The invention pertains to ignition and sensing systems, and particularly to flame ignition and sensing systems. More particularly, the invention pertains to such systems having spark-type ignition.
The present application is related to the following indicated patent applications: entitled “Dynamic DC Biasing and Leakage Compensation”, U.S. application Ser. No. 10/908,463, filed May 12, 2005; Ser. No. 10/908,465 entitled “Leakage Detection and Compensation System”; and entitled “Flame Sensing System”, U.S. application Ser. No. 10/908,466, filed May 12, 2005; which are incorporated herein by reference.
The invention is a flame sensing system having spark ignition.
Relative to an automatic gas ignition system which uses sparking to ignite gas, the required spark energy and rate depend on various factors for successful ignition. Some of these factors may be application dependent or tied to environmental conditions such as humidity and temperature. A control of the system having an ability to adjust and adapt may easily overcome many of the things that adversely affect spark ignition. The system 10 of
The present system may have the capability to generate the needed high voltages and closely monitor the amount of energy applied for a given spark and check for the presence of a flame after doing such. This capability may include increasing spark energy in difficult lighting conditions, decreasing spark energy where extra energy may be unnecessary since it would only cause additional noise emission. This capability may also include an increasing spark rate for situations where a trial for ignition time is short and high spark energy alone does not provide for successful ignition.
The system 10 may also generate a voltage for sensing the presence of a flame after a spark attempt, thereby making it a very flexible system relative to input voltage requirements. The system may be able to control the flame sensing load by stopping an incorporated chopping circuit 59 when a quick charging of a spark capacitor 22 is necessary.
The circuit of system 10 of
A microcontroller 16 may have an output 18 connected to a gate of FET 15. Output 18 may be about a 31 kHz switching square wave signal to FET 15. Output 18 may be of other frequencies. Microcontroller 16 may have a ground line connected to terminal 17. A source of FET 15 may be connected to a ground terminal 17. The other end of capacitor 13 may be connected to a cathode of a diode 19 and an anode of a diode 21. The other end of capacitor 14 may be connected to the cathode of diode 23 and an anode of diode 28. The anode of diode 19 may be connected to the ground terminal 17. The cathode of diode 21 may be connected to one end of capacitor 22, the anode of diode 23, a terminal 24 of a primary winding of a step-up transformer 25, and a cathode of diode 26. Capacitor 22 may have a value of about one microfarad. The step-up transformer 25 may have a primary-to-secondary winding turn ratio of about 200. The anode of diode 26 may be connected to a terminal 27 of the primary winding of the transformer 25. The other end of capacitor 22 may be connected to the ground terminal 17. Inductor 11, FET 15, capacitor 13, diodes 19 and 21, and capacitor 22 may constitute a boost DC-DC step-up converter 49. Converter 49 may provide about a 150 volt potential at a node 53.
An SCR 29 may have an anode connected to terminal 27 of transformer 25 and a cathode connected to the ground terminal 17. Microcontroller 16 may have an output 31 connected to a gate of SCR 29 via a resistor 32.
A terminal 33 of a secondary winding of transformer 25 may be connected to a spark rod assembly 34. A terminal 35 of the secondary winding of transformer 25 may be connected to a spark rod ground 36. The spark rod assembly 34 may be connected to the rod ground 36.
The cathode of diode 28 may be connected to one end of a capacitor 37. The other end of capacitor 37 may be connected to the ground terminal 17. The cathode of diode 28 may also be connected to one end of a resistor 38 and to a collector of an NPN transistor 39. The other end of resistor 38 may be connected to a base of transistor 39, a cathode of diode 41, and a collector of an NPN transistor 42. The emitter of transistor 42 may be connected to the ground terminal 17. Microcontroller 16 may have an output 43 connected via a resistor 58 to a base of transistor 42. The emitter of transistor 39 may be connected to an anode of diode 41 and to one end of a capacitor 44. The other end of capacitor 44 may be an output 63 of system 10 connected to a flame sensing rod 45. Block 68 may be a resistor and diode network used to represent the flame.
System 10 may have an algorithm embedded in the microcontroller 16 with A/D (analog-to-digital converter) input and PWM (pulse width modulation) output capability. The microcontroller may use the PWM channel output 18 to control the high voltage MOSFET 15 such that, during the MOSFET on-time, energy may be built up in the inductor 11 in the form of a current. When the MOSFET is switched off, the energy may cause a significant voltage rise on the drain of MOSFET 15, thus dumping energy through capacitors 13 and 14, respectively, into capacitors 22 and 37. The process may repeat while the output capacitors are charged to a desired level. While the charging is taking place, the microcontroller 16 may monitor the voltage on capacitor 22 at node 53 via an analog-to-digital converter (ADC) 57 connection, and a simple voltage divider or other means (not shown), and control the charging rate and the voltage on the capacitors by varying the duty cycle of FET 15. Also, controller 16 may determine when to turn on SCR 29 based on the potential on node 53. The spark energy may be proportional to the square of the voltage on capacitor 22.
Once a trial for ignition is initiated, the microcontroller 16 may trigger the SCR 29 which dumps energy from capacitor 22 through the primary winding of the spark coil or transformer 25 thereby causing a high voltage to appear across the secondary winding of transformer 25 to provide a spark on the spark rod 34. The microcontroller 16 may then use a signal on line 65 from the flame sensing circuit 64 to determine if a flame is present or not, and then to adjust the spark energy accordingly with a rate control signal via line 31 to the gate of SCR 29 via resistor 32, and a magnitude control signal via line 18 to FET 15. Sensing circuit 64 may be connected to output 63 and ground 17. Also, a signal on line 43 may go to transistor 42 via resistor 58 to shut down the chopper circuit 59 to save energy in the circuit 49 for the spark ignition network or circuit 56.
Capacitor 13 may provide DC isolation for the spark circuit from the input voltage source 69. Without DC current blocking capacitor 13, once SCR 29 is triggered, SCR 29 could keep conducting and inductor 11 may be burned or ruined.
Capacitor 14, diode 23, diode 28 and capacitor 37 may form a voltage doubler 54. The voltage on capacitor 37 may be made roughly twice as high (e.g., about 300 volts) as the voltage on capacitor 22. About 150 volts may be across capacitors 14 and 22. With the diodes 23 and 28 in place, the voltage charges on capacitors 14 and 37 may be sustained and prevented from flowing back off the capacitors to nodes 53 and 55, respectively. An added advantage of the circuit 54 is that the voltage rating of FET 15 may not have to be as high as the voltage needed on capacitor 37. Thus, it is possible to use a low cost MOSFET as the FET 15. However, one may leave out the voltage multiplier or doubler circuit 54 and take a voltage directly from the voltage step-up circuit 49 and even if a higher rated switch or FET 15 is needed. Voltage adjustment on either of the voltage circuits may be effected by loading the output.
Transformer 25, diode 26, SCR 29 and gate resistor 32 may constitute a switching step-up voltage circuit 56 for providing sufficient voltage for spark ignition of gas at the spark rod 34. SCR 29 may be turned on to discharge a charge on the capacitor 22 through the primary winding of the transformer 25 to ground. At that time a high voltage pulse (about 12 k to 17 k volts) may appear on the secondary winding of transformer 25 and go to spark rod 34. Diode 26 may prevent a significant reverse current (i.e., from terminal 27 to terminal 24) appearing across the primary winding of the transformer 25. SCR 29 may be turned off when the current going through it goes to zero. The charging and switching cycle may be repeated. A periodic pulse from the controller 16 may go to the gate of SCR 29 to turn it on to achieve appropriate spark timing.
To perform flame sensing with system 10, the microcontroller 16 may chop the high voltage on node 61 from capacitor 37 for an output signal to the flame detector 45 with a square wave signal on line 43 via a base input resistor 58 to transistor 42 of a chopping or chopper circuit 59. The chopper circuit 59 may additionally consist of the transistor 39, resistor 38, diode 41 and DC blocking capacitor 44 at output 63. The output 63 may be connected to the flame detector 45. The signal 43 from microcontroller 16 may have a frequency of about 2.4 kHz. This frequency may range between 50 Hz and 200 kHz. When the signal 43 is positive, transistor 42 may be turned on to conduct some current from node 61 via resistor 38. That may provide a close to zero voltage on the base of transistor 39 effectively shutting it off and thereby reducing the signal at node 62 to nearly zero except for a diode drop or so. When the signal on line 43 is about zero or less, the transistor 42 may shut off and effectively reduce the amount of current, flowing from node 61 to ground 17 via transistor 42, to nearly zero. Then the voltage drop across resistor 38 may be negligible and a positive voltage may appear on the base of transistor 39 relative to its emitter. This positive voltage may turn on transistor 39 thereby resulting in a high voltage at node 62 nearly the same as the voltage on node 61. The waveform at node 62 may be a square wave with peaks at about 300 volts to about a diode drop above zero. At the output node 63, because of capacitor 44, the waveform may be symmetrical about zero volts with plus and minus 150 volt square peaks with a little droop down and up, respectively, with the degree of droop depending on the value of the capacitor 44 and an amount of flame sensor impedance. The signal frequency at the output 63 may be the same as the frequency of the signal input to the base of the transistor 42. The output signal may go to flame rod 45 for flame rectification.
The microcontroller 16 may monitor the amount of energy applied to a given spark and check for the presence of a flame via node 53 and line 65, respectively. Information about the spark energy and flame presence may enable the microcontroller 16 to increase or decrease spark energy via control on lines 18, 31 and 43 for difficult or easy lighting conditions. The spark rate may be increased by microcontroller 16 when room for ignition time is short and high spark energy does not solve an ignition difficulty. The chopper circuit 59 for flame sensing may be turned off to aid in faster charging of capacitor 22. The microcontroller 16 may be programmed to control various aspects of ignition and sensing of the system 10. Controller 16 may contain a control algorithm to effect various controls in the system for more efficient and effective igniting and sensing of a flame. The algorithm may be implemented with software or in another manner.
Independently from adjustment of applied spark energy, the invention above may include adaptive flame sensing with a constant-current mode. Given the capability to measure the strength of the flame signal from the flame sensing circuit 64, the microcontroller in this system may use control line 18 and feedback connection 57 to adjust the applied voltage to the flame sensing circuit. Applying lower voltage to a flame rod in flame rectification may significantly extend the life of the appliance, yet as contamination builds up on the flame rod 45, a higher voltage may be needed to detect the presence of a flame. Thus, with this circuit one may use the ADC connection 57 to sense voltage at node 53, and note that the voltage on capacitor 37 is close to double that of node 53 to control the voltage applied to the flame rod 45. An algorithm in the microcontroller may measure the flame strength seen from sensing circuit 64 and adjust the applied voltage through control line 18 such that the signal is always within a pre-programmed range. This algorithm may effectively produce a constant net flame current, increasing voltage only as necessary to break through contamination build up on the flame rod.
One may note that the spark and flame sensing would not occur at the same time. Therefore, the voltage at node 53 may be controlled to different levels at different time. For example, when higher spark energy is needed, the voltage at node 53 may be regulated at 170 volts or higher. After the flame is sensed, spark may be stopped. If the flame current is strong, the voltage at node 53 may be controlled at a much lower level, such as 70 volts, so that the voltage at node 61 is only about 140 volts, as long as the flame current sensed is still within the pre-determined range. The controller 16 may continuously sense the voltage at node 53 and adjust control line 18 to regulate voltage at node 53 to meet the dynamic voltage or energy needs required by the spark and flame sensing circuits.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the invention has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the present specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
3425780 | Potts | Feb 1969 | A |
3520645 | Cotton et al. | Jul 1970 | A |
3649156 | Conner | Mar 1972 | A |
3681001 | Potts | Aug 1972 | A |
3836857 | Ikegami et al. | Sep 1974 | A |
3909816 | Teeters | Sep 1975 | A |
4157506 | Spencer | Jun 1979 | A |
4221557 | Jalics | Sep 1980 | A |
4242079 | Matthews | Dec 1980 | A |
4269589 | Matthews | May 1981 | A |
4280184 | Weiner et al. | Jul 1981 | A |
4303385 | Rudich et al. | Dec 1981 | A |
4370557 | Axmark et al. | Jan 1983 | A |
4450499 | Sorelle | May 1984 | A |
4457692 | Erdman | Jul 1984 | A |
4483672 | Wallace et al. | Nov 1984 | A |
4521825 | Crawford | Jun 1985 | A |
4527247 | Kaiser et al. | Jul 1985 | A |
4555800 | Nishikawa et al. | Nov 1985 | A |
4655705 | Shute et al. | Apr 1987 | A |
4672324 | van Kampen | Jun 1987 | A |
4695246 | Beilfuss et al. | Sep 1987 | A |
4709155 | Yamaguchi et al. | Nov 1987 | A |
4777607 | Maury et al. | Oct 1988 | A |
4830601 | Dahlander et al. | May 1989 | A |
4842510 | Grunden et al. | Jun 1989 | A |
4843084 | Parker et al. | Jun 1989 | A |
4872828 | Mierzwinski | Oct 1989 | A |
4904986 | Pinckaers | Feb 1990 | A |
4949355 | Dyke et al. | Aug 1990 | A |
4955806 | Grunden et al. | Sep 1990 | A |
5026270 | Adams et al. | Jun 1991 | A |
5026272 | Takahashi et al. | Jun 1991 | A |
5037291 | Clark | Aug 1991 | A |
5073769 | Kompelien | Dec 1991 | A |
5077550 | Cormier | Dec 1991 | A |
5112117 | Ripka et al. | May 1992 | A |
5126721 | Butcher et al. | Jun 1992 | A |
5158477 | Geary | Oct 1992 | A |
5175439 | Harer et al. | Dec 1992 | A |
5222888 | Jones et al. | Jun 1993 | A |
5236328 | Tate et al. | Aug 1993 | A |
5255179 | Zekan et al. | Oct 1993 | A |
5276630 | Baldwin et al. | Jan 1994 | A |
5280802 | Comuzie, Jr. | Jan 1994 | A |
5300836 | Cha | Apr 1994 | A |
5347982 | Binzer et al. | Sep 1994 | A |
5365223 | Sigafus | Nov 1994 | A |
5391074 | Meeker | Feb 1995 | A |
5424554 | Marran et al. | Jun 1995 | A |
5446677 | Jensen et al. | Aug 1995 | A |
5472336 | Adams et al. | Dec 1995 | A |
5506569 | Rowlette | Apr 1996 | A |
5567143 | Servidio | Oct 1996 | A |
5599180 | Peters et al. | Feb 1997 | A |
5682329 | Seem et al. | Oct 1997 | A |
5722823 | Hodgkiss | Mar 1998 | A |
5797358 | Brandt et al. | Aug 1998 | A |
5971745 | Bassett et al. | Oct 1999 | A |
6060719 | DiTucci et al. | May 2000 | A |
6071114 | Cusack et al. | Jun 2000 | A |
6084518 | Jamieson | Jul 2000 | A |
6222719 | Kadah | Apr 2001 | B1 |
6261086 | Fu | Jul 2001 | B1 |
6299433 | Gauba et al. | Oct 2001 | B1 |
6346712 | Popovic et al. | Feb 2002 | B1 |
6349156 | O'Brien et al. | Feb 2002 | B1 |
6356827 | Davis et al. | Mar 2002 | B1 |
6385510 | Hoog et al. | May 2002 | B1 |
6457692 | Gohl, Jr. | Oct 2002 | B1 |
6474979 | Rippelmeyer | Nov 2002 | B1 |
6486486 | Haupenthal | Nov 2002 | B1 |
6509838 | Payne et al. | Jan 2003 | B1 |
6552865 | Cyrusian | Apr 2003 | B2 |
6676404 | Lochschmied | Jan 2004 | B2 |
6743010 | Bridgeman et al. | Jun 2004 | B2 |
6782345 | Siegel et al. | Aug 2004 | B1 |
6794771 | Orloff | Sep 2004 | B2 |
6912671 | Christensen et al. | Jun 2005 | B2 |
6917888 | Logvinov et al. | Jul 2005 | B2 |
7088137 | Behrendt et al. | Aug 2006 | B2 |
7088253 | Grow | Aug 2006 | B2 |
7202794 | Huseynov et al. | Apr 2007 | B2 |
7241135 | Munsterhuis et al. | Jul 2007 | B2 |
7255285 | Troost et al. | Aug 2007 | B2 |
7274973 | Nichols et al. | Sep 2007 | B2 |
7289032 | Seguin et al. | Oct 2007 | B2 |
7327269 | Kiarostami | Feb 2008 | B2 |
7617691 | Street et al. | Nov 2009 | B2 |
7728736 | Leeland et al. | Jun 2010 | B2 |
7764182 | Chian et al. | Jul 2010 | B2 |
7768410 | Chian | Aug 2010 | B2 |
7800508 | Chian et al. | Sep 2010 | B2 |
20020099474 | Khesin | Jul 2002 | A1 |
20030064335 | Canon | Apr 2003 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20040209209 | Chodacki et al. | Oct 2004 | A1 |
20050086341 | Enga et al. | Apr 2005 | A1 |
20070159978 | Anglin et al. | Jul 2007 | A1 |
20070188971 | Chian et al. | Aug 2007 | A1 |
20090009344 | Chian | Jan 2009 | A1 |
20090136883 | Chian et al. | May 2009 | A1 |
20100013644 | McDonald et al. | Jan 2010 | A1 |
20100265075 | Chian | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
0967440 | Dec 1999 | EP |
1148298 | Oct 2001 | EP |
9718417 | May 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20060257805 A1 | Nov 2006 | US |