Various examples relate to the field of implantable medical devices, and in an example, but not by way of limitation, to the adaptive sampling of heart sounds by implantable medical devices.
The heart is at the center of the circulatory system. It includes four chambers—two atria and two ventricles. The right atrium receives deoxygenated blood from the body, pumps it into the right ventricle, and the right ventricle pumps the blood to the lungs to be re-oxygenated. The re-oxygenated blood returns to the left atrium, it is pumped into the left ventricle, and then the blood is pumped by the left ventricle throughout the body to meet the hemodynamic needs of the body.
Heart sounds are associated with mechanical vibrations from activity of a patient's heart and the flow of blood through the heart. Heart sounds recur with each cardiac cycle and are separated and classified according to the activity associated with the vibration. The first heart sound (S1) is the vibrational sound made during closure of the mitral and tricuspid valves. The second heart sound (S2) is made by the closure of the aortic and pulmonary valves. The third heart sound (S3) and fourth heart sound (S4) are often related to abnormal filling pressures of the left ventricle during diastole. Heart sounds are useful indications of proper or improper functioning of a patient's heart.
Implantable medical devices (IMDs) are devices designed to be implanted into a patient. Some examples of these devices include cardiac function management (CFM) devices such as implantable pacemakers, implantable cardioverter defibrillators (ICDs), cardiac resynchronization devices, and devices that include a combination of such capabilities. The devices are typically used to treat patients using electrical therapy or to aid a physician or caregiver in patient diagnosis through internal monitoring of a patient's condition, or both. The devices may include or be connected to electrodes in communication with circuitry to monitor electrical heart activity within a patient, and often include one or more other sensors to internally monitor other patient parameters. Other examples of implantable medical devices include implantable diagnostic devices, implantable insulin pumps, devices implanted to administer drugs to a patient, or implantable devices with neural stimulation capability.
An implantable medical device can be used to adaptively sample heart sounds. The heart sounds can be compared to independently specifiable thresholds, such as to trigger an alert or responsive therapy, or to display one or more trends. The heart sound information can also be combined with one or more other parameters or patient reported symptoms to generate a status indicator or to trigger an alarm or responsive therapy or to display one or more trends. The alert can notify a patient or a caregiver, such as via remote monitoring. The status indicators, alarms, therapy, display, or trend may be used, for example, to manage congestive heart failure (CHF).
In Example 1, a system includes an implantable medical device. The implantable medical device includes a control circuit; a parameter circuit, coupled to the control circuit, the parameter circuit including one or more parameters; a sensor, coupled to the control circuit, the sensor configured to sense energy and produce a signal indicative of heart sounds; a heart sound detector, coupled to the control circuit, the heart sound detector adapted to detect heart sounds within the signal; and a triggering circuit, coupled to the control circuit, the triggering circuit configured to transmit a signal to the control circuit upon the occurrence of a triggering event. The sensor senses energy or the heart sound detector detects heart sounds as a function of the one or more parameters. The triggering circuit signal causes a change in one or more of the parameters.
In Example 2, the sensor of Example 1 is optionally an acoustic sensor that senses acoustic energy and produces an acoustic signal.
In Example 3, the parameters of Examples 1-2 optionally include one or more of a sampling frequency, a data acquisition separation interval (also referred to as a data acquisition frequency), a data acquisition interval, one or more characteristics of an ensemble average, a bit resolution, a noise blanking interval, and a retry interval.
In Example 4, the triggering events of Examples 1-3 are optionally a function of one or more of a heart rate, a cardiac cycle phase, a respiration rate, a respiration phase, a posture, a time of day, a noise level, an activity level, a patient risk factor, a sleep state, a patient input, a care giver input, a body weight, a change in health status, a predetermined interval, a result of a prior data acquisition, a pacing status, a sensing status, a pressure level, an impedance, a heart rate variability, a heart sound amplitude, a heart sound interval, a heart sound duration, and a clinic visit.
In Example 5, the patient risk factor of Examples 1-4 optionally includes one or more of a heart failure decompensation risk factor, an increase in an occurrence or intensity of one or more of an S3 heart sound and an S4 heart sound, and an occurrence or change in a splitting of an S1 heart sound or an occurrence or change in a splitting of an S2 heart sound.
In Example 6, the triggering circuit of Examples 1-5 optionally transmits the signal as a function of one or more of an onset, a termination, an increase, a decrease, a presence, an absence, a probability of occurrence, a probability of frequency, and a rate of change of the one or more triggering events.
In Example 7, the systems of Examples 1-6 optionally include a telemetry circuit coupled to the control circuit, and an external device wirelessly coupled to the telemetry circuit. The telemetry circuit optionally transmits heart sound data to the external device as a function of the change in one or more of the parameters.
In Example 8, the systems of Examples 1-7 optionally include an external data base coupled to the external device, the external data base for receiving and storing the heart sound data.
In Example 9, the systems of Examples 1-8 optionally include a telemetry circuit coupled to the control circuit and a second implantable medical. The telemetry circuit optionally communicatively couples the first and second implantable medical devices.
In Example 10, the systems of Examples 1-9 optionally include a therapy circuit, wherein the therapy circuit is configured to provide therapy to a patient.
In Example 11, the therapy circuit of Examples 1-10 is configured to provide one or more of pacing, defibrillation, cardioversion, cardiac resynchronization, and neural stimulation therapy.
In Example 12, a process includes sensing heart sounds with a first implantable medical device according to one or more parameters; altering one or more of the parameters as a function of one or more triggering events; and sensing heart sounds with the implantable medical device according to at least the one or more altered parameters.
In Example 13, the parameters of Example 12 optionally include altering one or more of a sampling frequency, a data acquisition separation interval, a data acquisition interval, one or more characteristics of an ensemble average, a bit resolution, a noise blanking interval, and a retry interval. The data acquisition separation, data acquisition, and retry intervals may be adapted according to other triggering parameters such as a detected change in posture.
In Example 14, the characteristics of the ensemble average of Examples 12-13 optionally include one or more of using only sensed heart beats, using only paced heart beats, selecting non-consecutive heart beats, the number of heart beats, and a threshold amplitude for heart beats.
In Example 15, the retry interval of Examples 12-14 is optionally a function of a result of a previous data acquisition.
In Example 16, the alteration of the sampling frequency of Examples 12-15 is optionally a function of a frequency characteristic of a particular heart sound to be sensed.
In Example 17, the data sampling interval of Examples 12-16 is optionally a function of a time period during a cardiac cycle when a particular heart sound is likely to be present.
In Example 18, the triggering events of Examples 12-17 are optionally a function of one or more of a heart rate, a cardiac cycle phase, a respiration rate, a respiration phase, a posture, a time of day, a noise level, an activity level, a patient risk factor, a sleep state, a patient input, a care giver input, a body weight, a patient health status, a predetermined interval, a result of a prior data acquisition, a pacing status, a sensing status, a pressure level, an impedance, and a clinic visit.
In Example 19, the patient risk factor of Examples 12-18 optionally include one or more of a heart failure decompensation risk factor, an increase in an occurrence or intensity of one or more of an S3 heart sound and an S4 heart sound, and an occurrence or change in a splitting of an S1 heart sound or an S2 heart sound.
In Example 20, the alteration of the one or more parameters as a function of the one or more triggering events of Examples 12-19 optionally includes using one or more of an onset, a termination, an increase, a decrease, a presence, an absence, and a rate of change of the one or more trigger events.
In Example 21, the processes of Examples 12-20 optionally include returning to the sensing of heart sounds according to a previous set of parameters upon a change in one or more of the triggering events.
In Example 22, the processes of Examples 12-21 optionally include one or more of terminating, initiating, increasing, and decreasing heart sound sampling or processing in response to the one or more triggering events.
In Example 23, the processes of Examples 12-22 optionally include comprising changing a processing location between the first implantable device and one or more of a second implantable device and an external device as a function of one or more of the triggering events.
In Example 24, the processes of Examples 12-23 optionally include telemetering heart sound data to one or more of another implantable device, an external device, and an external database as a function of one or more of the triggering events.
In Example 25, the processes of Examples 12-24 optionally include synchronizing the sensing of the heart sounds with a physiological event as a function of one or more of the triggering events.
In Example 26, the physiological event of Examples 12-25 optionally includes one or more of respiration, posture, sleep state, circadian rhythm, paced heart beats, sensed heart beats, and heart rate.
This overview is intended to provide an overview of the subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the disclosure. The detailed description is included to provide further information about the subject matter of the present patent application.
In the drawings, which are not necessarily drawn to scale, like numerals describe similar components throughout the several views. The drawings illustrate generally, by way of example, but not by way of limitation, various examples discussed in the present document.
The following detailed description refers to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific examples in which the disclosure may be practiced. These examples, which are sometimes referred to as examples, are discussed in sufficient detail to enable those skilled in the art to practice the teachings of the disclosure, and such examples may be combined, or other examples may be utilized, and structural, logical and electrical changes may be made without departing from the scope of the present disclosure. The following detailed description provides examples, and the scope of the present disclosure is defined by the appended claims and their equivalents.
It should be noted that references to “an”, “one”, or “various” examples in this disclosure are not necessarily to the same example, and such references contemplate more than one example.
This document describes adaptive sampling of heart sounds. In this disclosure, the term heart sound is meant to include any sound or vibration generated by the heart, and/or blood flowing through the heart, including, but not limited to one or more of an S1 heart sound, an S2 heart sound, an S3 heart sound, an S4 heart sound, a regurgitant heart murmur, a stenotic heart murmur sound, and a coronary vascular blood turbulence sound. The term cardiogenic sounds is sometimes used to generically refer to heart sounds.
In this example, a physiological sensor 250 is coupled to the control circuit 210, such as via a wired or wireless connection. Examples of the physiological sensor 250 may include a heart rate sensing circuit, a respiration rate sensing circuit, a respiration phase sensing circuit, a posture sensing circuit, a sleep detector circuit, a blood pressure sensing circuit, and/or a cardiac impedance sensing circuit. One or more of the physiological sensors 250 may be part of the implantable medical device 110. For example, if the implantable medical device includes a cardiac pacer, then the pacer may also include a heart rate sensing circuit.
The one or more parameters stored within the parameter circuit 215 may include one or more parameters that control the manner in which heart sounds are obtained by the device 110. Examples of such parameters may include a sampling frequency, a data acquisition separation interval, a data acquisition interval, one or more characteristics of an ensemble average, a bit resolution, a noise blanking interval, and a retry interval. In certain examples, the sampling frequency parameter controls the frequency (i.e., samples per second) at which data points are sampled in an analog signal waveform including heart sound information in order to generate a sampled or digital signal of the waveform. The data acquisition separation interval generally relates to the time period separating different data acquisition periods (e.g., sampling a buffer of heart sound data every 15 minutes), or how often a buffer of multiple heart beats is updated with newly acquired data. The data acquisition interval is generally the actual time period during which a buffer of heart sounds is acquired. For example, the device 110 may sample a set of consecutive heart sounds for 30 seconds. The data acquisition interval may also be referred to as the acquisition buffer length. The bit resolution generally refers to the number of bits representing each sample point. In an example, the bit resolution is 8 bits. In another example, the bit resolution is 16 bits. The noise blanking interval generally refers to a time period during which heart sound data acquisition does not occur (e.g., because it is automatically inhibited). For example, heart sound data acquisition may be automatically inhibited during time periods of increased patient activity, which could result in higher noise interfering with the heart sound data acquisition. The noise blanking interval may also refer to a particular segment of the cardiac cycle during which the device inhibits or ignores acquired heart sound data (e.g., the first 50 ms of the cardiac cycle), such as to ignore periods of time during which useful heart sound information is not likely to be present. The retry interval generally relates to the amount of time that the device will wait before it attempts to acquire more heart sound data after an unsuccessful attempt at acquiring heart sound data (e.g., because of a noisy signal). The control circuit 210 and/or the triggering circuit 230 uses one or more of these parameters to control operation of one or more of the acoustic sensor 220, the heart sound detector 225, the telemetry circuit 240, and the ensemble averaging circuit 245, such as in the acquisition or processing of heart sound data.
One or more of these heart sound parameters that determine the manner of the acquisition or processing of heart sounds, such as by the implantable device 110, may be altered by one or more triggering events, yielding adaptive heart sound acquisition or processing. In various examples, such triggering events may be determined as a function of one or more of a heart rate, a cardiac phase, a respiration rate, a respiration phase, a posture, a time of day, a noise level, an activity level, a patient risk factor, a sleep state, a patient input, a physician input, a body weight, a change in health status, a predetermined interval, a result of a prior data acquisition, a pacing status, a sensing status, a pressure level, an impedance, or a clinic visit.
The device 110 can be configured to adaptively change any aspect of the manner in which it acquires heart sound information (e.g., the sampling frequency, the sampling interval, etc.) as a function of any one or more of the triggering events. This can be based on either a change in the triggering event parameter (e.g., an increase in the heart rate), the presence of a particular triggering event (e.g., the body is in the prone or supine positions, triggering heart sound data acquisition), the triggering event being below or above a threshold (e.g., the level of noise in the system or environment is below a certain level), and/or a triggering event parameter that is within a certain range (e.g., acquire heart sound information between 12:00 p.m. and 4 p.m.). Therefore, the triggering event may include one or more of an onset, a termination, an increase, a decrease, a presence, an absence, and a rate of change of the one or more triggering event parameters.
In another example, the automatic triggering event may include an identified patient risk factor, such as one or more of a heart failure decompensation risk factor, an increase in an occurrence or intensity of one or more of an S3 heart sound or an S4 heart sound, an occurrence or change in a time-splitting of an S1 heart sound or an S2 heart sound, and a population risk stratifier. The heart failure decompensation risk factor can include one or more of, for example, an increased respiration rate, a decreased thoracic impedance, and an increased resting heart rate. Similarly, an onset or an increase in the intensity of an S3 or an S4 heart sound are risk factors, and the manner in which heart sound information is obtained by a device may be altered as a function of the onset or increase in the intensity of the S3 and/or S4 heart sounds. Similarly, an occurrence or change in a splitting of an S1 heart sound or an occurrence or a change in a splitting of an S2 heart sound are risk factors, and heart sound data acquisition may be adapted accordingly. Also, if there is a change in the patient's general health or metabolic need status (indicated by, for example, an increase in the patient's resting heart rate), then the current data acquisition interval may not be at a sufficient rate, and the data acquisition interval may be shortened, so that more buffers are collected during a particular time period. Similarly, the data sampling interval may be lengthened, so that more heart beats are collected in a buffer. Alternatively, if the patient's general health status is improving, the sampling frequency may be decreased.
At 410, heart beats that are sensed during a particular data sampling interval are ensemble averaged before further analysis is performed on the data. This conditions the signal by removing noise and compressing the data. An ensemble average for a buffer of heart sound signals may be generated or represented by a summation of the accelerometer (or other acoustic sensing device) outputs relative to a reference point such as a V-event marker. Using an ensemble average in the adaptive sampling of heart sounds also permits the system and method to select certain cardiac cycles in a buffer for retention, processing, and storage, and permits discarding of other cardiac cycles in a buffer.
An example of a method of selecting particular cardiac cycles, or heart beats, for an ensemble average is illustrated in
Additionally or alternatively, the number of beats that may be selected to construct an ensemble average may be altered according to the amount of noise detected in the system and the time allowed for acquisition of the heart sounds. For example, if the noise increases, it may be necessary to increase the number of beats that are included in each ensemble average. As another example, if the use of the heart sound data by the device 110 requires accelerated processing, the device may be configured to reduce the number of heart beats sampled for an ensemble average, thereby reducing the time required to generate the ensemble average.
In a particular example of calculating an ensemble average, only sensed heart beats are used. In another example, only paced heart beats are used. In another example, a certain specified number of cardiac beats must be present in the data buffer to calculate the ensemble average. If that minimum number of beats is present in the buffer, the first beats in the buffer may be selected for the calculation of the ensemble average, and the rest of the beats in the buffer may be discarded. In another example, there is a threshold condition imposed upon the heart sound amplitude in order for a heart beat to be considered for the ensemble average. Any or all of these ensemble averaging factors may be altered by one or more of the triggering events discussed above.
At 415, the sampling frequency is altered as a function of a frequency characteristic of a particular heart sound to be sensed. For example, if the desire is to sense the S3 heart sound with the implantable device, then the sampling frequency may be set to 10-30 Hz. This may either be done manually by a health care provider, or done by the device 110 in response to an occurrence or an increase in the S3 heart sound. In another embodiment, the sampling frequency for S3 may be around 50 Hz for Nyquist purposes. By comparison, if it is desired to sample the S1 heart sound, a sampling frequency of 20-50 Hz may be more appropriate (or up to 100 Hz for Nyquist purposes). Moreover, depending on the condition of the patient, the device 110 may adaptively alter between the sampling frequencies of approximately 10-30 Hz and 20-50 Hz, or other frequencies that are associated with other heart sounds.
At 420, heart sounds are sensed during a specific time when a particular heart sound is likely to be present. For example, if it is desired to sense the S3 heart sound, then the sampling may be attempted at approximately 500-600 ms into the cardiac cycle. The sampling may be adjusted based on the heart rate. At 425, the heart sounds that are sensed include one or more of an S1 heart sound, an S2 heart sound, an S3 heart sound, an S4 heart sound, a regurgitant heart murmur, a stenotic heart murmur sound, and a coronary vascular blood turbulence sound.
At 430, the device uses one or more triggering events that are a function of one or more of a heart rate, a cardiac cycle phase, a respiration rate, a respiration phase, a posture, a time of day, a noise level, an activity level, a patient risk factor, a sleep state, a patient input, a physician input, a body weight, a patient health status, a predetermined interval, a result of a prior data acquisition, a pacing status, a sensing status, a pressure level, an impedance, and a clinic visit.
At 435, the device 110 uses as patient risk factors one or more of a heart failure decompensation factor, an increase in an occurrence or intensity of one or more of an S3 heart sound and an S4 heart sound, and an occurrence or change in a splitting of an S1 heart sound or an occurrence or change in an S2 heart sound.
At 440, the device, in altering of the one or more parameters as a function of the one or more triggering events includes using one or more of an onset, a termination, an increase, a decrease, a presence, an absence, and a rate of change of the one or more trigger events.
At 445, the process changes a processing location between the implantable device and an external device as a function of one or more of the triggering events. Similarly, at 450, the process telemeters heart sound data to one or more of an external device and an external database as a function of one or more of the triggering events. At 453, the process synchronizes the sensing of the heart sounds with a physiological event as a function of one or more of the triggering events. At 455, the physiological event includes one or more of respiration, posture, sleep state, circadian rhythm, paced heart beats, sensed heart beats, and heart rate. At 460, the device returns to sensing heart sounds according to a previous set of parameters upon a change in one or more of the triggering events.
In the foregoing detailed description, various features are grouped together in one or more examples or examples for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed examples of the invention require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed example. Thus the following claims are hereby incorporated into the detailed description of examples of the invention, with each claim standing on its own as a separate example. It is understood that the above description is intended to be illustrative, and not restrictive. It is intended to cover all alternatives, modifications and equivalents as may be included within the scope of the invention as defined in the appended claims. Many other examples will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein,” respectively. Moreover, the terms “first,” “second,” and “third,” etc., are used merely as labels, and are not intended to impose numerical requirements on their objects.
As used in this disclosure, the term “circuit” is broadly meant to refer to hardware, software, and a combination of hardware and software. That is, a particular function may be implemented in specialized circuits, in software executing on general processor circuits, and/or a combination of specialized circuits, generalized circuits, and software.
The abstract is provided to comply with 37 C.F.R. 1.72(b) to allow a reader to quickly ascertain the nature and gist of the technical disclosure. The Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
This patent application is a divisional of U.S. patent application Ser. No. 11/564,637, now issued as U.S. Pat. No. 8,096,954, filed Nov. 29, 2006, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4094308 | Cormier | Jun 1978 | A |
4220160 | Kimball et al. | Sep 1980 | A |
4289141 | Cormier | Sep 1981 | A |
4428380 | Wong et al. | Jan 1984 | A |
4446872 | Marsoner et al. | May 1984 | A |
4548204 | Groch et al. | Oct 1985 | A |
4586514 | Schlager et al. | May 1986 | A |
4628939 | Little et al. | Dec 1986 | A |
4649930 | Groch et al. | Mar 1987 | A |
4702253 | Nappholz et al. | Oct 1987 | A |
4763646 | Lekholm | Aug 1988 | A |
4773401 | Citak et al. | Sep 1988 | A |
4796639 | Snow et al. | Jan 1989 | A |
4905706 | Duff et al. | Mar 1990 | A |
4915113 | Holman | Apr 1990 | A |
4967760 | Bennett et al. | Nov 1990 | A |
4981139 | Pfohl | Jan 1991 | A |
4989611 | Zanetti et al. | Feb 1991 | A |
5010889 | Bredesen et al. | Apr 1991 | A |
5012815 | Bennett, Jr. et al. | May 1991 | A |
5025809 | Johnson et al. | Jun 1991 | A |
5159932 | Zanetti et al. | Nov 1992 | A |
5179947 | Meyerson et al. | Jan 1993 | A |
5190035 | Salo et al. | Mar 1993 | A |
5218969 | Bredesen et al. | Jun 1993 | A |
5301679 | Taylor | Apr 1994 | A |
5305745 | Zacouto | Apr 1994 | A |
5337752 | Reeves | Aug 1994 | A |
5365932 | Greenhut | Nov 1994 | A |
5496361 | Moberg et al. | Mar 1996 | A |
5540727 | Tockman et al. | Jul 1996 | A |
5544661 | Davis et al. | Aug 1996 | A |
5554177 | Kieval et al. | Sep 1996 | A |
5630835 | Brownlee | May 1997 | A |
5674256 | Carlson | Oct 1997 | A |
5685317 | Sjostrom | Nov 1997 | A |
5687738 | Shapiro et al. | Nov 1997 | A |
5697375 | Hickey | Dec 1997 | A |
5700283 | Salo | Dec 1997 | A |
5792195 | Carlson et al. | Aug 1998 | A |
5836987 | Baumann et al. | Nov 1998 | A |
5860933 | Don Michael | Jan 1999 | A |
5911738 | Sikorski et al. | Jun 1999 | A |
5935081 | Kadhiresan | Aug 1999 | A |
5957866 | Shapiro et al. | Sep 1999 | A |
5974340 | Kadhiresan | Oct 1999 | A |
5991661 | Park et al. | Nov 1999 | A |
6002777 | Grasfield et al. | Dec 1999 | A |
6022963 | McGall et al. | Feb 2000 | A |
6044298 | Salo et al. | Mar 2000 | A |
6044299 | Nilsson | Mar 2000 | A |
6045513 | Stone et al. | Apr 2000 | A |
6053872 | Mohler | Apr 2000 | A |
6058329 | Salo et al. | May 2000 | A |
6064910 | Andersson et al. | May 2000 | A |
6076015 | Hartley et al. | Jun 2000 | A |
6077227 | Miesel | Jun 2000 | A |
6144880 | Ding et al. | Nov 2000 | A |
6152884 | Bjorgaas | Nov 2000 | A |
6161042 | Hartley et al. | Dec 2000 | A |
6193668 | Chassaing et al. | Feb 2001 | B1 |
6208900 | Ecker et al. | Mar 2001 | B1 |
6243606 | Mann et al. | Jun 2001 | B1 |
6264611 | Ishikawa et al. | Jul 2001 | B1 |
6269396 | Shah et al. | Jul 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6298269 | Sweeney | Oct 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6327622 | Jindal et al. | Dec 2001 | B1 |
6351673 | Ding et al. | Feb 2002 | B1 |
6360127 | Ding et al. | Mar 2002 | B1 |
6366811 | Carlson | Apr 2002 | B1 |
6368283 | Xu et al. | Apr 2002 | B1 |
6409675 | Turcott | Jun 2002 | B1 |
6411840 | Bardy | Jun 2002 | B1 |
6415033 | Halleck et al. | Jul 2002 | B1 |
6440082 | Joo et al. | Aug 2002 | B1 |
6459929 | Hopper et al. | Oct 2002 | B1 |
6463326 | Hartley et al. | Oct 2002 | B1 |
6477406 | Turcott | Nov 2002 | B1 |
6478746 | Chassaing et al. | Nov 2002 | B2 |
6480733 | Turcott | Nov 2002 | B1 |
6491639 | Turcott | Dec 2002 | B1 |
6520924 | Lee | Feb 2003 | B2 |
6527729 | Turcott | Mar 2003 | B1 |
6542775 | Ding et al. | Apr 2003 | B2 |
6575916 | Halleck et al. | Jun 2003 | B2 |
6626842 | Oka | Sep 2003 | B2 |
6629937 | Watrous | Oct 2003 | B2 |
6643548 | Mai et al. | Nov 2003 | B1 |
6643584 | Ikeuchi et al. | Nov 2003 | B1 |
6650940 | Zhu et al. | Nov 2003 | B1 |
6665564 | Lincoln et al. | Dec 2003 | B2 |
6666826 | Salo et al. | Dec 2003 | B2 |
6684103 | Ding et al. | Jan 2004 | B2 |
6733464 | Olbrich et al. | May 2004 | B2 |
6741886 | Yonce | May 2004 | B2 |
6792308 | Corbucci | Sep 2004 | B2 |
6795732 | Stadler et al. | Sep 2004 | B2 |
6810287 | Zhu et al. | Oct 2004 | B2 |
6824519 | Narimatsu et al. | Nov 2004 | B2 |
6830548 | Bonnet et al. | Dec 2004 | B2 |
6845263 | Kawaguchi | Jan 2005 | B2 |
6868346 | Larson et al. | Mar 2005 | B2 |
6942622 | Turcott | Sep 2005 | B1 |
6949075 | Hatlesad et al. | Sep 2005 | B2 |
6999816 | Van | Feb 2006 | B2 |
7052466 | Scheiner et al. | May 2006 | B2 |
7096060 | Arand et al. | Aug 2006 | B2 |
7110817 | Yu et al. | Sep 2006 | B2 |
7115096 | Siejko et al. | Oct 2006 | B2 |
7123962 | Siejko et al. | Oct 2006 | B2 |
7139609 | Min et al. | Nov 2006 | B1 |
7158830 | Yu et al. | Jan 2007 | B2 |
7174203 | Arand et al. | Feb 2007 | B2 |
7209786 | Brockway et al. | Apr 2007 | B2 |
7226422 | Hatlestsad et al. | Jun 2007 | B2 |
7269458 | Kadhiresan et al. | Sep 2007 | B2 |
7387610 | Stahmann et al. | Jun 2008 | B2 |
7400928 | Hatlestsad | Jul 2008 | B2 |
7424321 | Wariar et al. | Sep 2008 | B2 |
7431699 | Siejko et al. | Oct 2008 | B2 |
7480528 | Brockway et al. | Jan 2009 | B2 |
7582061 | Li et al. | Sep 2009 | B2 |
7585279 | Carlson et al. | Sep 2009 | B2 |
7713213 | Siejko et al. | May 2010 | B2 |
7736319 | Patangay et al. | Jun 2010 | B2 |
7780606 | Carlson et al. | Aug 2010 | B2 |
7853327 | Patangay et al. | Dec 2010 | B2 |
8096954 | Stahmann et al. | Jan 2012 | B2 |
8332034 | Patangay et al. | Dec 2012 | B2 |
9049981 | Patangay et al. | Jun 2015 | B2 |
9364193 | Patangay et al. | Jun 2016 | B2 |
20020001390 | Kawaguchi | Jan 2002 | A1 |
20020035337 | Oka | Mar 2002 | A1 |
20020072684 | Stearns | Jun 2002 | A1 |
20020082645 | Sweeney | Jun 2002 | A1 |
20020107450 | Ogura | Aug 2002 | A1 |
20020128563 | Carlson et al. | Sep 2002 | A1 |
20020147401 | Oka | Oct 2002 | A1 |
20020151812 | Scheiner | Oct 2002 | A1 |
20020151938 | Corbucci | Oct 2002 | A1 |
20030055352 | Hayek et al. | Mar 2003 | A1 |
20030055461 | Girouard et al. | Mar 2003 | A1 |
20030069608 | Sweeney | Apr 2003 | A1 |
20030072458 | Halleck et al. | Apr 2003 | A1 |
20030093002 | Kuo | May 2003 | A1 |
20030093003 | Watrous et al. | May 2003 | A1 |
20030105497 | Zhu et al. | Jun 2003 | A1 |
20030120159 | Mohler | Jun 2003 | A1 |
20030144702 | Yu et al. | Jul 2003 | A1 |
20030144703 | Yu et al. | Jul 2003 | A1 |
20030158492 | Sheldon et al. | Aug 2003 | A1 |
20030158584 | Cates et al. | Aug 2003 | A1 |
20030176896 | Lincoln et al. | Sep 2003 | A1 |
20030208240 | Pastore et al. | Nov 2003 | A1 |
20030216620 | Jain et al. | Nov 2003 | A1 |
20030229289 | Mohler | Dec 2003 | A1 |
20030233132 | Pastore et al. | Dec 2003 | A1 |
20040024423 | Lincoln et al. | Feb 2004 | A1 |
20040039295 | Olbrich et al. | Feb 2004 | A1 |
20040039419 | Stickney et al. | Feb 2004 | A1 |
20040039420 | Jayne et al. | Feb 2004 | A1 |
20040064056 | Ogura | Apr 2004 | A1 |
20040078059 | Ding et al. | Apr 2004 | A1 |
20040078060 | Ding et al. | Apr 2004 | A1 |
20040102712 | Belalcazar et al. | May 2004 | A1 |
20040106960 | Siejko et al. | Jun 2004 | A1 |
20040106961 | Siejko et al. | Jun 2004 | A1 |
20040122484 | Hatlestad et al. | Jun 2004 | A1 |
20040127792 | Siejko | Jul 2004 | A1 |
20040138572 | Thiagarajan | Jul 2004 | A1 |
20040167417 | Schulhauser et al. | Aug 2004 | A1 |
20040215264 | Van Bentem | Oct 2004 | A1 |
20040225332 | Gebhardt et al. | Nov 2004 | A1 |
20040236239 | Murray et al. | Nov 2004 | A1 |
20040254481 | Brodnick | Dec 2004 | A1 |
20040267147 | Sullivan | Dec 2004 | A1 |
20040267148 | Arand et al. | Dec 2004 | A1 |
20050004485 | Crosby et al. | Jan 2005 | A1 |
20050027323 | Mulligan et al. | Feb 2005 | A1 |
20050033190 | Bauer | Feb 2005 | A1 |
20050065448 | Stahmann et al. | Mar 2005 | A1 |
20050065556 | Reghabi et al. | Mar 2005 | A1 |
20050102001 | Maile et al. | May 2005 | A1 |
20050107838 | Lovett et al. | May 2005 | A1 |
20050115561 | Stahmann et al. | Jun 2005 | A1 |
20050137626 | Pastore et al. | Jun 2005 | A1 |
20050148896 | Siejko et al. | Jul 2005 | A1 |
20050149136 | Siejko et al. | Jul 2005 | A1 |
20060020294 | Brockway et al. | Jan 2006 | A1 |
20060020295 | Brockway et al. | Jan 2006 | A1 |
20060030892 | Kadhiresan et al. | Feb 2006 | A1 |
20060047213 | Gavriely et al. | Mar 2006 | A1 |
20060161070 | Siejko et al. | Jul 2006 | A1 |
20060247550 | Thiagarajan et al. | Nov 2006 | A1 |
20060270939 | Wariar et al. | Nov 2006 | A1 |
20060282000 | Zhang et al. | Dec 2006 | A1 |
20070078491 | Siejko et al. | Apr 2007 | A1 |
20070191725 | Nelson | Aug 2007 | A1 |
20070239218 | Carlson et al. | Oct 2007 | A1 |
20080077029 | Mohler et al. | Mar 2008 | A1 |
20080103406 | Kameli | May 2008 | A1 |
20080119749 | Haro et al. | May 2008 | A1 |
20080119750 | Patangay et al. | May 2008 | A1 |
20080125820 | Stahmann et al. | May 2008 | A1 |
20080177191 | Patangay et al. | Jul 2008 | A1 |
20080262368 | Patangay et al. | Oct 2008 | A1 |
20090018461 | Siejko et al. | Jan 2009 | A1 |
20090132000 | Brockway et al. | May 2009 | A1 |
20090287106 | Zhang et al. | Nov 2009 | A1 |
20100249863 | Carlson et al. | Sep 2010 | A1 |
20110077543 | Patangay et al. | Mar 2011 | A1 |
20130096451 | Patangay et al. | Apr 2013 | A1 |
20150257729 | Patangay et al. | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
0762908 | Mar 1997 | EP |
1179317 | Feb 2002 | EP |
1247485 | Oct 2002 | EP |
WO-0156651 | Aug 2001 | WO |
WO-2004012815 | Feb 2004 | WO |
WO-2004035137 | Apr 2004 | WO |
WO-2004035137 | Apr 2004 | WO |
WO-2004050178 | Jun 2004 | WO |
WO-2006028575 | Mar 2006 | WO |
WO-2006028575 | Mar 2006 | WO |
WO-2006127594 | Nov 2006 | WO |
WO-2006127594 | Nov 2006 | WO |
WO-2008063288 | May 2008 | WO |
WO-2008130532 | Oct 2008 | WO |
Entry |
---|
“U.S. Appl. No. 11/564,637, Examiner Interview Summary mailed Feb. 18, 2010”, 5 pgs. |
“U.S. Appl. No. 11/564,637, Examiner Interview Summary mailed Aug. 11, 2009”, 4 pgs. |
“U.S. Appl. No. 11/564,637, Final Office Action mailed Dec. 10, 2009”, 9 pgs. |
“U.S. Appl. No. 11/564,637, Non-Final Office Action mailed Mar. 29, 2011”, 9 pgs. |
“U.S. Appl. No. 11/564,637, Non-Final Office Action mailed May 13, 2009”, 7 pgs. |
“U.S. Appl. No. 11/564,637, Notice of Allowance mailed Sep. 22, 2011”, 10 pgs. |
“U.S. Appl. No. 11/564,637, Response filed Feb. 23, 2010 to Final Office Action mailed Dec. 10, 2009”, 9 pgs. |
“U.S. Appl. No. 11/564,637, Response filed Apr. 16, 2009 to Restriction Requirement mailed Mar. 16, 2009”, 6 pgs. |
“U.S. Appl. No. 11/564,637, Response filed Jun. 28, 2011 to Non-Final Office Action mailed Mar. 29, 2011”, 11 pgs. |
“U.S. Appl. No. 11/564,637, Response filed Aug. 13, 2009 to Non-Final Office Action mailed May 13, 2009”, 7 pgs. |
“U.S. Appl. No. 11/564,637, Restriction Requirement mailed Mar. 16, 2009”, 6 pgs. |
“U.S. Appl. No. 11/736,055, Non-Final Office Action mailed Mar. 12, 2010”, 7 pgs. |
“U.S. Appl. No. 11/736,055, Notice of Allowance mailed Aug. 13, 2010”, 8 pgs. |
“U.S. Appl. No. 11/736,055, Response filed Jul. 2, 2010 to Non Final Office Action mailed Mar. 12, 2010”, 17 pgs. |
“International Application Serial No. PCT/US2008/004832, International Search Report mailed Sep. 3, 2008”, 6 pgs. |
“International Application Serial No. PCT/US2008/004832, Written Opinion mailed Sep. 3, 2008”, 7 pgs. |
Dreuw, P., et al., “Tracking Using Dynamic Programming for Appearance-Based Sign Language Recognition”, Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, (2006), 293-298. |
“U.S. Appl. No. 10/334,694, Advisory Action mailed Dec. 18, 2007”, 3 pgs. |
“U.S. Appl. No. 10/334,694, Advisory Action mailed Dec. 23, 2008”, 3 pgs. |
“U.S. Appl. No. 10/334,694, Final Office Action mailed Oct. 1, 2007”, 13 pgs. |
“U.S. Appl. No. 10/334,694, Final Office Action mailed Oct. 7, 2008”, 14 pgs. |
“U.S. Appl. No. 10/334,694, Final Office Action mailed Nov. 27, 2009”, 13 pgs. |
“U.S. Appl. No. 10/334,694, Non-Final Office Action mailed Mar. 18, 2009”, 14 pgs. |
“U.S. Appl. No. 10/334,694, Non-Final Office Action mailed Mar. 19, 2008”, 15 pgs. |
“U.S. Appl. No. 10/334,694, Non-Final Office Action mailed Apr. 20, 2007”, 12 pgs. |
“U.S. Appl. No. 10/334,694, Non-Final Office Action mailed Apr. 30, 2010”, 13 pgs. |
“U.S. Appl. No. 10/334,694, Non-Final Office Action mailed Nov. 27, 2006”, 9 pgs. |
“U.S. Appl. No. 10/334,694, Notice of Allowance mailed Oct. 5, 2010”, 6 pgs. |
“U.S. Appl. No. 10/334,694, Response filed Feb. 27, 2007 to Non-Final Office Action mailed Nov. 27, 2006”, 20 pgs. |
“U.S. Appl. No. 10/334,694, Response filed Mar. 1, 2010 to Final Office Action mailed Nov. 27, 2009”, 21 pgs. |
“U.S. Appl. No. 10/334,694, Response filed Jun. 19, 2008 to Non-Final Office Action mailed Mar. 19, 2008”, 20 pgs. |
“U.S. Appl. No. 10/334,694, Response filed Jul. 17, 2009 to Non Final Office Action mailed Mar. 18, 2009”, 18 pgs. |
“U.S. Appl. No. 10/334,694, Response filed Jul. 20, 2007 to Non-Final Office Action mailed Apr. 20, 2007”, 18 pgs. |
“U.S. Appl. No. 10/334,694, Response filed Jul. 27, 2010 to Non-Final Office Action mailed Apr. 30, 2010”, 19 pgs. |
“U.S. Appl. No. 10/334,694, Response filed Dec. 3, 2007 to Final Office Action mailed Oct. 1, 2007”, 21 pgs. |
“U.S. Appl. No. 10/334,694, Response filed Dec. 8, 2008 to Final Office Action mailed Oct. 7, 2008”, 18 pgs. |
“U.S. Appl. No. 10/746,853, Final Office Action mailed May 22, 2007”, 11 pgs. |
“U.S. Appl. No. 10/746,853, Non-Final Office Action mailed Sep. 26, 2007”, 8 pgs. |
“U.S. Appl. No. 10/746,853, Non-Final Office Action mailed Dec. 19, 2006”, 10 pgs. |
“U.S. Appl. No. 10/746,853, Notice of Allowance mailed May 30, 2008”, 4 pgs. |
“U.S. Appl. No. 10/746,853, Response filed Jan. 17, 2008 to Non-Final Office Action mailed Sep. 26, 2007”, 18 pgs. |
“U.S. Appl. No. 10/746,853, Response filed Mar. 15, 2007 to Non-Final Office Action mailed Dec. 19, 2006”, 16 pgs. |
“U.S. Appl. No. 10/746,853, Response filed Jul. 23, 2007 to Final Office Action mailed May 22, 2007”, 16 pgs. |
“U.S. Appl. No. 10/746,874, Notice of Allowance mailed May 19, 2006”, 9 pgs. |
“U.S. Appl. No. 10/746,874, Response filed Apr. 17, 2006 to Restriction Requirement mailed Mar. 31, 2006”, 14 pgs. |
“U.S. Appl. No. 10/746,874, Restriction Requirement mailed Mar. 31, 2006”, 6 pgs. |
“U.S. Appl. No. 10/865,498, Non-Final Office Action mailed Sep. 11, 2006”, 11 pgs. |
“U.S. Appl. No. 10/865,498, Notice of Allowance mailed Dec. 6, 2006”, 12 pgs. |
“U.S. Appl. No. 10/865,498, Response filed Oct. 24, 2006 to Non-Final Office Action mailed Sep. 11, 2006”, 19 pgs. |
“U.S. Appl. No. 11/148,107, Notice of Allowance mailed Aug. 30, 2010”, 8 pgs. |
“U.S. Appl. No. 11/277,773, Examiner Interview Summary mailed Oct. 2, 2008”, 2 pgs. |
“U.S. Appl. No. 11/277,773, Notice of Allowance mailed Mar. 24, 2010”, 6 pgs. |
“U.S. Appl. No. 11/426,835, Final Office Action mailed Nov. 12, 2010”, 13 pgs. |
“U.S. Appl. No. 11/426,835, Non-Final Office Action mailed Apr. 1, 2010”, 13 pgs. |
“U.S. Appl. No. 11/426,835, Response filed Aug. 2, 2010 to Non-Final Office Action mailed Apr. 1, 2010”, 16 pgs. |
“U.S. Appl. No. 11/426,835, Response filed Nov. 6, 2009 to Restriction Requirement mailed Oct. 6, 2009”, 12 pgs. |
“U.S. Appl. No. 11/465,878, Notice of Allowance mailed Oct. 8, 2009”, 8 pgs. |
“U.S. Appl. No. 11/561,428, Final Office Action mailed Feb. 10, 2011”, 19 pgs. |
“U.S. Appl. No. 11/561,428, Non-Final Office Action mailed Apr. 20, 2010”, 13 pgs. |
“U.S. Appl. No. 11/561,428, Response filed Oct. 20, 2010 to Non Final Office Action mailed Apr. 20, 2010”, 15 pgs. |
“U.S. Appl. No. 11/777,739, Examiner Interview Summary mailed Apr. 29, 2010”, 3 pgs. |
“U.S. Appl. No. 11/777,739, Final Office Action mailed Jun. 4, 2010”, 16 pgs. |
“U.S. Appl. No. 11/777,739, Non-Final Office Action mailed Jan. 29, 2010”, 18 pgs. |
“U.S. Appl. No. 11/777,739, Non-Final Office Action mailed Nov. 18, 2011”, 6 pgs. |
“U.S. Appl. No. 11/777,739, Response filed Apr. 29, 2010 to Non Final Office Action mailed Jan. 29, 2010”, 18 pgs. |
“U.S. Appl. No. 11/777,739, Response filed Aug. 4, 2010 to Final Office Action mailed Jun. 4, 2010”, 16 pgs. |
“U.S. Appl. No. 11/777,739, Response filed Oct. 19, 2009 to Restriction Requirement mailed Sep. 23, 2009”, 9 pgs. |
“U.S. Appl. No. 11/777,739, Restriction Requirement mailed Sep. 23, 2009”, 7 pgs. |
“U.S. Appl. No. 12/283,760, Non-Final Office Action mailed Oct. 5, 2011”, 9 pgs. |
“U.S. Appl. No. 12/813,073, Non-Final Office Action mailed Sep. 3, 2010”, 7 pgs. |
“U.S. Appl. No. 12/963,902, Final Office Action mailed May 29, 2012”, 7 pgs. |
“U.S. Appl. No. 12/964,902, Examiner Interview Summary mailed Apr. 23, 2012”, 3 pgs. |
“U.S. Appl. No. 12/964,902, Non Final Office Action Mailed Dec. 21, 2011”, 8 pgs. |
“U.S. Appl. No. 12/964,902, Notice of Allowance mailed Aug. 1, 2012”, 8 pgs. |
“U.S. Appl. No. 12/964,902, Response filed Apr. 23, 2012 to Non-Final Office Action mailed Dec. 21, 2011”, 16 pgs. |
“U.S. Appl. No. 12/964,902, Response filed Jul. 12, 2012 to Final Office Action mailed May 29, 2012”, 13 pgs. |
“Australian Application Serial No. 2008241508, First Examiner Report mailed Nov. 23, 2010”, 3 Pgs. |
“Australian Application Serial No. 2008241508, Response filed Sep. 16, 2011 to Office Action mailed Nov. 23, 2010”, 29 pgs. |
“European Application Serial No. 05806944.4, Office Action mailed Apr. 14, 2008”, 8 pgs. |
“European Application Serial No. 05806944.4, Response filed Oct. 17, 2008 to Office Action mailed Apr. 14, 2008”, 22 pgs. |
“European Application Serial No. 07753005.3, Communication mailed Nov. 5, 2008”, 2 pgs. |
“European Application Serial No. 07753005.3, Response filed Dec. 2, 2008 to Communication mailed Nov. 5, 2008”, 9 pgs. |
“European Application Serial No. 08742888.4, Office Action mailed Feb. 12, 2010”, 2 pgs. |
“European Application Serial No. 08742888.4, Response filed Aug. 10, 2010 to Office Action mailed Feb. 12, 2010”, 25 pgs. |
“International Application Serial No. PCT/US2005/025235, International Search Report and Written Opinion mailed Apr. 4, 2006”, 20 pgs. |
“International Application Serial No. PCT/US2005/025235, Invitation to Pay Additional Fees and Partial Search Report mailed Jan. 27, 2006”, 9 pgs. |
“International Application Serial No. PCT/US2007/021503, International Search Report mailed Jun. 5, 2008”, 4 pgs. |
“International Application Serial No. PCT/US2007/021503, Written Opinion mailed Jun. 5, 2008”, 7 pgs. |
“Japanese Application Serial No. 2009-502827, Amended Claims filed Mar. 4, 2010”, (w/ English Translation), 15 pgs. |
Aaron, S. D, et al., “How accurate is spirometry at predicting restrictive pulmonary impairment?”, Chest, 115(3), XP002362629 ISSN: 0012-3692, (Mar. 1999), 869-873. |
Bulgrin, J. R, et al., “Comparison of Short-Time Fourier, Wavelet and Time-Domain Analyses of Intracardiac Sounds”, Biomedical Sciences Instrumentation, 29, (1993), 4 pgs. |
Kinderman, Michael, et al., “Optimizing the AV Delay in DDD Pacemaker Patients with High Degree AV Block: Mitral Valve Doppler Versus Impedance Cardiography”, PACE, vol. 20, (Oct. 1997), 2453-2462. |
Leatham, A, “Splitting of the First and Second Heart Sounds”, Lancet, 267 (6839), (Sep. 25, 1954), 607-614. |
Leonelli, Fabio M, et al., “Systolic and Diastolic Effects of Variable Atroventricular Delay and Patients with Complete Hear Block and Normal Ventricular Function”, Amer. J-Cardiology, vol. 80, (Aug. 1, 1997), 294-298. |
Makhoul, John, “Linear Prediction: A Tutorial Review”, Proceedings of the IEEE, 63, (Apr. 1975), 561-580. |
Marcus, G. M., et al., “Association Between Phonocardiographic Third and Fourth Heart Sounds and Objective Measures of Left Ventricular Function”, JAMA, 293(18), (May 11, 2005), 2238-44. |
Obaidat, M. S, et al., “Performance of the Short-Time Fourier Transform and Wavelet Transform to Phonocardiogram Signal Analysis”, Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing ACM, Applied Computing: Technological Challenges of the 1990s, (1992), 856-862. |
Ritter, P., et al., “New Method for Determining the Optimal Atrio-Ventricular Delay in Patients Place in DDD Mode for Complete Atrio-Ventricular Block”, NASPE Abstracts, (Abstract No. 237), (1995), 3 pgs. |
Tavel, Morton E, “The Appearance of Gallop Rhythm after Exercise Stress Testing”, Clin. Cardiol., vol. 19, (1996), 887-891. |
“U.S. Appl. No. 13/708,196, Examiner Interview Summary mailed Aug. 9, 2013”, 3 pgs. |
“U.S. Appl. No. 13/708,196, Final Office Action mailed Oct. 23, 2013”, 10 pgs. |
“U.S. Appl. No. 13/708,196, Non Final Office Action mailed May 8, 2013”, 9 pgs. |
“U.S. Appl. No. 13/708,196, Response filed Aug. 6, 2013 to Non Final Office Action mailed May 8, 2013”, 13 pgs. |
“U.S. Appl. No. 13/708,196 , Response filed Dec. 23, 2013 to Final Office Action mailed Oct. 23, 2013”, 14 pgs. |
“U.S. Appl. No. 13/708,196, Advisory Action mailed Jan. 14, 2014”, 2 pgs. |
“U.S. Appl. No. 13/708,196, Advisory Action mailed Oct. 15, 2014”, 3 pgs. |
“U.S. Appl. No. 13/708,196, Final Office Action mailed Jul. 30, 2014”, 10 pgs. |
“U.S. Appl. No. 13/708,196, Non Final Office Action mailed Feb. 14, 2014”, 9 pgs. |
“U.S. Appl. No. 13/708,196, Notice of Allowance mailed Feb. 4, 2015”, 10 pgs. |
“U.S. Appl. No. 13/708,196, Response filed May 14, 2014 to Non Final Office Action mailed Feb. 14, 2014”, 14 pgs. |
“U.S. Appl. No. 13/708,196, Response filed Sep. 30, 2014 to Final Office Action mailed Jul. 30, 2014”, 15 pgs. |
“U.S. Appl. No. 14/729,187, Non Final Office Action mailed Jul. 31, 2015”, 7 pgs. |
“U.S. Appl. No. 14/729,187, Notice of Allowance mailed Feb. 18, 2016”, 5 pgs. |
“U.S. Appl. No. 14/729,187, Preliminary Amendment filed Jun. 15, 2015”, 8 pgs. |
“U.S. Appl. No. 14/729,187, Response filed Oct. 29, 2015 to Non Final Office Action mailed Jul. 31, 2015”, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20120089040 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11564637 | Nov 2006 | US |
Child | 13325654 | US |