Adaptive selection of picture-level quantization parameters for predicted video pictures

Abstract
Techniques and tools for adaptive selection of picture quantization parameters (“QPs”) for predicted pictures are described. For example, a video encoder adaptively selects a delta QP for a B-picture based on spatial complexity, temporal complexity, whether differential quantization is active, whether the B-picture is available as a reference picture, or some combination or subset of these or other factors. The delta QP can then be used to adjust the picture QP for the B-picture (e.g., to reduce bit rate for the B-picture without appreciably reducing the perceived quality of a video sequence.
Description
BACKGROUND

With the increasing popularity of DVDs, music and video delivery over the Internet, and digital cameras, digital media have become commonplace. Engineers use a variety of techniques to process digital audio, video, and images efficiently while still maintaining quality. To understand these techniques, it helps to understand how the audio, video, and image information is represented and processed in a computer.


I. Representation of Media Information in a Computer


A computer processes media information as a series of numbers representing that information. For example, a single number may represent the intensity of brightness or the intensity of a color component such as red, green or blue for each elementary small region of a picture, so that the digital representation of the picture consists of one or more arrays of such numbers. Each such number may be referred to as a sample. For a color image, it is conventional to use more than one sample to represent the color of each elemental region, and typically three samples are used. The set of these samples for an elemental region may be referred to as a pixel, where the word “pixel” is a contraction referring to the concept of a “picture element.” For example, one pixel may consist of three samples that represent the intensity of red, green and blue light necessary to represent the elemental region. Such a pixel type is referred to as an RGB pixel. Several factors affect quality of media information, including sample depth, resolution, and frame rate (for video).


Sample depth is a property normally measured in bits that indicates the range of numbers that can be used to represent a sample. When more values are possible for the sample, quality can be higher because the number can capture more subtle variations in intensity and/or a greater range of values. Resolution generally refers to the number of samples over some duration of time (for audio) or space (for images or individual video pictures). Images with higher resolution tend to look crisper than other images and contain more discernable useful details. Frame rate is a common term for temporal resolution for video. Video with higher frame rate tends to mimic the smooth motion of natural objects better than other video, and can similarly be considered to contain more detail in the temporal dimension. For all of these factors, the tradeoff for high quality is the cost of storing and transmitting the information in terms of the bit rate necessary to represent the sample depth, resolution and frame rate, as Table 1 shows.









TABLE 1







Bit rates for different quality levels of raw video











Resolution

Bit rate


Bits per pixel
(pixels,
Frame rate
(millions


(sample depth times samples
width ×
(frames per
of bits


per pixel)
height)
second)
per second)













 8 (value 0-255,
160 × 120
7.5
1.2


monochrome)


24 (value 0-255 each, RGB)
320 × 240
15
27.6


24 (value 0-255 each, RGB)
640 × 480
30
221.2


24 (value 0-255 each, RGB)
1280 × 720 
60
1327.1









Despite the high bit rate necessary for storing and sending high quality video (such as HDTV), companies and consumers increasingly depend on computers to create, distribute, and play back high quality content. For this reason, engineers use compression (also called source coding or source encoding) to reduce the bit rate of digital media. Compression decreases the cost of storing and transmitting the information by converting the information into a lower bit rate form. Compression can be lossless, in which quality of the video does not suffer but decreases in bit rate are limited by the complexity of the video. Or, compression can be lossy, in which quality of the video suffers but decreases in bit rate are more dramatic. Decompression (also called decoding) reconstructs a version of the original information from the compressed form. An encoder/decoder system is sometimes referred to as a “codec.”


In general, video compression techniques include “intra” compression and “inter” or predictive compression. For video frames, intra compression techniques compress individual frames, typically called I-frames or key frames. Inter compression techniques compress frames with reference to preceding and/or following frames, and inter-compressed frames are typically called predicted frames, P-frames, or B-frames.


II. Inter and Intra Compression in Windows Media Video, Versions 8 and 9


Microsoft Corporation's Windows Media Video, Version 8 (“WMV8”) includes a video encoder and a video decoder. The WMV8 encoder uses intra and inter compression, and the WMV8 decoder uses intra and inter decompression. Windows Media Video, Version 9 (“WMV9”) uses a similar architecture for many operations.


A. Intra Compression



FIG. 1 illustrates block-based intra compression (100) of a block (105) of samples in a key frame in the WMV8 encoder. A block is a set of samples, for example, an 8×8 arrangement of samples. The WMV8 encoder splits a key video frame into 8×8 blocks and applies an 8×8 Discrete Cosine Transform (“DCT”) (110) to individual blocks such as the block (105). A DCT is a type of frequency transform that converts the 8×8 block of samples (spatial information) into an 8×8 block of DCT coefficients (115), which are frequency information. The DCT operation itself is lossless or nearly lossless. Compared to the original sample values, however, the DCT coefficients are more efficient for the encoder to compress since most of the significant information is concentrated in low frequency coefficients (conventionally, the upper left of the block (115)) and many of the high frequency coefficients (conventionally, the lower right of the block (115)) have values of zero or close to zero.


The encoder then quantizes (120) the DCT coefficients, resulting in an 8×8 block of quantized DCT coefficients (125). Quantization is lossy. Since low frequency DCT coefficients tend to have higher values, quantization typically results in loss of precision but not complete loss of the information for the coefficients. On the other hand, since high frequency DCT coefficients tend to have values of zero or close to zero, quantization of the high frequency coefficients typically results in contiguous regions of zero values. In addition, in some cases high frequency DCT coefficients are quantized more coarsely than low frequency DCT coefficients, resulting in greater loss of precision/information for the high frequency DCT coefficients.


The encoder then prepares the 8×8 block of quantized DCT coefficients (125) for entropy encoding, which is a form of lossless compression. The exact type of entropy encoding can vary depending on whether a coefficient is a DC coefficient (lowest frequency), an AC coefficient (other frequencies) in the top row or left column, or another AC coefficient.


The encoder encodes the DC coefficient (126) as a differential from the DC coefficient (136) of a neighboring 8×8 block, which is a previously encoded neighbor (e.g., top or left) of the block being encoded. (FIG. 1 shows a neighbor block (135) that is situated to the left of the block being encoded in the frame.) The encoder entropy encodes (140) the differential.


The entropy encoder can encode the left column or top row of AC coefficients as a differential from a corresponding left column or top row of the neighboring 8×8 block. This is an example of AC coefficient prediction. FIG. 1 shows the left column (127) of AC coefficients encoded as a differential (147) from the left column (137) of the neighboring (in reality, to the left) block (135). The differential coding increases the chance that the differential coefficients have zero values. The remaining AC coefficients are from the block (125) of quantized DCT coefficients.


The encoder scans (150) the 8×8 block 145 of quantized AC DCT coefficients into a one-dimensional array (155) and then entropy encodes the scanned AC coefficients using a variation of run length coding (160). The encoder selects an entropy code from one or more run/level/last tables (165) and outputs the entropy code.


B. Inter Compression


Inter compression in the WMV8 encoder uses block-based motion compensated prediction coding followed by transform coding of the residual error. FIGS. 2 and 3 illustrate the block-based inter compression for a predicted frame in the WMV8 encoder. In particular, FIG. 2 illustrates motion estimation for a predicted frame (210) and FIG. 3 illustrates compression of a prediction residual for a motion-compensated block of a predicted frame.


For example, in FIG. 2, the WMV8 encoder computes a motion vector for a macroblock (215) in the predicted frame (210). To compute the motion vector, the encoder searches in a search area (235) of a reference frame (230). Within the search area (235), the encoder compares the macroblock (215) from the predicted frame (210) to various candidate macroblocks in order to find a candidate macroblock that is a good match. The encoder outputs information specifying the motion vector (entropy coded) for the matching macroblock. The motion vector is differentially coded with respect to a motion vector predictor. The prediction is rarely perfect, so the encoder usually encodes blocks of differences (also called the error or residual blocks) between the prediction macroblock and the macroblock (215) itself.



FIG. 3 illustrates an example of computation and encoding of an error block (335) in the WMV8 encoder. The error block (335) is the difference between the predicted block (315) and the original current block (325). The encoder applies a DCT (340) to the error block (335), resulting in an 8×8 block (345) of coefficients. The encoder then quantizes (350) the DCT coefficients, resulting in an 8×8 block of quantized DCT coefficients (355). The encoder scans (360) the 8×8 block (355) into a one-dimensional array (365) such that coefficients are generally ordered from lowest frequency to highest frequency. The encoder entropy encodes the scanned coefficients using a variation of run length coding (370). The encoder selects an entropy code from one or more run/level/last tables (375) and outputs the entropy code.



FIG. 4 shows an example of a corresponding decoding process (400) for an inter-coded block. In summary of FIG. 4, a decoder decodes (410, 420) entropy-coded information representing a prediction residual using variable length decoding (410) with one or more run/level/last tables (415) and run length decoding (420). The decoder inverse scans (430) a one-dimensional array (425), storing the entropy-decoded information into a two-dimensional block (435). The decoder inverse quantizes and inverse DCTs (together, 440) the data, resulting in a reconstructed error block (445). In a separate motion compensation path, the decoder computes a predicted block (465) using motion vector information (455) for displacement from a reference frame. The decoder combines (470) the predicted block (465) with the reconstructed error block (445) to form the reconstructed block (475). An encoder also performs the inverse quantization, inverse DCT, motion compensation and combining to reconstruct frames for use as reference frames.


III. Lossy Compression and Quantization


The preceding section mentioned quantization, a mechanism for lossy compression, and lossless compression. Lossless compression reduces the bit rate of information by removing redundancy from the information without any reduction in fidelity. Lossless compression techniques reduce bit rate at no cost to quality, but can only reduce bit rate up to a certain point. Decreases in bit rate are limited by the inherent amount of variability in the statistical characterization of the input data, which is referred to as the source entropy.


In contrast, with lossy compression, the quality suffers somewhat but the achievable decrease in bit rate is more dramatic. Lossy compression techniques can be used to reduce bit rate more than lossless compression techniques, but some of the reduction in bit rate is achieved by reducing quality, and the lost quality cannot be completely recovered. Lossy compression is often used in conjunction with lossless compression—e.g., in a system design in which lossy compression establishes an approximation of the information and lossless compression techniques are applied to represent the approximation.


According to one possible definition, quantization is a term used for an approximating non-reversible mapping function commonly used for lossy compression, in which there is a specified set of possible output values, and each member of the set of possible output values has an associated set of input values that result in the selection of that particular output value. In general, an encoder varies quantization to trade off quality and bit rate. Coarser quantization results in greater quality reduction but allows for greater bit rate reduction.


In many systems, the extent of quantization is measured in terms of quantization step size. Coarser quantization uses larger quantization step sizes, corresponding to wider ranges of input values. Finer quantization uses smaller quantization step sizes. Often, for purposes of signaling and reconstruction, quantization step sizes are parameterized as multiples of a smallest quantization step size. Quantization step sizes may be represented by quantization indexes.


Different reconstruction rules may be used to determine the reconstruction value for each quantization index. Standards and product specifications that focus only on achieving interoperability will often specify reconstruction values without necessarily specifying the classification rule. In other words, some specifications may define the functional mapping k→β[k] without defining the functional mapping x→A[x]. This allows a decoder built to comply with the standard/specification to reconstruct information correctly. In contrast, encoders are often given the freedom to change the classifier in any way that they wish, while still complying with the standard/specification.


A variety of quantization techniques have been developed, including scalar or vector, uniform or non-uniform, and adaptive or non-adaptive quantization.


A. Scalar Quantizers


According to one possible definition, a scalar quantizer is an approximating functional mapping x→Q[x] of an input value x to a quantized value Q[x], sometimes called a reconstructed value. FIG. 5 shows a “staircase” I/O function (500) for a scalar quantizer. The horizontal axis is a number line for a real number input variable x, and the vertical axis indicates the corresponding quantized values Q[x]. The number line is partitioned by thresholds such as the threshold (510). Each value of x within a given range between a pair of adjacent thresholds is assigned the same quantized value Q[x]. For example, each value of x within the range (520) is assigned the same quantized value (530). (At a threshold, one of the two possible quantized values is assigned to an input x, depending on the system.) Overall, the quantized values Q[x] exhibit a discontinuous, staircase pattern. The distance the mapping continues along the number line depends on the system, typically ending after a finite number of thresholds. The placement of the thresholds on the number line may be uniformly spaced (as shown in FIG. 5) or non-uniformly spaced.


A scalar quantizer can be decomposed into two distinct stages. The first stage is the classifier stage, in which a classifier function mapping x→A[x] maps an input x to a quantization index A[x], which is often integer-valued. In essence, the classifier segments an input number line or data set. FIG. 6A shows a generalized classifier (600) and thresholds for a scalar quantizer. As in FIG. 5, a number line for a real number variable x is segmented by thresholds such as the threshold (610). Each value of x within a given range such as the range (620) is assigned the same quantized value Q[x]. FIG. 6B shows a numerical example of a classifier (650) and thresholds for a scalar quantizer.


In the second stage, a reconstructor functional mapping k→β[k] maps each quantization index k to a reconstruction value β[k]. In essence, the reconstructor places steps having a particular height relative to the input number line segments (or selects a subset of data set values) for reconstruction of each region determined by the classifier. The reconstructor functional mapping may be implemented, for example, using a lookup table. Overall, the classifier relates to the reconstructor as follows:

Q[x]=β[A[x]]  (1).


In common usage, the term “quantization” is often used to describe the classifier stage, which is performed during encoding. The term “inverse quantization” is similarly used to describe the reconstructor stage, whether performed during encoding or decoding.


The distortion introduced by using such a quantizer may be computed with a difference-based distortion measure d(x−Q[x]). Typically, such a distortion measure has the property that d(x−Q[x]) increases as x−Q[x] deviates from zero; and typically each reconstruction value lies within the range of the corresponding classification region, so that the straight line that would be formed by the functional equation Q[x]=x will pass through every step of the staircase diagram (as shown in FIG. 5) and therefore Q[Q[x]] will typically be equal to Q[x]. In general, a quantizer is considered better in rate-distortion terms if the quantizer results in a lower average value of distortion than other quantizers for a given bit rate of output.


B. Dead Zone+Uniform Threshold Quantizers


A non-uniform quantizer has threshold values that are not uniformly spaced for all classifier regions. According to one possible definition, a dead zone plus uniform threshold quantizer (“DZ+UTQ”) is a quantizer with uniformly spaced threshold values for all classifier regions except the one containing the zero input value (which is called the dead zone). In a general sense, a DZ+UTQ is a non-uniform quantizer, since the dead zone size is different than the other classifier regions.


A DZ+UTQ has a classifier index mapping rule x→A[x] that can be expressed based on two parameters. FIG. 7 shows a staircase I/O function (700) for a DZ+UTQ, and FIG. 8A shows a generalized classifier (800) and thresholds for a DZ+UTQ. The parameter s, which is greater than 0, indicates the step size for all steps other than the dead zone. Mathematically, all si are equal to s for i≠0. The parameter z, which is greater than or equal to 0, indicates the ratio of the dead zone size to the size of the other steps. Mathematically, s0=z·s. In FIG. 8A, z is 2, so the dead zone is twice as wide as the other classification zones. The index mapping rule x→A[x] for a DZ+UTQ can be expressed as:











A


[
x
]


=


sign


(
x
)


*

max


(

0
,






x


s

-

z
2

+
1




)




,




(
2
)








where └•┘ denotes the smallest integer less than or equal to the argument and where sign(x) is the function defined as:










sign


(
x
)


=

{





+
1

,






for





x


0

,






-
1





for





x

<
0.









(
3
)








FIG. 8B shows a numerical example of a classifier (850) and thresholds for a DZ+UTQ with s=1 and z=2. FIGS. 5, 6A, and 6B show a special case DZ+UTQ with z=1. Quantizers of the UTQ form have good performance for a variety of statistical sources. In particular, the DZ+UTQ form is optimal for the statistical random variable source known as the Laplacian source.


C. Perceptual Effects of Quantization


As mentioned above, lossy compression tends to cause a decrease in quality. For example, a series of ten samples of slightly different values can be approximated using quantization as ten samples with exactly the same particular approximate value.


This kind of quantization can reduce the bit rate of encoding the series of ten samples, but at the cost of lost detail in the original ten samples.


In some cases, quantization produces visible artifacts that tend to be more artificial-looking and visually distracting than simple loss of fine detail. For example, smooth, un-textured content is susceptible to contouring artifacts—artifacts that appear between regions of two different quantization output values—because the human visual system is sensitive to subtle variations (particularly luma differences) in smooth content.


Another perceptual effect of quantization occurs when average quantization step sizes are varied between frames in a sequence. Although the flexibility to change quantization step sizes can help control bit rate, an unpleasant “flicker” effect can occur when average quantization step sizes vary too much from frame to frame and the difference in quality between frames becomes noticeable. Furthermore, devoting too much bit rate to frames or regions that are not perceptually important can cause shortages in available bit rate for more important frames or regions.


V. Inverse Quantization in VC-1


VC-1 is a video codec standard that specifies certain rules for inverse uantization. The encoder sends a picture-level bitstream element, PQINDEX, to indicate a base quantization step size (also referred to herein as a quantization parameter or QP) for the picture (“picture QP”). PQINDEX is present for all picture types, including I-pictures, P-pictures and B-pictures. Although VC-1 does not specify how the value of PQINDEX should be determined for different pictures, the value of PQINDEX (and, therefore, the QP for the picture) can vary for different picture types. Typically, lower QPs are used for I-pictures, and higher QPs are used for predicted pictures.


In differential quantization, the encoder varies QPs for different parts of a picture. Typically, this involves varying QPs on a macroblock level or other sub-picture level. The encoder makes decisions on how to vary the QPs, and signals those decisions, as appropriate, to a decoder. In VC-1, the encoder sends a bitstream element (DQUANT) at a syntax level above picture level to indicate differential quantization status. If DQUANT=0, the QP indicated by PQINDEX is used for all macroblocks in the picture. If DQUANT=1 or 2, different macroblocks in the same picture can use different QPs.


A VC-1 encoder can use more than one approach to differential quantization. In one approach, only two different QPs are used for a picture. This is referred to as bi-level differential quantization. For example, one QP is used for macroblocks at picture edges and another QP is used for macroblocks in the rest of the picture. This can be useful for saving bits at picture edges, where fine detail is less important for maintaining overall visual quality. Or, a 1-bit value signaled per macroblock indicates which of two available QP values to use for the macroblock. In another approach, referred to as multi-level differential quantization, a larger number of different QPs can be used for individual macroblocks in a picture.


V. Other Standards and Products


Various video standards allow the use of different quantization step sizes for different picture types, and allow variation of quantization step sizes for rate and quality control. Standards typically do not fully specify the quantizer design.


Numerous systems for adjusting quantization thresholds have been developed. Many standards and products specify reconstruction values that correspond to a typical mid-point reconstruction rule (e.g., for a typical simple classification rule) for the sake of simplicity. For classification, however, the thresholds can in fact be adjusted so that certain input values will be mapped to more common (and hence, lower bit rate) indices, which makes the reconstruction values closer to optimal.


Numerous international standards specify aspects of video decoders and formats for compressed video information. Directly or by implication, these standards also specify certain encoder details, but other encoder details are not specified. Some standards address still image compression/decompression, and other standards address audio compression/decompression. Numerous companies have produced encoders and decoders for audio, still images, and video. Various other kinds of signals (for example, hyperspectral imagery, graphics, text, financial information, etc.) are also commonly represented and stored or transmitted using compression techniques.


Given the critical importance of compression to digital video, it is not surprising that video compression is a richly developed field. Whatever the benefits of previous video compression techniques, however, they do not have the advantages of the following techniques and tools.


SUMMARY

The present application describes techniques and tools for adaptive selection of picture quantization parameters (“QPs”) for predicted pictures. For example, a video encoder adaptively selects a delta QP for a B-picture based on spatial complexity, temporal complexity, whether differential quantization is active, whether the B-picture is available as a reference picture, or some combination or subset of these or other factors. The delta QP can then be used to adjust the picture QP for the B-picture (e.g., to reduce bit rate for the B-picture without appreciably reducing the perceived quality of a video sequence).


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.


The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram showing block-based intraframe compression of an 8×8 block of samples according to the prior art.



FIG. 2 is a diagram showing motion estimation in a video encoder according to the prior art.



FIG. 3 is a diagram showing block-based compression for an 8×8 block of prediction residuals in a video encoder according to the prior art.



FIG. 4 is a diagram showing block-based decompression for an 8×8 block of prediction residuals in a video decoder according to the prior art.



FIG. 5 is a chart showing a staircase I/O function for a scalar quantizer according to the prior art.



FIGS. 6A and 6B are charts showing classifiers and thresholds for scalar quantizers according to the prior art.



FIG. 7 is a chart showing a staircase I/O function for a DZ+UTQ according to the prior art.



FIGS. 8A and 8B are charts showing classifiers and thresholds for DZ+UTQs according to the prior art.



FIG. 9 is a block diagram of a suitable computing environment in conjunction with which several described embodiments may be implemented.



FIG. 10 is a block diagram of a generalized video encoder system in conjunction with which several described embodiments may be implemented.



FIG. 11 is a diagram of a macroblock format used in several described embodiments.



FIG. 12 is a block diagram of an example two-pass encoder system.



FIG. 13 is a flow chart showing an example technique for adaptively encoding video based on complexity in a two-pass encoding scheme.



FIG. 14 is a flow chart showing an example technique for determining complexity parameters.



FIG. 15 is a flow chart showing an example technique for determining a spatial complexity parameter.



FIG. 16 is a flow chart showing an example technique for determining a temporal complexity parameter.



FIG. 17 is a flow chart showing an example technique for adaptively selecting a delta QP in order to adjust a picture QP for a predicted picture.





DETAILED DESCRIPTION

The present application relates to techniques and tools for efficient compression of video. In various described embodiments, a video encoder incorporates techniques for encoding video, and corresponding signaling techniques for use with a bitstream format or syntax comprising different layers or levels. Described techniques and tools can be applied to interlaced or progressive frames. A decoder can perform corresponding decoding.


Various alternatives to the implementations described herein are possible. For example, techniques described with reference to flowchart diagrams can be altered by changing the ordering of stages shown in the flowcharts, by repeating or omitting certain stages, etc. As another example, although some implementations are described with reference to specific macroblock formats, other formats also can be used.


The various techniques and tools can be used in combination or independently. Different embodiments implement one or more of the described techniques and tools. Some techniques and tools described herein can be used in a video encoder, or in some other system not specifically limited to video encoding.


I. Computing Environment



FIG. 9 illustrates a generalized example of a suitable computing environment (900) in which several of the described embodiments may be implemented. The computing environment (900) is not intended to suggest any limitation as to scope of use or functionality, as the techniques and tools may be implemented in diverse general-purpose or special-purpose computing environments.


With reference to FIG. 9, the computing environment (900) includes at least one processing unit (910) and memory (920). In FIG. 9, this most basic configuration (930) is included within a dashed line. The processing unit (910) executes computer-executable instructions and may be a real or a virtual processor. In a multi-processing system, multiple processing units execute computer-executable instructions to increase processing power. The memory (920) may be volatile memory (e.g., registers, cache, RAM), non-volatile memory (e.g., ROM, EEPROM, flash memory, etc.), or some combination of the two. The memory (920) stores software (980) implementing a video encoder or post-encoding application with one or more of the described techniques and tools for adaptive quantization.


A computing environment may have additional features. For example, the computing environment (900) includes storage (940), one or more input devices (950), one or more output devices (960), and one or more communication connections (970). An interconnection mechanism (not shown) such as a bus, controller, or network interconnects the components of the computing environment (900). Typically, operating system software (not shown) provides an operating environment for other software executing in the computing environment (900), and coordinates activities of the components of the computing environment (900).


The storage (940) may be removable or non-removable, and includes magnetic disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other medium which can be used to store information and which can be accessed within the computing environment (900). The storage (940) stores instructions for the software (980).


The input device(s) (950) may be a touch input device such as a keyboard, mouse, pen, or trackball, a voice input device, a scanning device, or another device that provides input to the computing environment (900). For audio or video encoding, the input device(s) (950) may be a sound card, video card, TV tuner card, or similar device that accepts audio or video input in analog or digital form, or a DVD, CD-ROM or CD-RW that reads audio or video samples into the computing environment (900). The output device(s) (960) may be a display, printer, speaker, DVD- or CD-writer, or another device that provides output from the computing environment (900).


The communication connection(s) (970) enable communication over a communication medium to another computing entity. The communication medium conveys information such as computer-executable instructions, audio or video input or output, or other data in a modulated data signal. A modulated data signal is a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired or wireless techniques implemented with an electrical, optical, RF, infrared, acoustic, or other carrier.


The techniques and tools can be described in the general context of computer-readable media. Computer-readable media are any available media that can be accessed within a computing environment. By way of example, and not limitation, with the computing environment (900), computer-readable media include memory (920), storage (940), communication media, and combinations of any of the above.


The techniques and tools can be described in the general context of computer-executable instructions, such as those included in program modules, being executed in a computing environment on a target real or virtual processor. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Computer-executable instructions for program modules may be executed within a local or distributed computing environment.


For the sake of presentation, the detailed description uses terms like “receive” and “select” to describe computer operations in a computing environment. These terms are high-level abstractions for operations performed by a computer, and should not be confused with acts performed by a human being. The actual computer operations corresponding to these terms vary depending on implementation.


II. Generalized Video Encoder



FIG. 10 is a block diagram of a generalized video encoder (1000) in conjunction with which some described embodiments may be implemented. The encoder (1000) receives a sequence of video pictures including a current picture (1005) and produces compressed video information (1095) as output to storage, a buffer, or a communication connection. The format of an output bitstream can be a Windows Media Video or VC-1 format, MPEG-x format (e.g., MPEG-1, MPEG-2, or MPEG-4), H.26x format (e.g., H.261, H.262, H.263, or H.264), or other format.


The encoder (1000) processes video pictures. The term picture generally refers to source, coded or reconstructed image data. For progressive video, a picture is a progressive Video frame. For interlaced video, a picture may refer to an interlaced video frame, the top field of the frame, or the bottom field of the frame, depending on the context. The encoder (1000) is block-based and uses a 4:2:0 macroblock format for frames. As shown in FIG. 11, macroblock (1100) includes four 8×8 luminance (or luma) blocks (Y1 through Y4) and two 8×8 chrominance (or chroma) blocks (U and V) that are co-located with the four luma blocks but half resolution horizontally and vertically, following the conventional 4:2:0 macroblock format. For fields, the same or a different macroblock organization and format may be used. The 8×8 blocks may be further sub-divided at different stages, e.g., at the frequency transform and entropy encoding stages. The encoder (1000) can perform operations on sets of samples of different size or configuration than 8×8 blocks and 16×16 macroblocks. Alternatively, the encoder (1000) is object-based or uses a different macroblock or block format.


Returning to FIG. 10, the encoder system (1000) compresses predicted pictures and intra-coded, key pictures. For the sake of presentation, FIG. 10 shows a path for key pictures through the encoder system (1000) and a path for predicted pictures. Many of the components of the encoder system (1000) are used for compressing both key pictures and predicted pictures. The exact operations performed by those components can vary depending on the type of information being compressed.


A predicted picture (e.g., progressive P-frame or B-frame, interlaced P-field or B-field, or interlaced P-frame or B-frame) is represented in terms of prediction (or difference) from one or more other pictures (which are typically referred to as reference pictures or anchors). A prediction residual is the difference between what was predicted and the original picture. In contrast, a key picture (e.g., progressive I-frame, interlaced I-field, or interlaced I-frame) is compressed without reference to other pictures.


If the current picture (1005) is a predicted picture, a motion estimator (1010) estimates motion of macroblocks or other sets of samples of the current picture (1005) with respect to one or more reference pictures, for example, the reconstructed previous picture (1025) buffered in the picture store (1020). If the current picture (1005) is a bi-predictive picture, a motion estimator (1010) estimates motion in the current picture (1005) with respect to up to four reconstructed reference pictures (for an interlaced B-field, for example). Typically, a motion estimator estimates motion in a B-picture with respect to one or more temporally previous reference pictures and one or more temporally future reference pictures, but B-pictures need not be predicted from different temporal directions. The encoder system (1000) can use the separate stores (1020, 1022) for multiple reference pictures.


The motion estimator (1010) can estimate motion by full-sample, ½-sample, ¼-sample, or other increments, and can switch the precision of the motion estimation on a picture-by-picture basis or other basis. The motion estimator (1010) (and compensator (1030)) also can switch between types of reference picture sample interpolation (e.g., between bicubic and bilinear) on a per-frame or other basis. The precision of the motion estimation can be the same or different horizontally and vertically. The motion estimator (1010) outputs as side information motion information (1015) such as differential motion vector information. The encoder (1000) encodes the motion information (1015) by, for example, computing one or more predictors for motion vectors, computing differentials between the motion vectors and predictors, and entropy coding the differentials. To reconstruct a motion vector, a motion compensator (1030) combines a predictor with differential motion vector information.


The motion compensator (1030) applies the reconstructed motion vector to the reconstructed picture(s) (1025) to form a motion-compensated current picture (1035). The prediction is rarely perfect, however, and the difference between the motion-compensated current picture (1035) and the original current picture (1005) is the prediction residual (1045). During later reconstruction of the picture, the prediction residual (1045) is added to the motion compensated current picture (1035) to obtain a reconstructed picture that is closer to the original current picture (1005). In lossy compression, however, some information is still lost from the original current picture (1005). Alternatively, a motion estimator and motion compensator apply another type of motion estimation/compensation.


A frequency transformer (1060) converts the spatial domain video information into frequency domain (i.e., spectral) data. For block-based video pictures, the frequency transformer (1060) applies a DCT, variant of DCT, or other block transform to blocks of the sample data or prediction residual data, producing blocks of frequency transform coefficients. Alternatively, the frequency transformer (1060) applies another conventional frequency transform such as a Fourier transform or uses wavelet or sub-band analysis. The frequency transformer (1060) may apply an 8×8, 8×4, 4×8, 4×4 or other size frequency transform.


A quantizer (1070) then quantizes the blocks of spectral data coefficients. The quantizer applies uniform, scalar quantization to the spectral data with a step-size that varies on a picture-by-picture basis or other basis (e.g., a macroblock-by-macroblock basis). Alternatively, the quantizer applies another type of quantization to the spectral data coefficients, for example, a non-uniform, vector, or non-adaptive quantization, or directly quantizes spatial domain data in an encoder system that does not use frequency transformations. Techniques and tools relating to quantization in some implementations are described in detail below.


In addition to adaptive quantization, the encoder (1000) can use frame dropping, adaptive filtering, or other techniques for rate control.


When a reconstructed current picture is needed for subsequent motion estimation/compensation, an inverse quantizer (1076) performs inverse quantization on the quantized spectral data coefficients. An inverse frequency transformer (1066) then performs the inverse of the operations of the frequency transformer (1060), producing a reconstructed prediction residual (for a predicted picture) or a reconstructed key picture. If the current picture (1005) was a key picture, the reconstructed key picture is taken as the reconstructed current picture (not shown). If the current picture (1005) was a predicted picture, the reconstructed prediction residual is added to the motion-compensated current picture (1035) to form the reconstructed current picture. One or both of the picture stores (1020, 1022) buffers the reconstructed current picture for use in motion compensated prediction. In some embodiments, the encoder applies a de-blocking filter to the reconstructed frame to adaptively smooth discontinuities and other artifacts in the picture.


The entropy coder (1080) compresses the output of the quantizer (1070) as well as certain side information (e.g., motion information (1015), quantization step size (QP)). Typical entropy coding techniques include arithmetic coding, differential coding, Huffman coding, run length coding, LZ coding, dictionary coding, and combinations of the above. The entropy coder (1080) typically uses different coding techniques for different kinds of information (e.g., DC coefficients, AC coefficients, different kinds of side information), and can choose from among multiple code tables within a particular coding technique. The encoder (1000) may use special signaling for a skipped macroblock, which is a macroblock that has no information of certain types (e.g., no differential motion vectors for the macroblock and no residual information).


The entropy coder (1080) provides compressed video information (1095) to the buffer (1090). A buffer level indicator may be fed back to a controller. Before or after the buffer (1090), the compressed video information (1095) can be channel coded for transmission over the network. The channel coding can apply error detection and correction data to the compressed video information (1095).


A controller (not shown) receives inputs from various modules such as the motion estimator (1010), frequency transformer (1060), quantizer (1070), inverse quantizer (1076), entropy coder (1080), and buffer (1090). The controller evaluates intermediate results during encoding, for example, estimating distortion and performing other rate-distortion analysis. The controller works with modules such as the motion estimator (1010), frequency transformer (1060), quantizer (1070), and entropy coder (1080) to set and change coding parameters during encoding. When an encoder evaluates different coding parameter choices during encoding, the encoder may iteratively perform certain stages (e.g., quantization and inverse quantization) to evaluate different parameter settings. The encoder may set parameters at one stage before proceeding to the next stage. Or, the encoder may jointly evaluate different coding parameters. The tree of coding parameter decisions to be evaluated, and the timing of corresponding encoding, depends on implementation.


The encoder (1000) may include one or more modules for using regions of interest to adjust encoder settings. For example, the encoder can allow a user to preview video after quantization or other encoding stages and draw regions of interest to indicate areas for quality adjustment. Alternatively, region-of-interest adjustments can be made after the encoder (1000) outputs encoded video.


The relationships shown between modules within the encoder (1000) indicate general flows of information in the encoder; other relationships are not shown for the sake of simplicity. In particular, FIG. 10 usually does not show side information indicating the encoder settings, modes, tables, etc. used for a video sequence, picture, macroblock, block, etc. Such side information, once finalized, is sent in the output bitstream, typically after entropy encoding of the side information.


Particular embodiments of video encoders typically use a variation or supplemented version of the generalized encoder (1000). Depending on implementation and the type of compression desired, modules of the encoder can be added, omitted, split into multiple modules, combined with other modules, and/or replaced with like modules. For example, the controller can be split into multiple controller modules associated with different modules of the encoder. In alternative embodiments, encoders with different modules and/or other configurations of modules perform one or more of the described techniques.


III. Multiple Pass Encoding and Complexity Analysis


Multiple-pass video encoders generally perform a first encoding on video data in order to determine statistics about the video data. By using information gained during a first-pass analysis, multiple-pass encoding systems are able to perform processing and encoding that is more accurately directed toward the particular nature of the video being encoded. This tuning of the process can result in an encoded video stream that either has a lower bit rate, fewer visible artifacts, or both, at a cost of increased processing time (compared to single-pass encoding) on the encoder side.



FIG. 12 is a block diagram illustrating one example of a two-pass video encoding system (1200). Input video data (1210) is analyzed in a first encoding pass (1220) in order to collect data about the input video and/or compress the input video into a preliminary, first-pass coded video stream (1225). The first encoding pass (1220) can use an actual video encoder (such as encoder (1000) illustrated in FIG. 10) or some other tool to perform first-pass analysis. Although the system (1200) can output a first-pass encoded video stream (1225), the first encoding pass (1220) can instead collect and provide information for a preprocessing stage (1230) and/or the second encoding pass (1240). The preprocessing stage (1230) is optional in a two-pass encoding scheme, and can include rate control decisions, selecting and applying filters (e.g., de-noising filters) to the input video data (1210), or other techniques. The second encoding pass (1240) encodes the video data into a final encoded video stream (1250) using output from the first encoding pass (1220) and/or the preprocessing stage (1230). Alternatively, more than two passes may be used before outputting the final encoded video stream (1250).


Video complexity can be measured, for example, in terms of spatial complexity and temporal complexity. Spatial complexity generally refers to the amount of busyness or detailed texture in a picture or group of pictures. Temporal complexity generally refers to the amount and nature of motion in a group of pictures. Where motion is high (such as in a fast motion scene) and/or difficult to predict (e.g., falling snow or a wind-blown water surface), temporal complexity is high.



FIG. 13 is a flowchart of an example technique (1300) for adaptively encoding video based on complexity of video in a two-pass encoding scheme. An encoding system such as the two-pass encoding system (1200) shown in FIG. 12 or other tool performs the technique (1300). The system (1200) receives (1310) input video data. A first encoding pass is performed (1320). During the first encoding pass (1320), information is collected that is used to measure complexity (e.g., spatial and/or temporal complexity) of the video. For example, during the first encoding pass (1320) quantization information and frame size information can be collected. Alternatively, texture information and motion information can be collected. In some implementations, the collected information is used to measure spatial and/or temporal complexity of the video in order to select a picture QP for particular picture types (e.g., B-pictures). Adaptive selection of picture QPs for predicted pictures is described in further detail below.


Referring again to FIG. 13, the system (1200) determines (1330) complexity parameters from the collected information. For example, the system (1200) performs the technique (1400) of FIG. 14 or some other technique to determine the complexity parameters. The system (1200) encodes the video data based on the complexity parameters in the second encoding pass (1340). The system (1200) can then output (1350) an encoded video stream. Alternatively, a single pass encoding system is used.



FIG. 14 is a flowchart of an example technique (1400) for determining complexity parameters in a two-pass encoding scheme. An encoding system such as the two-pass encoding system (1200) shown in FIG. 12 or other tool performs the technique (1400). In the example shown in FIG. 14, during the first-pass encoding process, video is processed in groups of pictures (e.g., groups with one I-picture and one or more predicted pictures). A current group of pictures is received (1410), and the system (1200) determines (1420, 1430) a spatial complexity parameter (e.g., using the technique (1500) of FIG. 15 or another technique) and a temporal complexity parameter (e.g., using the technique (1600) of FIG. 16 or another technique) for the current group of pictures. The loop can be repeated for the next group of pictures. Alternatively, complexity can be measured for individual pictures, parts of pictures, entire sequences, or on some other basis. As another alternative, a single pass encoding system is used to determine complexity parameters. Temporal and spatial complexity parameters can be used individually or combined into a unified complexity parameter.



FIG. 15 is a flowchart of an example technique (1500) for determining a spatial complexity parameter for a group of pictures. An encoder such as the encoder (1000) shown in FIG. 10 or other tool performs the technique (1500). In a two-pass encoding scheme, an encoding system such as the two-pass encoding system (1200) shown in FIG. 12 performs the technique (1500). The example technique (1500) can be used to calculate a spatial complexity parameter by taking a quantization value (e.g., a picture QP) of an I-picture within the group of pictures and considering it along with the number bits used to encode the I-picture in order to determine spatial complexity. The number of bits used to encode a picture is sometimes referred to as its “frame size.” In general, frame sizes for a given QP tend to increase as the amount of detail in a picture increases.


In the example technique (1500), a quantization value and frame size are determined (1510) for an I-picture in a group of pictures. Determining the quantization value may involve simply looking up a picture QP for the I-picture (e.g., where differential quantization is not being used). When different QPs are used within the I-picture, an average QP, median QP, minimum QP, maximum QP, or some other quantization value can be used. The quantization value and frame size for the I-picture are multiplied (1520) and this product is set (1530) as the spatial complexity parameter for the group of pictures. Thus, in this example, for a quantization value and frame size for the I-picture (QV1 and Size1, respectively), a spatial complexity parameter (Cs) used for every frame in the group of pictures is calculated as follows:

Cs=QV1×Size1  (4).

Alternatively, one or both of the quantization value and frame size may be scaled up or down or otherwise adjusted before calculating a spatial complexity parameter. Measurements of spatial complexity can consider other factors, such as texture information (e.g., information that indicates whether a given region is smooth, has sharp edges, or is highly textured) in addition to or in place of factors such as picture QP and frame size.



FIG. 16 is a flowchart of an example technique (1600) for determining a temporal complexity parameter for a group of pictures. An encoder such as the encoder (1000) shown in FIG. 10 or other tool performs the technique (1600). In a two-pass encoding scheme, an encoding system such as the two-pass encoding system (1200) shown in FIG. 12 performs the technique (1600). The example technique (1600) can be used to calculate a temporal complexity parameter by taking quantization values (e.g., picture QPs) of P-pictures within the group of pictures, whose values are related to the amount of change exhibited in the group of pictures and combining the quantization values with the P-pictures' frame sizes. In general, for a given QP, frame sizes tend to increase as the amount of change, and thus the temporal complexity, in the group of pictures increases.


In the example technique (1600), a P-picture is selected (1610) and a quantization value and frame size are determined (1620) for the P-picture being analyzed. Determining the quantization value may involve simply looking up a picture QP for the P-picture (e.g., where differential quantization is not being used). When different QPs are used within the P-picture, an average QP, median QP, minimum QP, maximum QP, or some other quantization value can be used. The quantization value and frame size for the P-picture are multiplied (1630). Thus, in this example, for a quantization value and frame size for the P-picture (QVP and SizeP, respectively), a first temporal complexity parameter (C′t) is calculated for the P-picture as follows:

C′t=QVP×SizeP  (5).

While the calculation of C′t in Equation 5 does capture the general concept that lower temporal complexity should lead to a smaller frame size at a given QP, experiments show that C′t is also related to spatial complexity: given the same amount of motion and the same QP, a scene with higher spatial complexity is likely to have larger frame sizes for P-pictures compared to a scene with lower spatial complexity.


In the example shown in FIG. 16, to account for this correlation, C′t is divided (1640) by the spatial complexity parameter for the group of pictures, which can be obtained using the technique (1500) illustrated in FIG. 15. This potentially more accurate measure for the temporal complexity of the P-picture can be calculated as follows:










C
t

=



C
t



C
s


.





(
6
)








This process can be repeated for each P-picture in a group of pictures or some subset of P-pictures in a group. It can also be repeated for some or all B-pictures in the group of pictures.


To obtain a single temporal complexity parameter for the group of pictures, an average (or median, minimum, maximum, or some other synthesis) of the temporal complexity parameters for P-pictures can be calculated (1650) and set (1660) as the temporal complexity parameter for the group of pictures.


For more information on measuring spatial and temporal complexity and on multi-pass encoding in some implementations, see U.S. patent application Ser. No. 11/673,516, filed on Feb. 9, 2007.


Estimated complexity can be used to make better encoding decisions in other encoding and preprocessing modules. For example, an encoding system can use complexity parameters to adjust quantization, such as by adjusting quantization dead zones or selecting delta QPs for P-pictures or B-pictures based at least in part on the complexity parameters, as described below.


IV. Techniques and Tools for Adaptive Quantization for Predicted Pictures


Under one possible measure of video quality, video encoders aim to achieve a desired quality level over entire video sequences, rather than focusing solely on the quality of individual pictures. To help maintain quality over sequences of pictures, it is important for encoders to make good decisions as to how many bits to use on particular pictures of different types. A poor bit allocation scheme may cause an encoder to use too many bits encoding some pictures and not enough bits encoding others.


In general, the quality of reference pictures in a sequence directly affects the quality of the entire sequence. Therefore, it is important for encoders to allocate enough bits for I-pictures and P-pictures to maintain high quality because I-pictures and P-pictures are often used as motion compensation references for other pictures. Encoding artifacts that appear in individual I-pictures and P-pictures are likely to be propagated to other pictures, but this is not the case for B-pictures that are not used as reference pictures.


When encoding video, overall coding quality can be improved if fewer bits are allocated to B-pictures than to I-pictures and P-pictures. Unlike I-pictures and P-pictures, B-pictures are generally not used as reference pictures for other pictures in motion compensation. For this reason, slightly reducing the quality of B-pictures (e.g., by increasing a quantization step size) will not affect the quality of other frames. In addition, quality gains from spending more bits encoding B-pictures (e.g., by using smaller quantization step sizes) are generally not as significant as quality gains from spending those bits encoding I-pictures and P-pictures. Therefore, quality often can be improved by saving bits in B-pictures and using the saved bits to improve the quality of I-pictures and P-pictures.


Restrictions on frequency of B-pictures can make quality loss in B-pictures even less noticeable. For example, when consecutive progressive B-frames (in display order) are not allowed in a sequence, individual progressive B-frames will be displayed between two reference frames. If the reference frames are coded with good quality and the motion between the frames can be accurately predicted, the progressive B-frame will likely be perceived as a good quality frame even if it is coded with a higher QP than the reference frames. Even if the higher QP reduces the quality of the B-frame, it is likely that the reduction in quality will not be noticeable because of the quality of motion-compensated prediction and/or because human eyes tend to average the picture quality temporally. An isolated lower-quality frame generally will not affect users' overall viewing experience when the video is played in real-time.


A. Adjusting Picture QPs for Predicted Pictures (Adaptive Delta QP)


An encoder can make various kinds of adjustments to B-pictures to maintain quality in video sequences while keeping bit rate relatively low. For example, U.S. patent application Ser. No. 11/400,744, filed Apr. 7, 2006, describes a rate control scheme for B-pictures that combines quantization step size control with adaptive dead zone control. Another way to adjust B-pictures to maintain quality in video sequences while keeping bit rate relatively low is to adjust a difference (sometimes referred to as a “delta QP”) between a picture QP for a B-picture and a picture QP for an I-picture.


As mentioned above, an isolated lower-quality frame generally will not affect users' overall viewing experience over a sequence of frames. Based on this idea, techniques and tools for adaptively adjusting picture QPs for predicted pictures (e.g., B-pictures) to help achieve better bit allocation are described. For example, an encoder can implement one or more of the following features:

    • 1. For B-frames, adaptive selection of a delta QP based on one or more of the following:
      • a. spatial complexity;
      • b. temporal complexity;
      • c. differential quantization status (i.e., whether differential quantization is being used).
    • 2. For B-fields, adaptive selection of a delta QP based on one or more of the following:
      • a. spatial complexity;
      • b. temporal complexity;
      • c. differential quantization status;
      • d. whether the B-field will be used as a reference (i.e., the field order of the B-field).



FIG. 17 is a flow chart showing an example technique (1700) for adaptively adjusting a picture QP for a predicted picture. An encoder such as the encoder (1000) shown in FIG. 10 or other tool performs the technique (1000). In a two-pass encoding scheme, an encoding system such as the system (1200) shown in FIG. 12 performs the technique (1700).


Referring again to FIG. 17, the encoder selects (1710) a picture type for a current predicted picture. The encoder can use various criteria for selecting picture types, although the encoder may have to follow certain rules for selecting picture types in order to be compliant with a decoder. In this example, the encoder encodes predicted pictures as P-pictures or B-pictures.


The encoder selects (1720) an initial QP for the current picture based at least in part upon the selected picture type. Typically, initial picture QPs for predicted pictures such as B-pictures will be higher than initial QPs for I-pictures. Then, the encoder adaptively selects (1730) a delta QP for the current predicted picture. For example, the encoder adaptively selects a delta QP for a B-picture based on spatial complexity, temporal complexity, differential quantization status, and/or other factors. The encoder also can adjust quantization for the current picture in other ways, such as by selecting a larger or smaller dead zone, or switching between a uniform quantizer and non-uniform quantizer.


The encoder quantizes (1740) data for the current picture based on the selected delta QP. For example, the encoder uses an adjusted QP determined by adjusting the initial QP for the picture by the delta QP for the picture. The encoder can then process (1750) other pictures.


1. Example Delta Qp Factors


For example, assume QPBRC is the QP selected by an encoder's rate controller module for a B-picture. An adjusted picture QP for a B-picture (QPB) can be calculated by adding a delta QP (ΔQP) to QPBRC:

QPB=QPBRC+ΔQP  (7).

ΔQP can be determined adaptively based on several factors. Generally, one possible factor to be considered when determining ΔQP is scene complexity. When scene complexity is low, a bigger QP generally can be used for B-pictures in the scene without causing noticeable artifacts.


As mentioned above, a delta QP can be selected based on many different factors, including spatial complexity, temporal complexity, differential quantization (i.e., whether quantization step sizes vary between macroblocks in the picture), and whether the picture will be used as reference. In some cases, it may be desirable to take all of these factors into consideration. In other cases, some subset of these factors and/or other factors can be considered.


Spatial Complexity


Spatial complexity can be measured by performing pre-encoding analysis of a picture or group of pictures. For example, spatial complexity can be measured based on a texture analysis of a picture or group of pictures. Texture analysis can include determining whether high-textured, smooth, or sharp-edge features are present. In the case of two-pass encoding, spatial complexity may be calculated from first-pass encoding results using various techniques such as the technique (1500) shown in FIG. 15. Spatial complexity is typically considered to be high in high-texture pictures, for which the delta QP will usually be lower than for low-texture pictures. Spatial complexity is typically considered to be low in low-texture pictures, for which the delta QP will usually be higher than for high-texture pictures.


Temporal Complexity


Temporal complexity also can be measured by performing pre-encoding analysis of a picture or group of pictures. For example, temporal complexity can be measured based on a fast motion search on down-sampled frames. In the case of two-pass encoding, temporal complexity may be calculated from first-pass encoding results using various techniques such as the technique (1600) shown in FIG. 16. Temporal complexity is typically considered to be high in high-motion pictures (or other pictures where change over time is significant), for which the delta QP will usually be lower than for low temporal complexity pictures.


Differential Quantization


Differential quantization is a within-frame macroblock quantization scheme in which the encoder chooses different QPs for different macroblocks in the same picture, which can help to reduce visible artifacts. For example, a lower QP may be chosen for macroblocks in smooth regions where quantization artifacts are more likely to be perceived. In this case, an encoder can increase a delta QP for the picture since differential quantization will still tend to result in a lower QP in regions that are likely to cause visible artifacts.


Reference Picture Status


Reference picture status for a current picture (i.e., whether or not the current picture can be used as a reference picture) is usually determined based on picture type. In one implementation, progressive B-frames and interlaced B-frames are not used as reference pictures, while B-fields can be used as reference pictures: specifically, the first B-field to be decoded in a frame having two B-fields is available for use as a reference for the second field to be decoded in the frame. Typically, a delta QP for a picture of a type that will not be used as a reference picture will be higher than a delta QP for a picture of a type that will potentially be used as a reference picture.


2. Example B-field Delta Qp Decision


In the following example, an encoder makes a delta QP decision for a B-field by looking at temporal complexity, differential quantization status, and whether the current B-field will be used as a reference picture for the other field in the frame. In this example, spatial complexity is not separately considered, although spatial characteristics may affect temporal complexity for some temporal complexity measures. Specifically, in this example, AQP is calculated as follows:

ΔQP=d1+ddquant+dref  (8).


The value represented by d1 is derived from a measure of temporal complexity, as shown in Equation 9, below. For a temporal complexity measure CT, suppose 0<=CT. CT indicates how difficult it is to predict the current picture from its reference pictures (a bigger number means higher difficulty).










d
1

=

{




4
,





if





0



C
T

<
0.25






3
,





if





0.25



C
T

<
0.375






2
,





if





0.375



C
T

<
0.75






1
,





if





0.75




C
T

.










(
9
)








In practice, pictures that are difficult to predict will often have larger residuals for predicted blocks and/or larger numbers of intra blocks that are not predicted. For the thresholds shown in Equation (9), CT is computed as shown in Equation (6). For other measures of CT (e.g., in a single-pass encoder, CT can be derived from a low-complexity, fast motion search on downsampled versions of the frames), the thresholds for delta QP adjustments vary depending on implementation.


The value represented by ddquant is derived from whether differential quantization is on, as shown in Equation 10, below.










d
dquant

=

{



1




if





dquant





is





on










0



if





dquant





is






off
.










(
10
)








For example, in one implementation that uses differential quantization, an encoder makes decisions on how to vary the QPs, and signals those decisions, as appropriate, to a decoder. The encoder sends a bitstream element (DQUANT) at a syntax level called “entry point” level that corresponds to a group of pictures to indicate differential quantization status for the group of pictures. If DQUANT=0, the picture QP is used for all macroblocks in the picture. If DQUANT=1 or 2, different macroblocks in the same picture can use different QPs. Depending on the value of DQUANT, different forms of differential quantization can be signaled to a decoder. In one approach, only two different QPs are used for a picture. This is referred to as bi-level differential quantization. For example, one QP is used for macroblocks at picture edges and another QP is used for macroblocks in the rest of the picture. In another approach, referred to as multi-level differential quantization, a larger number of different QPs can be used for individual macroblocks in a picture.


The value of ddquant could take on more than two different values. For example, if multi-level differential quantization is used, ddquant could take on a different value than where bi-level differential quantization is used, and ddquant could take on a third value when differential quantization is not used at all.


The value represented by dref depends on whether the current B-field will be used as a reference for the other B field in the same frame, as shown in Equation 11, below.










d
ref

=

{




1
,




if





the





current





B





field





will





not





be





used





as





reference






0
,




otherwise
.









(
11
)







The value of dref could be determined in different ways. For example, the value of dref could take on one value if the B-field is actually used as a motion compensation reference, and take on another value if the B-field is not actually used, or not available to be used, as a motion compensation reference.


2. Example B-frame Delta Qp Decision


In the following example, an encoder makes a delta QP decision for a B-frame by looking at temporal complexity and differential quantization status. The encoder does not consider whether the current B-frame will be used as a reference picture since B-frames are never used as motion compensation references. Again, spatial complexity is not separately considered, although spatial characteristics may affect temporal complexity for some temporal complexity measures. Specifically, in this example, AQP is calculated as follows:

ΔQP=d1+ddquant  (12).


B. Alternatives


As noted above, alternatively, an encoder makes a delta QP decision for B-pictures by looking at other combinations of factors. For example, an encoder can consider spatial complexity (or other factors) or omit consideration of factors such as temporal complexity, differential quantization status, and whether the current B-field will be used as a reference picture for the other field in the frame. As another alternative, an encoder can adaptively select delta QPs for other predicted pictures (e.g., P-pictures).


Having described and illustrated the principles of our invention with reference to various described embodiments, it will be recognized that the described embodiments can be modified in arrangement and detail without departing from such principles. It should be understood that the programs, processes, or methods described herein are not related or limited to any particular type of computing environment, unless indicated otherwise. Various types of general purpose or specialized computing environments may be used with or perform operations in accordance with the teachings described herein. Elements of the described embodiments shown in software may be implemented in hardware and vice versa.


In view of the many possible embodiments to which the principles of our invention may be applied, we claim as our invention all such embodiments as may come within the scope and spirit of the following claims and equivalents thereto.

Claims
  • 1. In a video encoder, a method comprising: selecting a picture type for a current picture comprising video data, the current picture having an initial picture quantization parameter;obtaining a measure of temporal complexity for the current picture;selecting a delta quantization parameter for the current picture based at least in part on the picture type for the current picture and the measure of temporal complexity for the current picture, wherein the delta quantization parameter is a difference between a picture quantization parameter for a B-picture and a picture quantization parameter for an I-picture, and selecting includes selecting the delta quantization parameter so that fewer bits are allocated for B-pictures than for I-pictures;determining an adjusted picture quantization parameter for the current picture based at least in part on the selected delta quantization parameter; andquantizing the video data of the current picture based at least in part on the adjusted picture quantization parameter for the current picture.
  • 2. The method of claim 1 wherein the selected picture type for the current picture is a B-picture type.
  • 3. The method of claim 1 wherein the determining the adjusted picture quantization parameter for the current picture comprises adding the selected delta quantization parameter to the initial picture quantization parameter.
  • 4. The method of claim 1 further comprising outputting encoded data for the current picture.
  • 5. The method of claim 1 wherein the quantizing the video data comprises differentially quantizing the video data.
  • 6. The method of claim 1 wherein the selecting the delta quantization parameter for the current picture is also based at least in part on one or more of a measure of spatial complexity for the current picture and a differential quantization factor.
  • 7. In a video encoder, a method comprising: for a current B-picture comprising video data: obtaining a measure of temporal complexity for a group of pictures comprising the current B-picture;selecting a delta quantization parameter for the current B-picture based at least in part on the measure of temporal complexity and whether differential quantization is active;determining a picture quantization parameter for the current B-picture based at least in part on the selected delta quantization parameter, the delta quantization parameter being associated with a difference between a picture quantization parameter for the B-picture and a picture quantization parameter for an I-picture; andquantizing the video data of the current picture based at least in part on the picture quantization parameter for the current B-picture.
  • 8. The method of claim 7 wherein the current B-picture is a B-field.
  • 9. The method of claim 8 wherein the selecting the delta quantization parameter is further based on whether the B-field is available for use as a reference field.
  • 10. The method of claim 7 wherein the current B-picture is a progressive B-frame or an interlaced B-frame.
  • 11. The method of claim 7 wherein the selecting the delta quantization parameter comprises: selecting a larger delta quantization parameter if differential quantization is active, otherwise selecting a smaller delta quantization parameter.
  • 12. The method of claim 7 further comprising, for the current B-picture: obtaining a measure of spatial complexity for the current B-picture;wherein the selecting the delta quantization parameter for the current B-picture is further based on the measure of spatial complexity.
  • 13. The method of claim 7 wherein the determining the picture quantization parameter for the current B-picture comprises adding the selected delta quantization parameter to an initial picture quantization parameter for the current B-picture.
  • 14. The method of claim 7 further comprising outputting encoded data for the current B-picture.
  • 15. The method of claim 7 wherein the quantizing the video data comprises differentially quantizing the video data.
  • 16. The method of claim 7 wherein the current B-picture is a B-field, the method further comprising, for the B-field: obtaining a measure of spatial complexity for the B-field; anddetermining whether the B-field is used as a reference field;wherein the selecting the delta quantization parameter is further based on the measure of spatial complexity and whether the B-field is used as a reference field.
  • 17. The method of claim 7 wherein the method is performed as part of single-pass encoding.
  • 18. The method of claim 7 wherein the method is performed as part of multi-pass encoding.
  • 19. One or more computer-readable nonvolatile storage devices having stored thereon computer executable instructions to cause one or more computers to perform the method of claim 7.
  • 20. An encoder comprising: a frequency transformer for frequency transforming plural blocks of spatial domain information into plural blocks of transform coefficients;a quantizer for quantizing the transform coefficients;an entropy encoder for entropy encoding the quantized transform coefficients;an inverse quantizer for inverse quantizing the quantized transform coefficients; anda controller for selecting quantization parameters for the quantizing, wherein the controller implements: a first path for selecting picture quantization parameters for B-pictures based at least in part on a delta quantization parameter derived from one or more measures of temporal complexity corresponding to the B-pictures, the delta quantization parameter being a difference between a picture quantization parameter for a B-picture and an I-picture and wherein the delta quantization parameter is chosen such that fewer bits are allocated for B-pictures than for I-pictures; anda second path for selecting picture quantization parameters for pictures of types other than B-pictures.
US Referenced Citations (330)
Number Name Date Kind
762026 Connstein Jun 1904 A
4583114 Catros Apr 1986 A
4679079 Catros et al. Jul 1987 A
4774574 Daly et al. Sep 1988 A
4821119 Gharavi Apr 1989 A
4862264 Wells et al. Aug 1989 A
4965830 Barham et al. Oct 1990 A
4992889 Yamagami et al. Feb 1991 A
5072295 Murakami et al. Dec 1991 A
5128758 Azadegan et al. Jul 1992 A
5136377 Johnston et al. Aug 1992 A
5144426 Tanaka et al. Sep 1992 A
5146324 Miller et al. Sep 1992 A
5179442 Azadegan et al. Jan 1993 A
5237410 Inoue Aug 1993 A
5241395 Chen Aug 1993 A
5253058 Gharavi Oct 1993 A
5263088 Hazu et al. Nov 1993 A
5301242 Gonzales et al. Apr 1994 A
5303058 Fukuda et al. Apr 1994 A
5317396 Fujinami May 1994 A
5317672 Crossman et al. May 1994 A
5333212 Ligtenberg Jul 1994 A
5351310 Califano et al. Sep 1994 A
5374958 Yanagihara Dec 1994 A
5412429 Glover May 1995 A
5452104 Lee Sep 1995 A
5461421 Moon Oct 1995 A
5473377 Kim Dec 1995 A
5481553 Suzuki et al. Jan 1996 A
5506916 Nishihara et al. Apr 1996 A
5510785 Segawa et al. Apr 1996 A
5537440 Eyuboglu et al. Jul 1996 A
5537493 Wilkinson Jul 1996 A
5539469 Jung Jul 1996 A
5559557 Kato Sep 1996 A
5565920 Lee et al. Oct 1996 A
5587708 Chiu Dec 1996 A
5606371 Gunnewick et al. Feb 1997 A
5623424 Azadegan et al. Apr 1997 A
5631644 Katata et al. May 1997 A
5654760 Ohtsuki Aug 1997 A
5657087 Jeong et al. Aug 1997 A
5663763 Yagasaki et al. Sep 1997 A
5724097 Hibi et al. Mar 1998 A
5724456 Boyack et al. Mar 1998 A
5731836 Lee Mar 1998 A
5731837 Hurst, Jr. Mar 1998 A
5739861 Music Apr 1998 A
5751358 Suzuki et al. May 1998 A
5751379 Markandey et al. May 1998 A
5761088 Hulyalkar et al. Jun 1998 A
5764803 Jacquin et al. Jun 1998 A
5781788 Woo et al. Jul 1998 A
5786856 Hall et al. Jul 1998 A
5802213 Gardos Sep 1998 A
5809178 Anderson et al. Sep 1998 A
5815097 Schwartz et al. Sep 1998 A
5819035 Devaney et al. Oct 1998 A
5825310 Tsutsui Oct 1998 A
5835145 Ouyang et al. Nov 1998 A
5835237 Ebrahimi Nov 1998 A
5844613 Chaddha Dec 1998 A
5850482 Meany et al. Dec 1998 A
5867167 Deering Feb 1999 A
5870435 Choi et al. Feb 1999 A
5877813 Lee et al. Mar 1999 A
5878166 Legall Mar 1999 A
5880775 Ross Mar 1999 A
5883672 Suzuki et al. Mar 1999 A
5926791 Ogata et al. Jul 1999 A
5969764 Sun et al. Oct 1999 A
5970173 Lee et al. Oct 1999 A
5990957 Ryoo Nov 1999 A
6044115 Horiike et al. Mar 2000 A
6049630 Wang et al. Apr 2000 A
6058362 Malvar May 2000 A
6072831 Chen Jun 2000 A
6084636 Sugahara et al. Jul 2000 A
6088392 Rosenberg Jul 2000 A
6091777 Guetz et al. Jul 2000 A
6104751 Artieri Aug 2000 A
6118817 Wang Sep 2000 A
6118903 Liu Sep 2000 A
6125140 Wilkinson Sep 2000 A
6148107 Ducloux et al. Nov 2000 A
6148109 Boon et al. Nov 2000 A
6160846 Chiang et al. Dec 2000 A
6167091 Okada et al. Dec 2000 A
6182034 Malvar Jan 2001 B1
6212232 Reed et al. Apr 2001 B1
6215905 Lee et al. Apr 2001 B1
6223162 Chen et al. Apr 2001 B1
6240135 Kim May 2001 B1
6240380 Malvar May 2001 B1
6243497 Chiang et al. Jun 2001 B1
6249614 Kolesnik et al. Jun 2001 B1
6256422 Mitchell et al. Jul 2001 B1
6256423 Krishnamurthy Jul 2001 B1
6263022 Chen et al. Jul 2001 B1
6263024 Matsumoto Jul 2001 B1
6275614 Krishnamurthy et al. Aug 2001 B1
6278735 Mohsenian Aug 2001 B1
6292588 Shen et al. Sep 2001 B1
6314208 Konstantinides et al. Nov 2001 B1
6337881 Chaddha Jan 2002 B1
6347116 Haskell et al. Feb 2002 B1
6348945 Hayakawa Feb 2002 B1
6356709 Abe et al. Mar 2002 B1
6359928 Wang et al. Mar 2002 B1
6360017 Chiu et al. Mar 2002 B1
6370502 Wu et al. Apr 2002 B1
6373894 Florencio et al. Apr 2002 B1
6385343 Kuroda et al. May 2002 B1
6389171 Washington May 2002 B1
6393155 Bright et al. May 2002 B1
6408026 Tao Jun 2002 B1
6418166 Wu et al. Jul 2002 B1
6438167 Shimizu et al. Aug 2002 B1
6456744 Lafe Sep 2002 B1
6463100 Cho et al. Oct 2002 B1
6466620 Lee Oct 2002 B1
6473534 Merhav et al. Oct 2002 B1
6490319 Yang Dec 2002 B1
6493385 Sekiguchi et al. Dec 2002 B1
6519284 Pesquet-Popescu et al. Feb 2003 B1
6526096 Lainema et al. Feb 2003 B2
6546049 Lee Apr 2003 B1
6571019 Kim et al. May 2003 B1
6593925 Hakura et al. Jul 2003 B1
6600836 Thyagarajan et al. Jul 2003 B1
6647152 Willis et al. Nov 2003 B2
6654417 Hui Nov 2003 B1
6678422 Sharma et al. Jan 2004 B1
6687294 Yan et al. Feb 2004 B2
6704718 Burges et al. Mar 2004 B2
6721359 Bist et al. Apr 2004 B1
6728317 Demos Apr 2004 B1
6731811 Rose May 2004 B1
6738423 Lainema et al. May 2004 B1
6747660 Olano et al. Jun 2004 B1
6759999 Doyen Jul 2004 B1
6760482 Taubman Jul 2004 B1
6765962 Lee et al. Jul 2004 B1
6771830 Goldstein et al. Aug 2004 B2
6785331 Jozawa et al. Aug 2004 B1
6788740 van der Schaar et al. Sep 2004 B1
6792157 Koshi et al. Sep 2004 B1
6795584 Karczewicz et al. Sep 2004 B2
6801572 Yamada et al. Oct 2004 B2
6807317 Mathew et al. Oct 2004 B2
6810083 Chen et al. Oct 2004 B2
6831947 Ribas Corbera Dec 2004 B2
6862320 Isu et al. Mar 2005 B1
6865291 Zador Mar 2005 B1
6873654 Rackett Mar 2005 B1
6876703 Ismaeil et al. Apr 2005 B2
6882753 Chen et al. Apr 2005 B2
6907142 Kalevo et al. Jun 2005 B2
6909745 Puri et al. Jun 2005 B1
6947045 Ostermann et al. Sep 2005 B1
6975680 Demos Dec 2005 B2
6977659 Dumitras et al. Dec 2005 B2
6983018 Lin et al. Jan 2006 B1
6990242 Malvar Jan 2006 B2
7016546 Fukuhara et al. Mar 2006 B2
7020204 Auvray et al. Mar 2006 B2
7027506 Lee et al. Apr 2006 B2
7027507 Wu Apr 2006 B2
7035473 Zeng et al. Apr 2006 B1
7042941 Laksono et al. May 2006 B1
7058127 Lu et al. Jun 2006 B2
7099389 Yu et al. Aug 2006 B1
7099515 Lin et al. Aug 2006 B2
7110455 Wu et al. Sep 2006 B2
7162096 Horowitz Jan 2007 B1
7200277 Joshi et al. Apr 2007 B2
7289154 Gindele Oct 2007 B2
7295609 Sato et al. Nov 2007 B2
7301999 Filippini et al. Nov 2007 B2
7307639 Dumitras et al. Dec 2007 B1
7356085 Gavrilescu et al. Apr 2008 B2
7463780 Fukuhara et al. Dec 2008 B2
7471830 Lim et al. Dec 2008 B2
7580584 Holcomb et al. Aug 2009 B2
7738554 Lin et al. Jun 2010 B2
7778476 Alvarez et al. Aug 2010 B2
7801383 Sullivan Sep 2010 B2
7869517 Ghanbari Jan 2011 B2
7889790 Sun Feb 2011 B2
7995649 Zuo et al. Aug 2011 B2
20010048718 Bruls et al. Dec 2001 A1
20020021756 Jayant et al. Feb 2002 A1
20020044602 Ohki Apr 2002 A1
20020118748 Inomata et al. Aug 2002 A1
20020118884 Cho et al. Aug 2002 A1
20020136297 Shimada et al. Sep 2002 A1
20020136308 Le Maguet et al. Sep 2002 A1
20020154693 Demos et al. Oct 2002 A1
20020186890 Lee et al. Dec 2002 A1
20030021482 Lan et al. Jan 2003 A1
20030053702 Hu Mar 2003 A1
20030095599 Lee et al. May 2003 A1
20030103677 Tastl et al. Jun 2003 A1
20030108100 Sekiguchi et al. Jun 2003 A1
20030113026 Srinivasan et al. Jun 2003 A1
20030128754 Akimoto et al. Jul 2003 A1
20030128756 Oktem Jul 2003 A1
20030138150 Srinivasan Jul 2003 A1
20030185420 Sefcik et al. Oct 2003 A1
20030194010 Mukerjee et al. Oct 2003 A1
20030206582 Srinivasan et al. Nov 2003 A1
20030215011 Wang et al. Nov 2003 A1
20030219073 Lee et al. Nov 2003 A1
20030223493 Ye et al. Dec 2003 A1
20030235247 Wu et al. Dec 2003 A1
20040008901 Avinash Jan 2004 A1
20040022316 Ueda et al. Feb 2004 A1
20040036692 Alcorn et al. Feb 2004 A1
20040090397 Doyen et al. May 2004 A1
20040091168 Jones et al. May 2004 A1
20040151243 Bhaskaran et al. Aug 2004 A1
20040158719 Lee et al. Aug 2004 A1
20040190610 Song et al. Sep 2004 A1
20040202376 Schwartz et al. Oct 2004 A1
20040228406 Song Nov 2004 A1
20040264568 Florencio Dec 2004 A1
20040264580 Chiang Wei Yin et al. Dec 2004 A1
20050002575 Joshi et al. Jan 2005 A1
20050008075 Chang et al. Jan 2005 A1
20050013365 Mukerjee et al. Jan 2005 A1
20050013497 Hsu et al. Jan 2005 A1
20050013498 Srinivasan et al. Jan 2005 A1
20050013500 Lee et al. Jan 2005 A1
20050015246 Thumpudi et al. Jan 2005 A1
20050015259 Thumpudi et al. Jan 2005 A1
20050024487 Chen Feb 2005 A1
20050031034 Kamaci et al. Feb 2005 A1
20050036698 Beom Feb 2005 A1
20050036699 Holcomb et al. Feb 2005 A1
20050041738 Lin et al. Feb 2005 A1
20050052294 Liang et al. Mar 2005 A1
20050053151 Lin et al. Mar 2005 A1
20050053158 Regunathan et al. Mar 2005 A1
20050084009 Furukawa et al. Apr 2005 A1
20050084013 Wang et al. Apr 2005 A1
20050094731 Xu et al. May 2005 A1
20050105612 Sung et al. May 2005 A1
20050105622 Gokhale May 2005 A1
20050123274 Crinon et al. Jun 2005 A1
20050135484 Lee et al. Jun 2005 A1
20050147163 Li et al. Jul 2005 A1
20050152451 Byun Jul 2005 A1
20050180500 Chiang et al. Aug 2005 A1
20050180502 Puri Aug 2005 A1
20050190836 Lu et al. Sep 2005 A1
20050207492 Pao Sep 2005 A1
20050232501 Mukerjee Oct 2005 A1
20050238096 Holcomb et al. Oct 2005 A1
20050254719 Sullivan Nov 2005 A1
20050259729 Sun Nov 2005 A1
20050276493 Xin et al. Dec 2005 A1
20060013307 Olivier et al. Jan 2006 A1
20060013309 Ha et al. Jan 2006 A1
20060018552 Malayath et al. Jan 2006 A1
20060034368 Klivington Feb 2006 A1
20060038826 Daly Feb 2006 A1
20060056508 Lafon et al. Mar 2006 A1
20060071825 Demos Apr 2006 A1
20060083308 Schwarz et al. Apr 2006 A1
20060088098 Vehvilainen Apr 2006 A1
20060098733 Matsumura et al. May 2006 A1
20060104350 Liu May 2006 A1
20060104527 Koto et al. May 2006 A1
20060126724 Cote Jun 2006 A1
20060126728 Yu et al. Jun 2006 A1
20060133478 Wen Jun 2006 A1
20060133479 Chen et al. Jun 2006 A1
20060140267 He et al. Jun 2006 A1
20060165176 Raveendran et al. Jul 2006 A1
20060188014 Civanlar et al. Aug 2006 A1
20060197777 Cha et al. Sep 2006 A1
20060227868 Chen et al. Oct 2006 A1
20060238444 Wang et al. Oct 2006 A1
20060239576 Mukherjee Oct 2006 A1
20060245506 Lin et al. Nov 2006 A1
20060256851 Wang et al. Nov 2006 A1
20060256867 Turaga et al. Nov 2006 A1
20060257037 Samadani Nov 2006 A1
20060268990 Lin et al. Nov 2006 A1
20060268991 Segall et al. Nov 2006 A1
20070002946 Bouton et al. Jan 2007 A1
20070009039 Ryu Jan 2007 A1
20070009042 Craig et al. Jan 2007 A1
20070053603 Monro Mar 2007 A1
20070081586 Raveendran et al. Apr 2007 A1
20070081588 Raveendran et al. Apr 2007 A1
20070140333 Chono et al. Jun 2007 A1
20070147497 Bao et al. Jun 2007 A1
20070160138 Wedi et al. Jul 2007 A1
20070160151 Bolton et al. Jul 2007 A1
20070189626 Tanizawa et al. Aug 2007 A1
20070201553 Shindo Aug 2007 A1
20070230565 Tourapis et al. Oct 2007 A1
20070237221 Hsu et al. Oct 2007 A1
20070237222 Xia et al. Oct 2007 A1
20070237236 Chang et al. Oct 2007 A1
20070237237 Chang et al. Oct 2007 A1
20070248163 Zuo et al. Oct 2007 A1
20070248164 Zuo et al. Oct 2007 A1
20070258518 Tu et al. Nov 2007 A1
20070258519 Srinivasan Nov 2007 A1
20080008394 Segall Jan 2008 A1
20080031346 Segall Feb 2008 A1
20080068446 Barkley et al. Mar 2008 A1
20080080615 Tourapis et al. Apr 2008 A1
20080089410 Lu et al. Apr 2008 A1
20080101465 Chono et al. May 2008 A1
20080187042 Jasinschi Aug 2008 A1
20080192822 Chang et al. Aug 2008 A1
20080240235 Holcomb et al. Oct 2008 A1
20080240250 Lin et al. Oct 2008 A1
20080240257 Chang et al. Oct 2008 A1
20080260278 Zuo et al. Oct 2008 A1
20090207919 Yin et al. Aug 2009 A1
20090213930 Ye et al. Aug 2009 A1
20090245587 Holcomb et al. Oct 2009 A1
20090290635 Kim et al. Nov 2009 A1
20090296808 Regunathan et al. Dec 2009 A1
20100177826 Bhaumik et al. Jul 2010 A1
Foreign Referenced Citations (28)
Number Date Country
1327074 Feb 1994 CA
0932306 Jul 1999 EP
1465349 Oct 2004 EP
1871113 Dec 2007 EP
897363 May 1962 GB
05-227525 Sep 1993 JP
07-222145 Aug 1995 JP
07-250327 Sep 1995 JP
08-336139 Dec 1996 JP
10-336656 Dec 1998 JP
11-041610 Feb 1999 JP
2003061090 Feb 2003 JP
6-296275 Oct 2004 JP
2007-281949 Oct 2007 JP
132895 Oct 1998 KR
WO 9721302 Jun 1997 WO
WO 9948300 Sep 1999 WO
WO 0021207 Apr 2000 WO
WO 0072599 Nov 2000 WO
WO 0207438 Jan 2002 WO
WO 2004100554 Nov 2004 WO
WO 2004100556 Nov 2004 WO
WO 2005065030 Jul 2005 WO
WO 2005076614 Aug 2005 WO
WO 2006075895 Jul 2006 WO
WO 2006112620 Oct 2006 WO
WO 2007015047 Feb 2007 WO
WO 2007130580 Nov 2007 WO
Related Publications (1)
Number Date Country
20080304562 A1 Dec 2008 US