array of pixel residuals therefrom representing a difference between the input pixel block and the predicted pixel block. The transform unit 1314 may apply a transform to the sample data output from the subtractor 1312, to convert data from the pixel domain to a domain of transform coefficients. The quantizer 1316 may perform quantization of transform coefficients output by the transform unit 1314. The quantizer 1316 may be a uniform or a non-uniform quantizer. The entropy coder 1318 may reduce bandwidth of the output of the coefficient quantizer by coding the output, for example, by variable length code words.


The transform unit 1314 may operate in a variety of transform modes as determined by the controller 1360. For example, the transform unit 1314 may apply a discrete cosine transform (DCT), a discrete sine transform (DST), a Walsh-Hadamard transform, a Haar transform, a Daubechies wavelet transform, or the like. In an embodiment, the controller 1360 may select a coding mode M to be applied by the transform unit 1315, may configure the transform unit 1315 accordingly and may signal the coding mode M in the coded video data, either expressly or impliedly.


The quantizer 1316 may operate according to a quantization parameter QP that is supplied by the controller 1360. In an embodiment, the quantization parameter QP may be applied to the transform coefficients as a multi-value quantization parameter, which may vary, for example, across different coefficient locations within a transform-domain pixel block. Thus, the quantization parameter QP may be provided as a quantization parameters array.


The pixel block decoder 1320 may invert coding operations of the pixel block coder 1310. For example, the pixel block decoder 1320 may include a dequantizer 1322, an inverse transform unit 1324, and an adder 1326. The pixel block decoder 1320 may take its input data from an output of the quantizer 1316. Although permissible, the pixel block decoder 1320 need not perform entropy decoding of entropy-coded data since entropy coding is a lossless event. The dequantizer 1322 may invert operations of the quantizer 1316 of the pixel block coder 1310. The dequantizer 1322 may perform uniform or non-uniform de-quantization as specified by the decoded signal QP. Similarly, the inverse transform unit 1324 may invert operations of the transform unit 1314. The dequantizer 1322 and the inverse transform unit 1324 may use the same quantization parameters QP and transform mode M as their counterparts in the pixel block coder 1310. Quantization operations likely will truncate data in various respects and, therefore, data recovered by the dequantizer 1322 likely will possess coding errors when compared to the data presented to the quantizer 1316 in the pixel block coder 1310.


The adder 1326 may invert operations performed by the subtractor 1312. It may receive the same prediction pixel block from the predictor 1350 that the subtractor 1312 used in generating residual signals. The adder 1326 may add the prediction pixel block to reconstructed residual values output by the inverse transform unit 1324 and may output reconstructed pixel block data.


The in-loop filter 1330 may perform various filtering operations on recovered pixel block data. For example, the in-loop filter 1330 may include a deblocking filter 1332 and a sample adaptive offset (“SAO”) filter 1333. The deblocking filter 1332 may filter data at seams between reconstructed pixel blocks to reduce discontinuities between the pixel blocks that arise due to coding. SAO filters may add offsets to pixel values according to an SAO “type,” for example, based on edge direction/shape and/or pixel/color component level. The in-loop filter 1330 may operate according to parameters that are selected by the controller 1360.


The reference picture store 1340 may store filtered pixel data for use in later prediction of other pixel blocks. Different types of prediction data are made available to the predictor 1350 for different prediction modes. For example, for an input pixel block, intra prediction takes a prediction reference from decoded data of the same picture in which the input pixel block is located. Thus, the reference picture store 1340 may store decoded pixel block data of each picture as it is coded. For the same input pixel block, inter prediction may take a prediction reference from previously coded and decoded picture(s) that are designated as reference pictures. Thus, the reference picture store 1340 may store these decoded reference pictures.


As discussed, the predictor 1350 may supply prediction data to the pixel block coder 1310 for use in generating residuals. The predictor 1350 may include an inter predictor 1352, an intra predictor 1353 and a mode decision unit 1352. The inter predictor 1352 may receive pixel block data representing a new pixel block to be coded and may search reference picture data from store 1340 for pixel block data from reference picture(s) for use in coding the input pixel block. The inter predictor 1352 may support a plurality of prediction modes, such as P mode coding and B mode coding. The inter predictor 1352 may select an inter prediction mode and an identification of candidate prediction reference data that provides a closest match to the input pixel block being coded. The inter predictor 1352 may generate prediction reference metadata, such as motion vectors, to identify which portion(s) of which reference pictures were selected as source(s) of prediction for the input pixel block.


The intra predictor 1353 may support Intra (I) mode coding. The intra predictor 1353 may search from among pixel block data from the same picture as the pixel block being coded that provides a closest match to the input pixel block. The intra predictor 1353 also may generate prediction reference indicators to identify which portion of the picture was selected as a source of prediction for the input pixel block.


The mode decision unit 1352 may select a final coding mode to be applied to the input pixel block. Typically, as described above, the mode decision unit 1352 selects the prediction mode that will achieve the lowest distortion when video is decoded given a target bitrate. Exceptions may arise when coding modes are selected to satisfy other policies to which the coding system 1300 adheres, such as satisfying a particular channel behavior, or supporting random access or data refresh policies. When the mode decision selects the final coding mode, the mode decision unit 1352 may output a selected reference block from the store 1340 to the pixel block coder and decoder 1310, 1320 and may supply to the controller 1360 an identification of the selected prediction mode along with the prediction reference indicators corresponding to the selected mode.


The controller 1360 may control overall operation of the coding system 1300. The controller 1360 may select operational parameters for the pixel block coder 1310 and the predictor 1350 based on analyses of input pixel blocks and also external constraints, such as coding bitrate targets and other operational parameters. As is relevant to the present discussion, when it selects quantization parameters QP, the use of uniform or non-uniform quantizers, and/or the transform mode M, it may provide those parameters to the syntax unit 1370, which may include data representing those parameters in the data stream of coded video data output by the system 1300. The controller 1360 also may select between different modes of operation by which the system may generate reference images and may include metadata identifying the modes selected for each portion of coded data.


During operation, the controller 1360 may revise operational parameters of the quantizer 1316 and the transform unit 1315 at different granularities of image data, either on a per pixel block basis or on a larger granularity (for example, per picture, per slice, per largest coding unit (“LCU”) or another region). In an embodiment, the quantization parameters may be revised on a per-pixel basis within a coded picture.


Additionally, as discussed, the controller 1360 may control operation of the in-loop filter 1330 and the prediction unit 1350. Such control may include, for the prediction unit 1350, mode selection (lambda, modes to be tested, search windows, distortion strategies, etc.), and, for the in-loop filter 1330, selection of filter parameters, reordering parameters, weighted prediction, etc.


And, further, the controller 1360 may perform transforms of reference pictures stored in the reference picture store when new formats are defined for input video.


The principles of the present discussion may be used cooperatively with other coding operations that have been proposed for multi-directional video. For example, the predictor 1350 may perform prediction searches using input pixel block data and reference pixel block data in a spherical projection. Operation of such prediction techniques are described in U.S. patent application Ser. No. 15/390,202, filed Dec. 23, 2016 and assigned to the assignee of the present application. In such an embodiment, the coder 1300 may include a spherical transform unit 1390 that transforms input pixel block data to a spherical domain prior to being input to the predictor 1350.



FIG. 14 is a functional block diagram of a decoding system 1400 according to an embodiment of the present disclosure. The decoding system 1400 may include a syntax unit 1410, a pixel block decoder 1420, an in-loop filter 1430, a reference picture store 1440, a predictor 1450, and a controller 1460. The syntax unit 1410 may receive a coded video data stream and may parse the coded data into its constituent parts. Data representing coding parameters may be furnished to the controller 1460 while data representing coded residuals (the data output by the pixel block coder 1310 of FIG. 13) may be furnished to the pixel block decoder 1420. The pixel block decoder 1420 may invert coding operations provided by the pixel block coder 1310 (FIG. 13). The in-loop filter 1430 may filter reconstructed pixel block data. The reconstructed pixel block data may be assembled into pictures for display and output from the decoding system 1400 as output video. The pictures also may be stored in the prediction buffer 1440 for use in prediction operations. The predictor 1450 may supply prediction data to the pixel block decoder 1420 as determined by coding data received in the coded video data stream.


The pixel block decoder 1420 may include an entropy decoder 1422, a dequantizer 1424, an inverse transform unit 1426, and an adder 1428. The entropy decoder 1422 may perform entropy decoding to invert processes performed by the entropy coder 1318 (FIG. 13). The dequantizer 1424 may invert operations of the quantizer 1416 of the pixel block coder 1310 (FIG. 13). Similarly, the inverse transform unit 1426 may invert operations of the transform unit 1314 (FIG. 13). They may use the quantization parameters QP and transform modes M that are provided in the coded video data stream. Because quantization is likely to truncate data, the data recovered by the dequantizer 1424, likely will possess coding errors when compared to the input data presented to its counterpart quantizer 1416 in the pixel block coder 1310 (FIG. 13).


The adder 1428 may invert operations performed by the subtractor 1312 (FIG. 13). It may receive a prediction pixel block from the predictor 1450 as determined by prediction references in the coded video data stream. The adder 1428 may add the prediction pixel block to reconstructed residual values output by the inverse transform unit 1426 and may output reconstructed pixel block data.


The in-loop filter 1430 may perform various filtering operations on reconstructed pixel block data. As illustrated, the in-loop filter 1430 may include a deblocking filter 1432 and an SAO filter 1434. The deblocking filter 1432 may filter data at seams between reconstructed pixel blocks to reduce discontinuities between the pixel blocks that arise due to coding. SAO filters 1434 may add offset to pixel values according to an SAO type, for example, based on edge direction/shape and/or pixel level. Other types of in-loop filters may also be used in a similar manner. Operation of the deblocking filter 1432 and the SAO filter 1434 ideally would mimic operation of their counterparts in the coding system 1300 (FIG. 13). Thus, in the absence of transmission errors or other abnormalities, the decoded picture obtained from the in-loop filter 1430 of the decoding system 1400 would be the same as the decoded picture obtained from the in-loop filter 1310 of the coding system 1300 (FIG. 13); in this manner, the coding system 1300 and the decoding system 1400 should store a common set of reference pictures in their respective reference picture stores 1340, 1440.


The reference picture store 1440 may store filtered pixel data for use in later prediction of other pixel blocks. The reference picture store 1440 may store decoded pixel block data of each picture as it is coded for use in intra prediction. The reference picture store 1440 also may store decoded reference pictures.


As discussed, the predictor 1450 may supply the transformed reference block data to the pixel block decoder 1420. The predictor 1450 may supply predicted pixel block data as determined by the prediction reference indicators supplied in the coded video data stream.


The controller 1460 may control overall operation of the coding system 1400. The controller 1460 may set operational parameters for the pixel block decoder 1420 and the predictor 1450 based on parameters received in the coded video data stream. As is relevant to the present discussion, these operational parameters may include quantization parameters QP for the dequantizer 1424 and transform modes M for the inverse transform unit 1411. As discussed, the received parameters may be set at various granularities of image data, for example, on a per pixel block basis, a per picture basis, a per slice basis, a per LCU basis, or based on other types of regions defined for the input image.


And, further, the controller 1460 may perform transforms of reference pictures stored in the reference picture store 1440 when new formats are detected in coded video data.


The foregoing discussion has described operation of the embodiments of the present disclosure in the context of video coders and decoders. Commonly, these components are provided as electronic devices. Video decoders and/or controllers can be embodied in integrated circuits, such as application specific integrated circuits, field programmable gate arrays and/or digital signal processors. Alternatively, they can be embodied in computer programs that execute on camera devices, personal computers, notebook computers, tablet computers, smartphones or computer servers. Such computer programs typically are stored in physical storage media such as electronic-, magnetic- and/or optically-based storage devices, where they are read to a processor and executed. Decoders commonly are packaged in consumer electronics devices, such as smartphones, tablet computers, gaming systems, DVD players, portable media players and the like; and they also can be packaged in consumer software applications such as video games, media players, media editors, and the like. And, of course, these components may be provided as hybrid systems that distribute functionality across dedicated hardware components and programmed general-purpose processors, as desired.


For example, the techniques described herein may be performed by a central processor of a computer system. FIG. 15 illustrates an exemplary computer system 1500 that may perform such techniques. The computer system 1500 may include a central processor 1510, one or more cameras 1520, a memory 1530, and a transceiver 1540 provided in communication with one another. The camera 1520 may perform image capture and may store captured image data in the memory 1530. Optionally, the device also may include sink components, such as a coder 1550 and a display 1560, as desired.


The central processor 1510 may read and execute various program instructions stored in the memory 1530 that define an operating system 1512 of the system 1500 and various applications 1514.1-1514.N. The program instructions may perform coding mode control according to the techniques described herein. As it executes those program instructions, the central processor 1510 may read, from the memory 1530, image data created either by the camera 1520 or the applications 1514.1-1514.N, which may be coded for transmission. The central processor 1510 may execute a program that operates according to the principles of FIG. 6. Alternatively, the system 1500 may have a dedicated coder 1550 provided as a standalone processing system and/or integrated circuit.


As indicated, the memory 1530 may store program instructions that, when executed, cause the processor to perform the techniques described hereinabove. The memory 1530 may store the program instructions on electrical-, magnetic- and/or optically-based storage media.


The transceiver 1540 may represent a communication system to transmit transmission units and receive acknowledgement messages from a network (not shown). In an embodiment where the central processor 1510 operates a software-based video coder, the transceiver 1540 may place data representing state of acknowledgment message in memory 1530 to retrieval by the processor 1510. In an embodiment where the system 1500 has a dedicated coder, the transceiver 1540 may exchange state information with the coder 1550.


The foregoing discussion has described the principles of the present disclosure in terms of encoding systems and decoding systems. As described, an encoding system typically codes video data for delivery to a decoding system where the video data is decoded and consumed. As such, the encoding system and decoding system support coding, delivery and decoding of video data in a single direction. In applications where bidirectional exchange is desired, a pair of terminals 110, 120 (FIG. 1) each may possess both an encoding system and a decoding system. An encoding system at a first terminal 110 may support coding of video data in a first direction, where the coded video data is delivered to a decoding system at the second terminal 120. Moreover, an encoding system also may reside at the second terminal 120, which may code of video data in a second direction, where the coded video data is delivered to a decoding system at the second terminal 110. The principles of the present disclosure may find application in a single direction of a bidirectional video exchange or both directions as may be desired by system operators. In the case where these principles are applied in both directions, then the operations illustrated in FIGS. 8-11 may be performed independently for each directional exchange of video.


Several embodiments of the present invention are specifically illustrated and described herein. However, it will be appreciated that modifications and variations of the present invention are covered by the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.

Claims
  • 1. A method, comprising: processing input video having an input organizational format to generate processed video in a selected organizational format for multi-directional video wherein the selected organizational format includes at least one larger sub-image corresponding to a higher prioritized direction of view and a plurality of smaller sub-images corresponding to lower prioritized directions of view,selecting a first selected organizational format based on a first prioritization amongst directions of view;coding the processed video in the first selected organizational format,decoding select coded frames as reference frames,storing the decoded reference frames in the first selected organizational format;selecting a second selected organizational format based on a second prioritization amongst the directions of view;responsive to an indication of a change in view direction prioritization from the first prioritization to the second prioritization, transforming the decoded reference frames from the first selected organizational format to the second selected organizational format,predictively coding video frames in the second selected organizational format using the transformed reference frame(s) as source(s) of prediction, andoutputting the coded video frames to a channel.
  • 2. The method claim 1, wherein the first format contains a prioritization of a first region of the input video over a second region of the input video, and the second format contains a prioritization of the second region of the input video over the first region of the input video.
  • 3. The method claim 1, wherein the first format contains a prioritization of a first portion of the input video over another portion of the input video, and the second format contains a prioritization of a second portion of the input video over the other portion of the input video.
  • 4. The method claim 1, wherein the first and second formats are derived from a common source format of the input video.
  • 5. The method claim 4, wherein the source format is a cube map format.
  • 6. The method claim 4, wherein the source format is an equirectangular format.
  • 7. A method, comprising: decoding a first portion of a sequence of predictively-coded multi-directional video data, the coded video data having a coded organizational format that changes over the sequence wherein the coded organizational format includes at least one larger sub-image corresponding to a higher prioritized direction of view and a plurality of smaller sub-images corresponding to lower prioritized directions of view,storing select frames obtained from the decoding as reference frames for use in later predictions, wherein the reference frames are stored in a first organizational format of multi-directional images selected based on a first prioritization of directions of view;responsive to an indication of a change in a view direction prioritization from the first prioritization to a second prioritization of directions of view, transforming the decoded reference frames from the first organizational format to a second organizational format selected based on the second prioritization of the directions of view,predictively decoding a second portion of the sequence having coded video frames in the second organizational format using the transformed reference frame(s) as source(s) of prediction, andoutputting the coded video frames to a sink device.
  • 8. The method claim 7, wherein the first format contains a prioritization of a first region of the coded video over a second region of the coded video, and the second format contains a prioritization of the second region of the coded video over the first region of the coded video.
  • 9. The method claim 7, wherein the first format contains a prioritization of a first portion of the coded video over another portion of the coded video, and the second format contains a prioritization of a second region of the coded video over the other portion of the coded video.
  • 10. The method claim 7, wherein the first and second formats are derived from a common source format of the coded video.
  • 11. The method claim 10, wherein the source format is a cube map format.
  • 12. The method claim 10, wherein the source format is an equirectangular format.
  • 13. A coding system, comprising: an image processor having an input for video in a multi-directional source format and an output for video in a selected organizational format for multi-directional video wherein the selected organizational format includes at least one larger sub-image corresponding to a higher prioritized direction of view and a plurality of smaller sub-images corresponding to lower prioritized directions of view,a video coder having an input for video from the image processor in a first coding format, an input for prediction data, and an output for predictively-coded video data,a video decoder having in input for the predictively-coded video data from the video coder and an output for decoded video data,a reference picture store having an input for the decoded video data from the video decoder,a predictor, having an input for the video from the image processor in the first coding format, an input for stored reference picture data from the reference picture store and an output for the prediction data, anda controller, responsive to an indication of a change in view direction prioritization from a first prioritization of directions of view to a second prioritization of the directions of view, that transforms reference picture data in the reference picture store from a first organizational format for multi-directional video selected based on the first prioritization to a second organizational format selected based on the second prioritization.
  • 14. The system of claim 13, wherein the first organizational format contains a prioritization of a first region of the source format over a second region of the source format, and the second coding format contains a prioritization of the second region of the source format over the first region of the source format.
  • 15. The system of claim 13, wherein the first organizational contains a prioritization of a first portion of the source format over another portion of the source format, and the second coding format contains a prioritization of a second region of the source format over the other portion of the source format.
  • 16. A decoding system, comprising: a video decoder having an input for predictively-coded multi-directional video data and an output for decoded video data,a reference picture store having an input for the decoded video data from the video decoder,a predictor, having an input for coding mode data associated with the predictively-coded video data, an input for stored reference picture data from the reference picture store and an output for the prediction data, anda controller, responsive to an indication of a change in a view direction prioritization from a first prioritization amongst directions of view to a second prioritization amongst the directions of view, that transforms reference picture data in the reference picture store from a first organizational format for multi-directional video based on the first prioritization to a second organizational format for multi-directional video based on the a second prioritization, wherein an organizational format for multi-directional video includes at least one larger sub-image corresponding to a higher prioritized direction of view and a plurality of smaller sub-images corresponding to lower prioritized directions of view.
  • 17. The system of claim 16, wherein the first organizational format contains a prioritization of a first region of the coded video over a second region of the coded video, and the second format contains a prioritization of the second region of the coded video over the first region of the coded video.
  • 18. The system of claim 16, wherein the first organizational format contains a prioritization of a first portion of the coded video over another portion of the coded video, and the second format contains a prioritization of a second region of the coded video over the other portion of the coded video.
  • 19. The system of claim 16, wherein the first and second organizational formats are derived from a common source format of the coded video.
  • 20. Non-transitory computer readable medium storing program instructions that, when executed by a processing device, cause the device to: process multi-directional input video having an input organizational format to generate processed video in a selected organizational format for multi-directional video wherein the selected organizational format includes at least one larger sub-image corresponding to a higher prioritized direction of view and a plurality of smaller sub-images corresponding to lower prioritized directions of view,select a first selected organizational format based on a first prioritization amongst directions of view;code the processed video in a first organizational format,decode select coded frames as reference frames,store the decoded reference frames;select a second selected organizational format based on a second prioritization amongst the directions of view;responsive to an indication of a change in view direction prioritization from the first prioritization to the second prioritization, transform the decoded reference frames from the first selected organizational format to the second selected organizational format,predictively code video frames in the second selected organizational format using the transformed reference frame(s) as source(s) of prediction, andoutput the coded video frames to a channel.
  • 21. Non-transitory computer readable medium storing program instructions that, when executed by a processing device, cause the device to: decode a sequence of predictively-coded multi-directional video data, the coded video data having an organizational format that changes over the sequence, wherein a coded organizational format includes at least one larger sub-image corresponding to a higher prioritized direction of view and a plurality of smaller sub-images corresponding to lower prioritized directions of view,store select frames obtained from the decoding as reference frames for use in later predictions, wherein the reference frames are stored in a first organizational format selected based on a first prioritization of directions of view;responsive to an indication of a change in a view direction prioritization from the first prioritization to a second prioritization of directions of view, transform the decoded reference frames from the first organizational format to a second organizational format selected based on the second prioritization of the directions of view,predictively decode coded video frames in the second organizational format using transformed reference frame(s) as source(s) of prediction.
  • 22. A method, comprising: processing multi-directional input video frames having an input arrangement of regions of view directions within a composite multi-directional frame to generate processed video in a selected arrangement of the regions wherein the selected arrangement includes at least one larger region corresponding to a higher prioritized view direction and a plurality of smaller regions corresponding to lower prioritized view directions,selecting a first arrangement of the regions based on a first prioritization amongst view directions,coding the processed video in the first selected arrangement,decoding select coded frames as reference frames,storing the decoded reference frames in the first selected arrangement;selecting a second arrangement of the regions based on a second prioritization amongst the view directions,responsive to an indication of a change in view direction prioritization from the first prioritization to the second prioritization, transforming the decoded reference frames from the first selected arrangement to the second selected arrangement,predictively coding video frames in the second selected arrangement using the transformed reference frame(s) as source(s) of prediction, andoutputting the coded video frames to a channel.
US Referenced Citations (466)
Number Name Date Kind
4890257 Anthias et al. Dec 1989 A
5185667 Zimmerman Feb 1993 A
5262777 Low et al. Nov 1993 A
5313306 Kuban et al. May 1994 A
5359363 Kuban et al. Oct 1994 A
5448687 Hoogerhyde et al. Sep 1995 A
5537155 O'Connell et al. Jul 1996 A
5600346 Kamata et al. Feb 1997 A
5684937 Oxaal Nov 1997 A
5689800 Downs Nov 1997 A
5715016 Kobayashi et al. Feb 1998 A
5787207 Golin Jul 1998 A
5872604 Ogura Feb 1999 A
5903270 Gentry et al. May 1999 A
5936630 Oxaal Aug 1999 A
6011897 Koyama Jan 2000 A
6031540 Golin et al. Feb 2000 A
6043837 Driscoll et al. Mar 2000 A
6058212 Yokoyama May 2000 A
6122317 Hanami et al. Sep 2000 A
6144890 Rothkop Nov 2000 A
6204854 Signes et al. Mar 2001 B1
6219089 Driscoll, Jr. et al. Apr 2001 B1
6222883 Murdock et al. Apr 2001 B1
6317159 Aoyama Nov 2001 B1
6331869 Furlan et al. Dec 2001 B1
6426774 Driscoll, Jr. et al. Jul 2002 B1
6535643 Hong Mar 2003 B1
6539060 Lee et al. Mar 2003 B1
6559853 Hashimoto et al. May 2003 B1
6577335 Kobayashi et al. Jun 2003 B2
6751347 Pettigrew et al. Jun 2004 B2
6762789 Sogabe et al. Jul 2004 B1
6769131 Tanaka et al. Jul 2004 B1
6795113 Jackson et al. Sep 2004 B1
6907310 Gardner et al. Jun 2005 B2
6973130 Wee et al. Dec 2005 B1
6993201 Haskell et al. Jan 2006 B1
7006707 Peterson Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7039113 Soundararajan May 2006 B2
7050085 Park et al. May 2006 B1
7095905 Peterson Aug 2006 B1
7123777 Rondinelli et al. Oct 2006 B2
7139440 Rondinelli et al. Nov 2006 B2
7149549 Ortiz et al. Dec 2006 B1
7259760 Hashimoto et al. Aug 2007 B1
7327787 Chen et al. Feb 2008 B1
7382399 McCall et al. Jun 2008 B1
7385995 Stiscia et al. Jun 2008 B2
7415356 Gowda et al. Aug 2008 B1
7433535 Mukherjee et al. Oct 2008 B2
7450749 Rouet et al. Nov 2008 B2
7593041 Novak et al. Sep 2009 B2
7660245 Luby Feb 2010 B1
7742073 Cohen-Solal et al. Jun 2010 B1
7755667 Rabbani et al. Jul 2010 B2
7782357 Cutler Aug 2010 B2
8027473 Stiscia et al. Sep 2011 B2
8045615 Liang et al. Oct 2011 B2
8217956 Jin Jul 2012 B1
8255552 Witt et al. Aug 2012 B2
8270496 Yin et al. Sep 2012 B2
8295360 Lewis et al. Oct 2012 B1
8339394 Lininger Dec 2012 B1
8442109 Wang et al. May 2013 B2
8442311 Hobbs et al. May 2013 B1
8462109 Nasiri et al. Jun 2013 B2
8462853 Jeon et al. Jun 2013 B2
8482595 Kweon Jul 2013 B2
8682091 Amit et al. Mar 2014 B2
8693537 Wang et al. Apr 2014 B2
8711941 Letunovskiy et al. Apr 2014 B2
9013536 Zhu et al. Apr 2015 B2
9071484 Traux Jun 2015 B1
9094681 Wilkins et al. Jul 2015 B1
9098870 Meadow et al. Aug 2015 B2
9219919 Deshpande Dec 2015 B2
9224247 Wada et al. Dec 2015 B2
9258520 Lee Feb 2016 B2
9277122 Imura et al. Mar 2016 B1
9404764 Lynch Aug 2016 B2
9430873 Nakamura et al. Aug 2016 B2
9510007 Chan et al. Nov 2016 B2
9516225 Banta et al. Dec 2016 B2
9596899 Stahl et al. Mar 2017 B2
9639935 Douady-Pleven et al. May 2017 B1
9723223 Banta et al. Aug 2017 B1
9743060 Matias et al. Aug 2017 B1
9754413 Gray Sep 2017 B1
9781356 Banta et al. Oct 2017 B1
9838687 Banta et al. Dec 2017 B1
9866815 Vrcelj et al. Jan 2018 B2
9936204 Sim et al. Apr 2018 B1
9967563 Hsu et al. May 2018 B2
9967577 Wu et al. May 2018 B2
9992502 Abbas et al. Jun 2018 B2
9996945 Holzer et al. Jun 2018 B1
10102611 Murtha et al. Oct 2018 B1
10204658 Krishnan Feb 2019 B2
10212456 Guo et al. Feb 2019 B2
10282814 Lin et al. May 2019 B2
10306186 Chuang et al. May 2019 B2
10321109 Tanumihardja et al. Jun 2019 B1
10339627 Abbas et al. Jul 2019 B2
10339688 Su et al. Jul 2019 B2
10349068 Banta et al. Jul 2019 B1
10375371 Xu et al. Aug 2019 B2
10455238 Mody et al. Oct 2019 B2
10523913 Kim et al. Dec 2019 B2
10559121 Moudgil et al. Feb 2020 B1
10573060 Ascolese et al. Feb 2020 B1
10574997 Chung et al. Feb 2020 B2
20010006376 Numa et al. Jul 2001 A1
20010028735 Pettigrew et al. Oct 2001 A1
20010036303 Maurincomme et al. Nov 2001 A1
20020080878 Li Jun 2002 A1
20020093670 Luo et al. Jul 2002 A1
20020126129 Snyder et al. Sep 2002 A1
20020140702 Koller et al. Oct 2002 A1
20020141498 Martins Oct 2002 A1
20020190980 Gerritsen et al. Dec 2002 A1
20020196330 Park et al. Dec 2002 A1
20030098868 Fujiwara et al. May 2003 A1
20030099294 Wang et al. May 2003 A1
20030152146 Lin et al. Aug 2003 A1
20040022322 Dye Feb 2004 A1
20040028133 Subramaniyan et al. Feb 2004 A1
20040028134 Subramaniyan et al. Feb 2004 A1
20040032906 Lillig et al. Feb 2004 A1
20040056900 Blume Mar 2004 A1
20040189675 Pretlove et al. Sep 2004 A1
20040201608 Ma et al. Oct 2004 A1
20040218099 Washington Nov 2004 A1
20040227766 Chou et al. Nov 2004 A1
20040247173 Nielsen et al. Dec 2004 A1
20050013498 Srinivasan et al. Jan 2005 A1
20050041023 Green Feb 2005 A1
20050069682 Tseng Mar 2005 A1
20050129124 Ha Jun 2005 A1
20050204113 Harper et al. Sep 2005 A1
20050243915 Kwon et al. Nov 2005 A1
20050244063 Kwon et al. Nov 2005 A1
20060034527 Gritsevich Feb 2006 A1
20060055699 Perlman et al. Mar 2006 A1
20060055706 Perlman et al. Mar 2006 A1
20060119599 Woodbury Jun 2006 A1
20060126719 Wilensky Jun 2006 A1
20060132482 Oh Jun 2006 A1
20060165164 Kwan et al. Jul 2006 A1
20060165181 Kwan et al. Jul 2006 A1
20060204043 Takei Sep 2006 A1
20060238445 Wang et al. Oct 2006 A1
20060282855 Margulis Dec 2006 A1
20070024705 Richter et al. Feb 2007 A1
20070057943 Beda et al. Mar 2007 A1
20070064120 Didow et al. Mar 2007 A1
20070071100 Shi et al. Mar 2007 A1
20070097268 Relan et al. May 2007 A1
20070115841 Taubman et al. May 2007 A1
20070223582 Borer Sep 2007 A1
20070263722 Fukuzawa Nov 2007 A1
20070291143 Barbieri et al. Dec 2007 A1
20080036875 Jones et al. Feb 2008 A1
20080044104 Gering Feb 2008 A1
20080049991 Gering Feb 2008 A1
20080077953 Fernandez et al. Mar 2008 A1
20080118180 Kamiya et al. May 2008 A1
20080184128 Swenson et al. Jul 2008 A1
20080252717 Moon et al. Oct 2008 A1
20080310513 Ma et al. Dec 2008 A1
20090040224 Igarashi et al. Feb 2009 A1
20090123088 Kallay et al. May 2009 A1
20090153577 Ghyme et al. Jun 2009 A1
20090190858 Moody et al. Jul 2009 A1
20090219280 Maillot Sep 2009 A1
20090219281 Maillot Sep 2009 A1
20090251530 Cilia Oct 2009 A1
20090262838 Gholmieh et al. Oct 2009 A1
20100029339 Kim et al. Feb 2010 A1
20100079605 Wang et al. Apr 2010 A1
20100080287 Ali Apr 2010 A1
20100110481 Do et al. May 2010 A1
20100124274 Cheok et al. May 2010 A1
20100215226 Kaufman et al. Aug 2010 A1
20100305909 Wolper et al. Dec 2010 A1
20100316129 Zhao et al. Dec 2010 A1
20100329361 Choi et al. Dec 2010 A1
20100329362 Choi et al. Dec 2010 A1
20110058055 Lindahl et al. Mar 2011 A1
20110128350 Oliver et al. Jun 2011 A1
20110142306 Nair Jun 2011 A1
20110200100 Kim et al. Aug 2011 A1
20110235706 Demircin et al. Sep 2011 A1
20110305274 Fu et al. Dec 2011 A1
20110310089 Petersen Dec 2011 A1
20120082232 Rojals et al. Apr 2012 A1
20120098926 Kweon Apr 2012 A1
20120192115 Falchuk et al. Jul 2012 A1
20120219055 He et al. Aug 2012 A1
20120260217 Celebisoy Oct 2012 A1
20120263231 Zhou Oct 2012 A1
20120307746 Hammerschmidt et al. Dec 2012 A1
20120320984 Zhou Dec 2012 A1
20120327172 El-Saban et al. Dec 2012 A1
20130003858 Sze Jan 2013 A1
20130016783 Kim et al. Jan 2013 A1
20130044108 Tanaka et al. Feb 2013 A1
20130051452 Li et al. Feb 2013 A1
20130088491 Hobbs et al. Apr 2013 A1
20130094568 Hsu et al. Apr 2013 A1
20130101025 Van der Auwera et al. Apr 2013 A1
20130101042 Sugio et al. Apr 2013 A1
20130111399 Rose May 2013 A1
20130124156 Wolper et al. May 2013 A1
20130127844 Koeppel et al. May 2013 A1
20130128986 Tsai et al. May 2013 A1
20130136174 Xu et al. May 2013 A1
20130170726 Kaufman et al. Jul 2013 A1
20130182775 Wang et al. Jul 2013 A1
20130195183 Zhai et al. Aug 2013 A1
20130208787 Zheng et al. Aug 2013 A1
20130219012 Suresh et al. Aug 2013 A1
20130251028 Au et al. Sep 2013 A1
20130301706 Qiu et al. Nov 2013 A1
20140002439 Lynch Jan 2014 A1
20140003450 Bentley et al. Jan 2014 A1
20140010293 Srinivasan et al. Jan 2014 A1
20140078263 Kim Mar 2014 A1
20140082054 Denoual et al. Mar 2014 A1
20140089326 Lin et al. Mar 2014 A1
20140140401 Lee et al. May 2014 A1
20140153636 Esenlik et al. Jun 2014 A1
20140169469 Bernal et al. Jun 2014 A1
20140176542 Shohara et al. Jun 2014 A1
20140218356 Distler et al. Aug 2014 A1
20140254949 Chou Sep 2014 A1
20140267235 DeJohn et al. Sep 2014 A1
20140269899 Park et al. Sep 2014 A1
20140286410 Zenkich Sep 2014 A1
20140355667 Lei et al. Dec 2014 A1
20140368669 Talvala et al. Dec 2014 A1
20140376634 Guo et al. Dec 2014 A1
20150003525 Sasai et al. Jan 2015 A1
20150003725 Wan Jan 2015 A1
20150016522 Sato Jan 2015 A1
20150029294 Lin et al. Jan 2015 A1
20150062292 Kweon Mar 2015 A1
20150089348 Jose Mar 2015 A1
20150103884 Ramasubramonian et al. Apr 2015 A1
20150145966 Krieger et al. May 2015 A1
20150195491 Shaburov et al. Jul 2015 A1
20150195559 Chen et al. Jul 2015 A1
20150237370 Zhou et al. Aug 2015 A1
20150256839 Ueki et al. Sep 2015 A1
20150264259 Raghoebardajal et al. Sep 2015 A1
20150264386 Pang et al. Sep 2015 A1
20150264404 Hannuksela Sep 2015 A1
20150271517 Pang et al. Sep 2015 A1
20150279087 Myers et al. Oct 2015 A1
20150279121 Myers et al. Oct 2015 A1
20150304665 Hannuksela et al. Oct 2015 A1
20150321103 Barnett et al. Nov 2015 A1
20150326865 Yin et al. Nov 2015 A1
20150339853 Wolper et al. Nov 2015 A1
20150341552 Chen et al. Nov 2015 A1
20150346812 Cole et al. Dec 2015 A1
20150350673 Hu et al. Dec 2015 A1
20150351477 Stahl et al. Dec 2015 A1
20150358612 Sandrew et al. Dec 2015 A1
20150358613 Sandrew et al. Dec 2015 A1
20150358633 Choi et al. Dec 2015 A1
20150373334 Rapaka et al. Dec 2015 A1
20150373372 He et al. Dec 2015 A1
20160012855 Krishnan Jan 2016 A1
20160014422 Su et al. Jan 2016 A1
20160027187 Wang et al. Jan 2016 A1
20160050369 Takenaka et al. Feb 2016 A1
20160080753 Oh Mar 2016 A1
20160112489 Adams et al. Apr 2016 A1
20160112704 Grange et al. Apr 2016 A1
20160142697 Budagavi May 2016 A1
20160150231 Schulze May 2016 A1
20160165257 Chen et al. Jun 2016 A1
20160227214 Rapaka et al. Aug 2016 A1
20160234438 Satoh Aug 2016 A1
20160241836 Cole et al. Aug 2016 A1
20160269632 Morioka Sep 2016 A1
20160277746 Fu et al. Sep 2016 A1
20160286119 Rondinelli Sep 2016 A1
20160350585 Lin et al. Dec 2016 A1
20160350592 Ma et al. Dec 2016 A1
20160352791 Adams et al. Dec 2016 A1
20160352971 Adams et al. Dec 2016 A1
20160353089 Gallup et al. Dec 2016 A1
20160353146 Weaver et al. Dec 2016 A1
20160360104 Zhang et al. Dec 2016 A1
20160360180 Cole et al. Dec 2016 A1
20170013279 Puri et al. Jan 2017 A1
20170026659 Lin Jan 2017 A1
20170038942 Rosenfeld et al. Feb 2017 A1
20170054907 Nishihara et al. Feb 2017 A1
20170064199 Lee et al. Mar 2017 A1
20170078447 Hancock et al. Mar 2017 A1
20170085892 Liu et al. Mar 2017 A1
20170094184 Gao et al. Mar 2017 A1
20170104927 Mugavero et al. Apr 2017 A1
20170109930 Holzer et al. Apr 2017 A1
20170127008 Kankaanpaa et al. May 2017 A1
20170142371 Barzuza et al. May 2017 A1
20170155912 Thomas et al. Jun 2017 A1
20170180635 Hayashi et al. Jun 2017 A1
20170200255 Lin et al. Jul 2017 A1
20170200315 Lockhart Jul 2017 A1
20170214937 Lin et al. Jul 2017 A1
20170223268 Shimmoto Aug 2017 A1
20170223368 Abbas et al. Aug 2017 A1
20170228867 Baruch Aug 2017 A1
20170230668 Lin et al. Aug 2017 A1
20170236323 Lim et al. Aug 2017 A1
20170244775 Ha Aug 2017 A1
20170251208 Adsumilli et al. Aug 2017 A1
20170257644 Andersson et al. Sep 2017 A1
20170272698 Liu et al. Sep 2017 A1
20170278262 Kawamoto et al. Sep 2017 A1
20170280126 Van der Auwera Sep 2017 A1
20170287200 Forutanpour et al. Oct 2017 A1
20170287220 Khalid et al. Oct 2017 A1
20170295356 Abbas et al. Oct 2017 A1
20170301065 Adsumilli et al. Oct 2017 A1
20170301132 Dalton et al. Oct 2017 A1
20170302714 Ramsay et al. Oct 2017 A1
20170302951 Joshi et al. Oct 2017 A1
20170309143 Trani et al. Oct 2017 A1
20170322635 Yoon et al. Nov 2017 A1
20170323422 Kim et al. Nov 2017 A1
20170323423 Lin et al. Nov 2017 A1
20170332107 Abbas et al. Nov 2017 A1
20170336705 Zhou Nov 2017 A1
20170339324 Tocher et al. Nov 2017 A1
20170339341 Zhou et al. Nov 2017 A1
20170339391 Zhou et al. Nov 2017 A1
20170339392 Forutanpour Nov 2017 A1
20170339415 Wang Nov 2017 A1
20170344843 Wang Nov 2017 A1
20170353737 Lin et al. Dec 2017 A1
20170359590 Zhang et al. Dec 2017 A1
20170366808 Lin et al. Dec 2017 A1
20170374332 Yamaguchi et al. Dec 2017 A1
20170374375 Makar et al. Dec 2017 A1
20180005447 Wallner et al. Jan 2018 A1
20180005449 Wallner et al. Jan 2018 A1
20180007387 Izumi Jan 2018 A1
20180007389 Izumi Jan 2018 A1
20180018807 Lu et al. Jan 2018 A1
20180020202 Xu et al. Jan 2018 A1
20180020238 Liu et al. Jan 2018 A1
20180027178 MacMillan et al. Jan 2018 A1
20180027226 Abbas et al. Jan 2018 A1
20180027257 Izumi Jan 2018 A1
20180047208 Marin et al. Feb 2018 A1
20180048890 Kim et al. Feb 2018 A1
20180053280 Kim et al. Feb 2018 A1
20180054613 Lin et al. Feb 2018 A1
20180061002 Lee et al. Mar 2018 A1
20180063505 Lee et al. Mar 2018 A1
20180063544 Tourapis et al. Mar 2018 A1
20180075576 Liu et al. Mar 2018 A1
20180075604 Kim et al. Mar 2018 A1
20180075635 Choi et al. Mar 2018 A1
20180077451 Yip et al. Mar 2018 A1
20180084257 Abbas Mar 2018 A1
20180091812 Guo et al. Mar 2018 A1
20180098090 Lin et al. Apr 2018 A1
20180101931 Abbas et al. Apr 2018 A1
20180109810 Xu et al. Apr 2018 A1
20180130243 Kim et al. May 2018 A1
20180130264 Ebacher May 2018 A1
20180146136 Yamamoto May 2018 A1
20180146138 Jeon et al. May 2018 A1
20180152636 Yim et al. May 2018 A1
20180152663 Wozniak et al. May 2018 A1
20180160138 Park Jun 2018 A1
20180160156 Hannuksela et al. Jun 2018 A1
20180164593 Van Der Auwera et al. Jun 2018 A1
20180167613 Hannuksela et al. Jun 2018 A1
20180167634 Salmimaa et al. Jun 2018 A1
20180174619 Roy et al. Jun 2018 A1
20180176468 Wang et al. Jun 2018 A1
20180176536 Jo et al. Jun 2018 A1
20180184101 Ho Jun 2018 A1
20180184121 Kim et al. Jun 2018 A1
20180191787 Morita et al. Jul 2018 A1
20180192074 Shih et al. Jul 2018 A1
20180199029 Van Der Auwera et al. Jul 2018 A1
20180199034 Nam et al. Jul 2018 A1
20180199070 Wang Jul 2018 A1
20180218512 Chan Aug 2018 A1
20180227484 Hung et al. Aug 2018 A1
20180234700 Kim et al. Aug 2018 A1
20180240223 Yi et al. Aug 2018 A1
20180240276 He et al. Aug 2018 A1
20180242016 Lee et al. Aug 2018 A1
20180242017 Van Leuven et al. Aug 2018 A1
20180249076 Sheng et al. Aug 2018 A1
20180249163 Curcio et al. Aug 2018 A1
20180249164 Kim et al. Aug 2018 A1
20180253879 Li et al. Sep 2018 A1
20180268517 Coban et al. Sep 2018 A1
20180270417 Suitoh et al. Sep 2018 A1
20180276789 Van Der Auwera et al. Sep 2018 A1
20180276826 Van Der Auwera et al. Sep 2018 A1
20180276890 Wang Sep 2018 A1
20180288435 Boyce Oct 2018 A1
20180295282 Boyce Oct 2018 A1
20180302621 Fu et al. Oct 2018 A1
20180307398 Kim et al. Oct 2018 A1
20180315245 Patel Nov 2018 A1
20180322611 Bang et al. Nov 2018 A1
20180329482 Woo et al. Nov 2018 A1
20180332265 Hwang et al. Nov 2018 A1
20180332279 Kang Nov 2018 A1
20180343388 Matsushita Nov 2018 A1
20180349705 Kim et al. Dec 2018 A1
20180350407 Decoodt et al. Dec 2018 A1
20180352225 Guo et al. Dec 2018 A1
20180352259 Guo et al. Dec 2018 A1
20180352264 Guo et al. Dec 2018 A1
20180359487 Bang et al. Dec 2018 A1
20180374192 Kunkel et al. Dec 2018 A1
20180376126 Hannuksela Dec 2018 A1
20180376152 Wang et al. Dec 2018 A1
20190004414 Kim et al. Jan 2019 A1
20190007669 Kim et al. Jan 2019 A1
20190007679 Coban et al. Jan 2019 A1
20190007684 Van Der Auwera et al. Jan 2019 A1
20190012766 Yoshimi Jan 2019 A1
20190014304 Curcio et al. Jan 2019 A1
20190026956 Gausebeck et al. Jan 2019 A1
20190028642 Fujita et al. Jan 2019 A1
20190045212 Rose et al. Feb 2019 A1
20190057487 Cheng Feb 2019 A1
20190057496 Ogawa et al. Feb 2019 A1
20190082184 Hannuksela Mar 2019 A1
20190104315 Guo et al. Apr 2019 A1
20190108611 Izumi Apr 2019 A1
20190132521 Fujita et al. May 2019 A1
20190132594 Chung et al. May 2019 A1
20190200016 Jang et al. Jun 2019 A1
20190215512 Lee et al. Jul 2019 A1
20190215532 He et al. Jul 2019 A1
20190230377 Ma et al. Jul 2019 A1
20190236990 Song et al. Aug 2019 A1
20190246141 Kim et al. Aug 2019 A1
20190253622 Van der Auwera et al. Aug 2019 A1
20190268594 Lim et al. Aug 2019 A1
20190273929 Ma et al. Sep 2019 A1
20190273949 Kim et al. Sep 2019 A1
20190281290 Lee et al. Sep 2019 A1
20190289324 Budagavi Sep 2019 A1
20190289331 Byun Sep 2019 A1
20190306515 Shima Oct 2019 A1
20200029077 Lee et al. Jan 2020 A1
20200036976 Kanoh et al. Jan 2020 A1
20200074687 Lin et al. Mar 2020 A1
20200077092 Lin et al. Mar 2020 A1
Foreign Referenced Citations (7)
Number Date Country
2077525 Jul 2009 EP
WO 2012044709 Apr 2012 WO
WO 2015138979 Sep 2015 WO
WO 2016076680 May 2016 WO
WO 2016140060 Sep 2016 WO
WO 2017125030 Jul 2017 WO
WO 2017127816 Jul 2017 WO
Non-Patent Literature Citations (18)
Entry
Choi et al.; “Text of ISO/IEC 23000-20 CD Omnidirectional Media Application Format”; Coding of Moving Pictures and Audio; ISO/IEC JTC1/SC29/WG11 N16636; Jan. 2017; 51 pages.
He et al.; “AHG8: InterDigital's projection format conversion tool”; Joint Video Exploration Team (JVET) of ITU-T SG 16 WP3 and ISO/IEC JTC 1/SC 29/WG 11 4thmeeting; Oct. 2016; 18 pages.
Kammachi et al.; “AHG8: Test results for viewport-dependent pyramid, cube map, and equirectangular panorama schemes”; JVET-D00078; Oct. 2016; 7 pages.
Yip et al.; “Technologies under Considerations for ISO/IEC 23000-20 Omnidirectional Media Application Format”; ISO/IEC JTC1/SC29/WG11 MPEG2017/W16637; Jan. 2017; 50 pages.
International Patent Application No. PCT/US2018/018246; Int'l Search Report and the Written Opinion; dated Apr. 20, 2018; 15 pages.
Tosic et al.; “Multiresolution Motion Estimation for Omnidirectional Images”; IEEE 13thEuropean Signal Processing Conference; Sep. 2005; 4 pages.
He et al.; “AHG8: Geometry padding for 360 video coding”; Joint Video Exploration Team (JVET); Document: JVET-D0075; Oct. 2016; 10 pages.
Vishwanath et al.; “Rotational Motion Model for Temporal Prediction in 360 Video Coding”; IEEE 19thInt'l Workshop on Multimedia Signal Processing; Oct. 2017; 6 pages.
Sauer et al.; “Improved Motion Compensation for 360 Video Projected to Polytopes” Proceedings of the IEEE Int'l Conf. On Multimedia and Expo; Jul. 2017; pp. 61-66.
International Patent Application No. PCT/US2018/017124; Int'l Search Report and the Written Opinion; dated Apr. 30, 2018; 19 pages.
Boyce et al.; “Common Test Conditions and Evaluation Procedures for 360 degree Video Coding”; Joint Video Exploration Team; ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11; Doc. JVET-D1030; Oct. 2016; 6 pages.
390 Li et al.; “Projection Based Advanced Motion Model for Cubic Mapping for 360-Degree Video”; Cornell University Library; 2017; 5 pages.
Zheng et al.; “Adaptive Selection of Motion Models for Panoramic Video Coding”; IEEE Int'l Conf. Multimedia and Expo; Jul. 2007; pp. 1319-1322.
He et al.; “AHG8: Algorithm description of InterDigital's projection format conversion tool (PCT360)”; Joint Video Exploration Team; ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11; Doc. JVET-D0090; Oct. 2016; 6 pages.
International Patent Application No. PCT/US2017/051542; Int'l Search Report and the Written Opinion; dated Dec. 7, 2017; 17 pages.
International Patent Application No. PCT/US2017/051542; Int'l Preliminary Report on Patentability; dated Jul. 4, 2019; 10 pages.
International Patent Application No. PCT/US2018/018246; Int'l Preliminary Report on Patentability; dated Sep. 6, 2019; 8 pages.
International Patent Application No. PCT/US2018/017124; Int'l Preliminary Report on Patentability; dated Aug. 29, 2019; 12 pages.
Related Publications (1)
Number Date Country
20190004414 A1 Jan 2019 US