Techniques exist to control a computer system via a wireless myoelectric user interface. In one such approach, a user wears a band that is sized to fit around the user's forearm or wrist. The band includes myoelectric sensors arranged to detect hand and/or finger gestures by sensing the user's muscle activity. Typically, the wearable band includes processing capabilities to receive the sensed signals and to convert them into electronic control signals, which are then delivered (wirelessly or otherwise) to a device being controlled, such as computer, some other portable electronic device, an application executing on such a device, or the like.
Additionally, research studies investigating a brain-computer interface (BCI), also known as a brain-machine interface (BMI), a mind-machine interface (MMI) or a direct neural interface (DNI), have shown that a direct communication pathway is established between an enhanced or wired brain, and an external device. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions.
Some conventional brain control interfaces use signals directly recorded from cortical neurons in the brain to provide adaptive control of a device. Some embodiments are directed to providing enhanced adaptive control of a device without the use of a cortical interface. Rather, some embodiments are directed to a system for recording a continuous time series of neuromuscular signals using neuromuscular sensors. The neuromuscular signals are provided as the front-end to an adaptive control system to control a device. The neuromuscular signals may also be used in combination with information about how users typically control the device to train a statistical model for associating neuromuscular signals with intended control actions.
Controlling a device such as a game controller for a computer game typically requires a user to learn how interacting with different controls on the device results in a desired action in the computer game. How the user may interact with the device to perform a desired action is restricted based on how the device was programmed to translate user interactions with the device into control signals. For example, a joystick game controller for controlling the direction that a computer-generated image in a computer game moves on a display may be programmed to generate a first control signal when the user pushes the joystick to the right and a second control signal when the user pushes the joystick to the left. The corresponding control signals generated by the control device are provided to the computer to control the direction that the computer-generated image moves. The inventors have recognized and appreciated that existing control systems that require a user to learn the operation of the device are inflexible and generally cannot be tailored to how a user prefers to interact with the device. Some embodiments are directed to a technique for training a control system to translate user-specific body movements into control signals for controlling a device. Such embodiments provide for a highly-configurable control interface that enables different users to control devices according to their preferences and without restrictions placed on the control device by the device manufacturer.
Some embodiments are directed to an adaptive system for deriving control signals from measurements of muscle or motor unit activity. The system adapts a statistical model of user intention based on measurements of neuromuscular activity as the user controls a (e.g., a computer application or other effector). In some embodiments, the control signals are computed by a control mapping in real-time or substantially real-time as neuromuscular activity data is received from the plurality of sensors.
In some embodiments, a computer is programmed to execute one or more signal processing algorithms that map a time series of sensor signals to control signals that the computer provides as inputs to an effector (e.g., a user interface program). An intention model that models a user's intentions based on task-specific information is dynamically updated at the user performs the task to improve the control mapping from the sensor signals to the control signal. In some embodiments, the control mapping is adapted based on collected data by performing a regression or classification analysis with estimates of intended signals to map sensor signals to continuous or discrete inputs, respectively. In some embodiments, the resulting adaptive control mapping provides increased fidelity of control, reduced user effort required for equivalent control, and allow for adaptation to changes in a user's signaling behavior.
An adaptive control technique in accordance with some embodiments uses EMG or other neuromuscular signals as the source signal for control with adaptive feedback. The approach obviates invasive approaches that require direct neural interaction with cortical neurons. The relevant neural signals used for the adaptive control are synthetically constructed using the neuromuscular data, which provides for less costly and invasive processing. Further, the adaptive control approach described herein in accordance with some embodiments may be carried out in real-time due to the ease in switching between the recorded neuromuscular data and the synthesized neural data streams. The approach alters a conventional BCI paradigm by capturing signals used to force muscle contraction (e.g., EMG signals), and redirects those signals for an arbitrary adaptive control. The estimated control signal generated in accordance with some embodiments can be used to control any application or device that requires or otherwise benefits from continuous control.
Some embodiments are directed to techniques for controlling applications including, but not limited to, virtual reality, augmented reality, and mobile computing technology.
According to one aspect, a system for adapting a control mapping associating sensor signals with control signals for controlling an operation of a device is provided. The system comprises a plurality of sensors including a plurality of neuromuscular sensors arranged on one or more wearable devices, wherein the plurality of neuromuscular sensors are configured to continuously record neuromuscular signals from a user. The system further comprises at least one computer hardware processor and at least one non-transitory computer-readable storage medium storing processor-executable instructions that, when executed by the at least one computer hardware processor, cause the at least one computer hardware processor to perform: obtaining first state information for an operation of the device; providing the first state information as input to an intention model associated with the operation of the device and obtaining corresponding first intention model output; providing the neuromuscular signals and/or signals derived from the neuromuscular signals as inputs to a first control mapping and obtaining corresponding first control mapping output; and updating the first control mapping using the inputs to the first control mapping and the first intention model output to obtain a second control mapping.
According to another aspect, a method of adapting a control mapping associating sensor signals with control signals for controlling an operation of a device is provided. The method comprises obtaining a plurality of sensor signals from a plurality of sensors including a plurality of neuromuscular sensors arranged on one or more wearable devices, wherein the plurality of neuromuscular sensors are configured to continuously record neuromuscular signals from a user; obtaining first state information for an operation of a device; providing the first state information as input to an intention model associated with the operation of the device and obtaining corresponding first intention model output; providing the neuromuscular signals and/or signals derived from the neuromuscular signals as inputs to a first control mapping and obtaining corresponding first control mapping output; and updating the first control mapping using the inputs provided to the first control mapping and the first intention model output to obtain a second control mapping.
According to another aspect, a non-transitory computer-readable storage medium encoded with a plurality of instructions that, when executed by at least one computer hardware processor perform a method is provided. The method comprises: obtaining a plurality of sensor signals from a plurality of sensors including a plurality of neuromuscular sensors arranged on one or more wearable devices, wherein the plurality of neuromuscular sensors are configured to continuously record neuromuscular signals from a user; obtaining first state information for an operation of a device; providing the first state information as input to an intention model associated with the operation of the device and obtaining corresponding first intention model output; providing the neuromuscular signals and/or signals derived from the neuromuscular signals as inputs to a first control mapping and obtaining corresponding first control mapping output; and updating the first control mapping using the inputs provided to the first control mapping and the first intention model output to obtain a second control mapping.
It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein.
Various non-limiting embodiments of the technology will be described with reference to the following figures. It should be appreciated that the figures are not necessarily drawn to scale.
Some conventional brain machine interfaces record brain (e.g., cortical) signals and map the recorded brain signals to corresponding control signals for controlling a prosthetic limb resulting in an executed movement of the prosthetic device. Although such brain machine interface techniques are useful to enable patients to self-control prosthetic devices using a patient's own brain signals, implementing such techniques is quite invasive, as they require direct access to the cortical neurons in the brain to record the biological signals that are used to provide the control signals. The inventors have recognized and appreciated that conventional control interfaces may be improved by measuring biophysical signals corresponding to a user's movements using a plurality of sensors (e.g., EMG sensors) worn by a user, and mapping the movement information recorded by the sensors to control signals used to control a device.
Sensors 102 may also include a plurality of neuromuscular sensors configured to record signals arising from neuromuscular activity in skeletal muscle of a human body. The term “neuromuscular activity” as used herein refers to neural activation of spinal motor neurons that innervate a muscle, muscle activation, muscle contraction, or any combination of the neural activation, muscle activation, and muscle contraction. Neuromuscular sensors may include one or more electromyography (EMG) sensors, one or more mechanomyography (MMG) sensors, one or more sonomyography (SMG) sensors, and/or one or more sensors of any suitable type that are configured to detect neuromuscular signals. In some embodiments, the plurality of neuromuscular sensors may be used to sense muscular activity related to a movement of the part of the body controlled by muscles from which the neuromuscular sensors are arranged to sense the muscle activity. Spatial information (e.g., position and/or orientation information) describing the movement (e.g., for portions of the user's body distal to the user's torso, such as hands and feet) may be predicted based on the sensed neuromuscular signals as the user moves over time.
In embodiments that include at least one IMU and a plurality of neuromuscular sensors, the IMU(s) and neuromuscular sensors may be arranged to detect movement of different parts of the human body. For example, the IMU(s) may be arranged to detect movements of one or more body segments proximal to the torso, whereas the neuromuscular sensors may be arranged to detect movements of one or more body segments distal to the torso. It should be appreciated, however, that sensors 102 may be arranged in any suitable way, and embodiments of the technology described herein are not limited based on the particular sensor arrangement. For example, in some embodiments, at least one IMU and a plurality of neuromuscular sensors may be co-located on a body segment to track movements of body segment using different types of measurements. In one implementation described in more detail below, a plurality of EMG sensors are arranged on a wearable device configured to be worn around the lower arm or wrist of a user. In such an arrangement, the EMG sensors may be configured to determine movement information associated with wrist or hand segments to determine, for example, whether the user has an open or closed hand configuration.
Each of sensors 102 include one or more movement sensing components configured to sense movement information. In the case of IMUs, the movement sensing components may include one or more accelerometers, gyroscopes, magnetometers, or any combination thereof to measure characteristics of body motion, examples of which include, but are not limited to, acceleration, angular velocity, and sensed magnetic field around the body. In the case of neuromuscular sensors, the movement sensing components may include, but are not limited to, electrodes configured to detect electric potentials on the surface of the body (e.g., for EMG sensors) vibration sensors configured to measure skin surface vibrations (e.g., for MMG sensors), and acoustic sensing components configured to measure ultrasound signals (e.g., for SMG sensors) arising from muscle activity.
In some embodiments, the output of one or more of the movement sensing components may be processed using hardware signal processing circuitry (e.g., to perform amplification, filtering, and/or rectification). In other embodiments, at least some signal processing of the output of the movement sensing components may be performed in software. Thus, signal processing of autonomous signals recorded by sensors 102 may be performed in hardware, software, or by any suitable combination of hardware and software, as aspects of the technology described herein are not limited in this respect.
In some embodiments, the recorded sensor data may be processed to compute additional derived measurements that are then used to control a device, as described in more detail below. For example, recorded signals from an IMU sensor may be processed to derive spatial information (e.g., orientation, position, estimated joint angle) that specifies the spatial position of a rigid body segment over time. Sensors 102 may implement signal processing using components integrated with the movement sensing components, or at least a portion of the signal processing may be performed by one or more components in communication with, but not directly integrated with the movement sensing components of the sensors.
In some embodiments, at least some of the plurality of sensors 102 are arranged as a portion of a wearable device configured to be worn on or around part of a user's body. For example, in one non-limiting example, an IMU sensor and a plurality of neuromuscular sensors are arranged circumferentially around an adjustable and/or elastic band such as a wristband or armband configured to be worn around a user's wrist or arm. Alternatively, at least some of the sensors may be arranged on a wearable patch configured to be affixed to a portion of the user's body.
In one implementation, 16 EMG sensors are arranged circumferentially around an elastic band configured to be worn around a user's lower arm. For example,
In some embodiments, multiple wearable devices, each having one or more IMUs and/or neuromuscular sensors included thereon may be used to control a device.
The system also includes one or more computer processors 103 programmed to communicate with sensors 102. For example, signals recorded by one or more of the sensors 102 may be provided to processor(s) 103, which may be programmed to perform signal processing, non-limiting examples of which are described above. Although illustrated as software in
The system also includes one or more non-transitory computer-readable storage devices in communication with processor(s) 103. The storage devices may be configured to store information describing one or more statistical models (e.g., an intention model), examples of which are described in more detail below.
In some embodiments, processor(s) 103 may be configured to communicate with one or more of sensors 102, for example to calibrate the sensors prior to measurement of movement information. For example, a wearable device may be positioned in different orientations on or around a part of a user's body and calibration may be performed to determine the orientation of the wearable device and/or to perform any other suitable calibration tasks. Calibration of sensors 102 may be performed in any suitable way, and embodiments are not limited in this respect. For example, in some embodiments, a user may be instructed to perform a particular sequence of movements and the recorded movement information may be matched to a template by virtually rotating and/or scaling the signals detected by the sensors (e.g., by the electrodes on EMG sensors). In some embodiments, calibration may involve changing the gain(s) of one or more analog to digital converters (ADCs), for example, in the case that the signals detected by the sensors result in saturation of the ADCs.
The system of
Any suitable controller, configured to control one or more physical or virtual devices, may be used in accordance with embodiments of the technology described herein. Non-limiting examples of physical devices that may be controlled include consumer electronics devices (e.g., television, smartphone, computer, laptop, telephone, video camera, photo camera, video game system, appliance, etc.), vehicles (e.g., car, marine vessel, manned aircraft, unmanned aircraft, farm machinery, etc.), robots, weapons, or any other device that may receive control signals from processor(s) 103.
Non-limiting examples of applications of some embodiments of the techniques described herein include menu navigation, buttons, dials, levers, selection of items, typing without a physical keyboard or keypad in either a desktop or mobile setting, cut/paste operations for document editing, cursor control, scrolling and volume control. Non-limiting examples of applications further include mechanisms for controlling non-visual user interfaces, such as auditory or tactile menus or games. Non-limiting examples of applications also include systems for controlling a prosthetic limb, systems for facilitating gestural communication between people, and manipulation of higher dimensional data, such as three-dimensional and rotational data. Non-limiting examples of applications still further include wake and unlock gestures for phones and computers, biometric codes and keys, and home appliance controls.
As a user interacts with the user-interactive program or other controlled device, sensor data is collected by sensors. The collected sensor data and the user's interaction with the device enables the system to learn how to modify the mapping between the recorded sensor signal and control signals sent to the controllers. In this way, the signals recorded by the wearable sensors is used to both control a device and facilitate learning by the control system to map the user's body movements to intended actions.
Process 200 may be executed by any suitable computing device(s), as aspects of the technology described herein are not limited in this respect. For example, process 200 may be executed by processors 103 described with reference to
In some embodiments, the signals obtained at act 210 are pre-processed in act 220 using amplification, filtering, rectification or other types of signal processing. In some embodiments, the filtering may comprise temporal filtering implemented using convolution operations and/or equivalent operations in the frequency domain (e.g., after the application of a discrete Fourier transform). In some embodiments, the pre-processing may comprise dimensionality reduction (e.g. non-negative matrix factorization (NMF), principal component analysis (PCA), independent component analysis (ICA)), estimation of derived muscle activity signals, spike sorting, spectral decomposition, estimation of derived features (e.g., joint angles) and/or other forms of feature extraction. The result of this preprocessing is set of derived signals from which to compute control signals.
The inventors have appreciated that using EMG signals recorded from a user obviates the cortical interface required in some conventional machine control interfaces in effect by re-purposing the EMG data for adaptive control, in particular by generating a set of derived signaling that synthesizes neural data streams from the recorded EMG data. In some embodiments, the neuromuscular signals that are otherwise used by the body to move one or more muscles or muscle groups are collected (e.g., using a wearable sensor array) and re-purposed for arbitrary adaptive control of a device (e.g., a computer programmed to present a user interactive application).
Next, process 200 proceeds to act 230, where a control mapping is applied to the processed sensor signals to map the sensor signals to control signals. In some embodiments, the control mapping maps a time series of one or more processed sensor signals to one or more control signals. In some embodiments, this mapping acts on sensor signal data from a single time point to produce corresponding sensor control signals for that time point. In some embodiments, the output of the control mapping may depend on input signals from multiple time points, non-limiting examples of which include stateful mappings (e.g., a Kalman filter or recurrent network) and mappings acting on inputs at multiple time lags (e.g. temporal convolutions).
In some embodiments, the control mapping is a linear mapping represented by a matrix with number of rows equal to the number of control signals and number of columns equal to the number of processed sensor signals, such that the control signals are computed by multiplying the processed sensor signals processed in act 220 by this matrix. It should be appreciated, however, that the control mapping is not limited to being a linear mapping and may be of any other suitable form. For example, in some embodiments the control mapping may be a generalized linear model, neural network, recurrent neural network, convolutional network, finite state machine, Kalman filter, dynamical system, hidden Markov model, Markov switching model, dynamic Bayesian network, and/or any other suitable computational mapping.
Next, process 200 proceeds to act 240, where the computed control signals are transmitted to an effector. Non-limiting examples of effectors include a computer game, computer program, prosthetic limb, robot, or vehicle. Non-limiting examples of tasks include a playing a computer game, entering text into a computer application, moving a cursor to a desired location, picking up an object with a prosthetic arm, or driving a vehicle.
Process 300 begins in act 302, where signals recorded by a plurality of sensors are obtained. Examples of obtaining sensor signals are described above in connection with the process of
Process 300 next proceeds to act 306, where one or more control signals are estimated based on the obtained sensor signals and the obtained task information describing a state of the task. Some embodiments are configured to implement a statistical intention model that predicts the user's intended control signals. Inputs to the intention model include, but are not limited to, information about the state of the task obtained by the system in act 304. In some embodiments, the acquired neuromuscular signals, the control mapping, the control signals output from the control mapping, or any combination thereof may also be provided as input to the intention model.
In some embodiments, the intention model is a task-specific model of user behavior. The task-specific model may be implemented as a statistical model constructed based on heuristic or intuitive approximation of user behavior within the context of the task. A non-limiting illustrative example of such an intention model is provided in the case that the task is the computer game Pong, in which the user controls the one-dimensional velocity of a paddle to intercept the trajectory of a ball. In this example, the intention model takes as input the position of the user-control paddle and the position and velocity of the ball and provides as output an estimate of the velocity control signal that the user intends to provide to the paddle. According to one non-limiting intention model, the intended paddle velocity is proportional to the distance from the paddle's current position to the target position to which the paddle must be moved to intercept the trajectory of the ball, e.g., intended_velocity=proportionality_constant*(target_position−position_paddle).
In some embodiments, the intention model may be configured to continuously provide estimates of the user's intended control signals, whereas in other embodiments, the intention model may be configured to provide estimates only at specific times. For example, in the illustrative example of Pong, the intention model would, in some embodiments, output estimates for the user's intended control signals only at times at which the ball moves toward the line along which the user's paddle could move, and not providing estimates at times during which the ball moves away from this line.
In some embodiments, the intention model is configured to compute its estimate of the user's intention at each time point based on inputs corresponding to times no later than that of the user's estimated intention. The aforementioned illustrative example of an intention model for the computer game Pong provides an example of such an embodiment in which the user's intention at a given time is estimated based upon the state of the task at that same time. In this example, the intention model is configured to estimate the user's intended control signals substantively in real time.
In some other embodiments, the intention model computes estimates of the user's intention based upon inputs corresponding to times that include, but are not limited to, times later than the time for which the user's intention is being estimated. A non-limiting illustrative example of an intention model using inputs corresponding to later times to estimate the user's intended control signals at an earlier time is provided herein within the context of a task in which a user controls a cursor to navigate to and click on an icon from a selection of possible choices presented on a computer screen. According to some non-limiting implementations of an intention model for such as task, the intention model may not output estimates of the user's intended cursor velocity until the user clicks on one of the icons. Following the user's selection of the icon, the intention model is configured to estimate the user's intended cursor velocity control signal at an earlier time to be in the direction of a vector pointing from the cursor position at the time for which the intention is being estimated to the cursor position at the time when the user clicked on the icon.
In some embodiments, the intention model is a trained statistical model. In some embodiments, the outputs of the intention model are point estimates (e.g. maximum likelihood estimates) of the user's intended control signals. In some embodiments, the outputs of the intention model are probability distributions over possible values of the user's intended control signals. For example, the intention model may output probabilities of discrete control signals or parameters for distributions (e.g. mean and variance of the Gaussian distribution) over continuously valued control signals.
In some embodiments, the statistical model may be a neural network and, for example, may be a recurrent neural network. In some embodiments, the recurrent neural network may be a long short-term memory (LSTM) neural network. It should be appreciated, however, that the recurrent neural network is not limited to being an LSTM neural network and may have any other suitable architecture. For example, in some embodiments, the recurrent neural network may be a fully recurrent neural network, a recursive neural network, a Hopfield neural network, an associative memory neural network, an Elman neural network, a Jordan neural network, an echo state neural network, a second order recurrent neural network, and/or any other suitable type of recurrent neural network. In other embodiments, neural networks that are not recurrent neural networks may be used. For example, deep neural networks, convolutional neural networks, and/or feedforward neural networks, may be used.
It should be appreciated that aspects of the technology described herein are not limited to using neural networks, as other types of statistical models may be employed in some embodiments. For example, in some embodiments, the statistical model may comprise a generalized linear model, a hidden Markov model, a Markov switching model, dynamic Bayesian networks, and/or any other suitable graphical model having a temporal component.
In some embodiments, values for parameters of the statistical model may be estimated from the training data generated as one or more users perform one or more tasks. For example, when the statistical model is a neural network, parameters of the neural network (e.g., weights) may be estimated from the training data. In some embodiments, parameters of the statistical model may be estimated using gradient descent, stochastic gradient descent, and/or any other suitable iterative optimization technique. In embodiments where the statistical model is a recurrent neural network (e.g., an LSTM), the statistical model may be trained using stochastic gradient descent and backpropagation through time. The training may employ a mean-squared error loss function (e.g. in the case of continuous control signals), a cross-entropy loss function (e.g. in the case of discrete control signals) and/or any other suitable loss function, as aspects of the technology described herein are not limited in this respect.
In some embodiments, the statistical model may be trained with training data generated as one or more users performs one or more tasks. The training data may include data generated as one or more users performs one or more tasks using, at least in part, the control process 200, using one or more control systems independent of process 200 (e.g. controlling a computer game using a keyboard and/or mouse), as the invention is not limited by the method for generating and parameterizing the intention model.
In some embodiments, the intention model may be parameterized without the use of training data. As a non-limiting example, some embodiments may include an intention model based upon a control policy with parameters computed using dynamic programming or learned through reinforcement learning. In some embodiments, training data for the intention model may combine data generated as one or more human users performs one or more tasks with data generated computationally from a task simulation with a computational control policy.
In some embodiments, one or more of the user's intended control signals, the recorded neuromuscular signals, information derived from the neuromuscular signals (e.g., orientation, estimated joint angles), the processed (e.g., filtered, amplified, rectified) neuromuscular signals, information associated with sufficient statistics for characterizing the neuromuscular signals, inputs to and/or outputs from the intention model, and inputs to and/or outputs from the control mapping may be stored on one or more non-transitory computer readable mediums in communication with processor(s) 103.
Process 300 next proceeds to act 308, where estimates of the user's intended control signals and processed neuromuscular signals are aggregated to produce training data for adapting the control mapping. The obtained data may be combined and further processed in any suitable way. In some embodiments, at least some of the data may be resampled (e.g., up-sampled or down-sampled) such that all training data corresponds to time series data at the same time resolution. Resampling at least some of the data may be performed in any suitable way including, but not limited to using interpolation for upsampling and using decimation for downsampling.
In addition to or as an alternative to resampling at least some of the sensor data when recorded at different sampling rates, some embodiments employ a statistical model configured to accept multiple inputs asynchronously. For example, the statistical model may be configured to model the distribution of the “missing” values in the input data having a lower sampling rate. Alternatively, the timing of training of the statistical model occur asynchronously as input from multiple sensor data measurements becomes available as training data.
The control mapping is then updated using the training data. Updating of the control mapping may occur substantively in real time as a user performs the task in accordance with process 200, may occur intermittently as the user performs the task, may occur off-line between uses of process 200 to control the task, and/or may occur according to any suitable schedule or combination of schedules as the invention is not limited with respect to the timing and frequency at which the control mapping is updated. The updated control mapping is then used it act 230 of process 200.
It should be appreciated that aspects of the technology described herein are not limited to using an RLS algorithm, as other types of learning and/or optimization algorithms may additionally or alternatively be employed. For example, in some embodiments, the control mapping may be updated using expectation maximization, gradient descent, stochastic gradient descent, and/or any other suitable iterative optimization technique. In embodiments where the control mapping is implemented as a recurrent neural network (e.g., an LSTM), the statistical model may be updated using stochastic gradient descent and backpropagation through time. The updating algorithm may employ a mean-squared error loss function (e.g. in the case of continuous control signals), a cross-entropy loss function (e.g. in the case of discrete control signals) and/or any other suitable loss function, as aspects of the technology described herein are not limited in this respect.
In some embodiments, a control mapping adapted in the context of one task may be used for control of one or more additional tasks. As an illustrative example, a control mapping may first be adapted in the context of a task in which the user controls a cursor to select an icon on a computer screen. Later, the same control mapping may be used to control an operation of a physical or virtual vehicle, for example by mapping the control signal for the vertical movement of the cursor to the acceleration and/or braking of the vehicle and the control signal for the horizontal movement of the cursor to the steering of the vehicle. The control mapping may or may not continue to be adapted in the context of the additional tasks, as aspects of some embodiments are not limited in this respect.
An illustrative implementation of a computer system 400 that may be used in connection with any of the embodiments of the disclosure provided herein is shown in
The terms “program” or “software” are used herein in a generic sense to refer to any type of computer code or set of processor-executable instructions that can be employed to program a computer or other processor to implement various aspects of embodiments as discussed above. Additionally, it should be appreciated that according to one aspect, one or more computer programs that when executed perform methods of the disclosure provided herein need not reside on a single computer or processor, but may be distributed in a modular fashion among different computers or processors to implement various aspects of the disclosure provided herein.
Processor-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.
Also, data structures may be stored in one or more non-transitory computer-readable storage media in any suitable form. For simplicity of illustration, data structures may be shown to have fields that are related through location in the data structure. Such relationships may likewise be achieved by assigning storage for the fields with locations in a non-transitory computer-readable medium that convey relationship between the fields. However, any suitable mechanism may be used to establish relationships among information in fields of a data structure, including through the use of pointers, tags or other mechanisms that establish relationships among data elements.
Also, various inventive concepts may be embodied as one or more processes, of which examples (e.g., the processes described with reference to
All definitions, as defined and used herein, should be understood to control over dictionary definitions, and/or ordinary meanings of the defined terms.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed. Such terms are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term).
The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing”, “involving”, and variations thereof, is meant to encompass the items listed thereafter and additional items.
Having described several embodiments of the techniques described herein in detail, various modifications, and improvements will readily occur to those skilled in the art. Such modifications and improvements are intended to be within the spirit and scope of the disclosure. Accordingly, the foregoing description is by way of example only, and is not intended as limiting. The techniques are limited only as defined by the following claims and the equivalents thereto.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/366,427, filed Jul. 25, 2016, and entitled “ADAPTIVE SYSTEM FOR DERIVING CONTROL SIGNALS FROM MEASUREMENTS OF MUSCLE OR MOTOR UNIT ACTIVITY,” the entire contents of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4055168 | Miller et al. | Oct 1977 | A |
4896120 | Kamil | Jan 1990 | A |
5625577 | Kunii et al. | Apr 1997 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6009210 | Kand | Dec 1999 | A |
6244873 | Hill et al. | Jun 2001 | B1 |
6411843 | Zarychta | Jun 2002 | B1 |
6658287 | Litt et al. | Dec 2003 | B1 |
6720984 | Jorgensen et al. | Apr 2004 | B1 |
6774885 | Even-Zohar | Aug 2004 | B1 |
6942621 | Avinash et al. | Sep 2005 | B2 |
7089148 | Bachmann et al. | Aug 2006 | B1 |
7351975 | Brady et al. | Apr 2008 | B2 |
7574253 | Edney et al. | Aug 2009 | B2 |
7580742 | Tan et al. | Aug 2009 | B2 |
7787946 | Stahmann et al. | Aug 2010 | B2 |
7805386 | Greer | Sep 2010 | B2 |
7901368 | Flaherty et al. | Mar 2011 | B2 |
8170656 | Tan et al. | May 2012 | B2 |
8190249 | Gharieb et al. | May 2012 | B1 |
8311623 | Sanger | Nov 2012 | B2 |
8351651 | Lee | Jan 2013 | B2 |
8421634 | Tan et al. | Apr 2013 | B2 |
8435191 | Barboutis et al. | May 2013 | B2 |
8437844 | Syed Momen et al. | May 2013 | B2 |
8447704 | Tan et al. | May 2013 | B2 |
8484022 | Vanhoucke | Jul 2013 | B1 |
8718980 | Garudadri et al. | May 2014 | B2 |
8744543 | Li et al. | Jun 2014 | B2 |
8754862 | Zaliva | Jun 2014 | B2 |
D717685 | Bailey et al. | Nov 2014 | S |
8880163 | Barachant et al. | Nov 2014 | B2 |
8890875 | Jammes et al. | Nov 2014 | B2 |
8892479 | Tan et al. | Nov 2014 | B2 |
9037530 | Tan et al. | May 2015 | B2 |
D742272 | Bailey et al. | Nov 2015 | S |
9218574 | Phillipps et al. | Dec 2015 | B2 |
9235934 | Mandella et al. | Jan 2016 | B2 |
9240069 | Li | Jan 2016 | B1 |
9278453 | Assad | Mar 2016 | B2 |
9299248 | Lake et al. | Mar 2016 | B2 |
D756359 | Bailey et al. | May 2016 | S |
9367139 | Ataee et al. | Jun 2016 | B2 |
9372535 | Bailey et al. | Jun 2016 | B2 |
9389694 | Ataee et al. | Jul 2016 | B2 |
9408316 | Bailey et al. | Aug 2016 | B2 |
9459697 | Bedikian et al. | Oct 2016 | B2 |
9483123 | Aleem et al. | Nov 2016 | B2 |
9597015 | McNames et al. | Mar 2017 | B2 |
9600030 | Bailey et al. | Mar 2017 | B2 |
9612661 | Wagner et al. | Apr 2017 | B2 |
9613262 | Holz | Apr 2017 | B2 |
9654477 | Kotamraju | May 2017 | B1 |
9659403 | Horowitz | May 2017 | B1 |
9687168 | John | Jun 2017 | B2 |
9696795 | Marcolina et al. | Jul 2017 | B2 |
9720515 | Wagner et al. | Aug 2017 | B2 |
9741169 | Holz | Aug 2017 | B1 |
9766709 | Holz | Sep 2017 | B2 |
9785247 | Horowitz et al. | Oct 2017 | B1 |
9788789 | Bailey | Oct 2017 | B2 |
9864431 | Keskin et al. | Jan 2018 | B2 |
9867548 | Le et al. | Jan 2018 | B2 |
9880632 | Ataee et al. | Jan 2018 | B2 |
9891718 | Connor | Feb 2018 | B2 |
10042422 | Morun et al. | Aug 2018 | B2 |
10070799 | Ang et al. | Sep 2018 | B2 |
10078435 | Noel | Sep 2018 | B2 |
10101809 | Morun et al. | Oct 2018 | B2 |
10152082 | Bailey | Dec 2018 | B2 |
10188309 | Morun et al. | Jan 2019 | B2 |
10199008 | Aleem et al. | Feb 2019 | B2 |
10203751 | Keskin et al. | Feb 2019 | B2 |
10216274 | Chapeskie et al. | Feb 2019 | B2 |
10251577 | Morun et al. | Apr 2019 | B2 |
10310601 | Morun et al. | Jun 2019 | B2 |
10331210 | Morun et al. | Jun 2019 | B2 |
10362958 | Morun et al. | Jul 2019 | B2 |
10409371 | Kaifosh et al. | Sep 2019 | B2 |
10460455 | Giurgica-Tiron et al. | Oct 2019 | B2 |
20030144829 | Geatz et al. | Jul 2003 | A1 |
20030171921 | Manabe et al. | Sep 2003 | A1 |
20030184544 | Prudent | Oct 2003 | A1 |
20040092839 | Shin et al. | May 2004 | A1 |
20070009151 | Pittman et al. | Jan 2007 | A1 |
20070172797 | Hada et al. | Jul 2007 | A1 |
20070177770 | Derchak et al. | Aug 2007 | A1 |
20070256494 | Nakamura et al. | Nov 2007 | A1 |
20070285399 | Lund | Dec 2007 | A1 |
20080009771 | Perry | Jan 2008 | A1 |
20080052643 | Ike et al. | Feb 2008 | A1 |
20080214360 | Stirling et al. | Sep 2008 | A1 |
20080221487 | Zohar et al. | Sep 2008 | A1 |
20090082692 | Hale et al. | Mar 2009 | A1 |
20090082701 | Zohar et al. | Mar 2009 | A1 |
20090112080 | Matthews | Apr 2009 | A1 |
20090124881 | Rytky | May 2009 | A1 |
20090326406 | Tan et al. | Dec 2009 | A1 |
20090327171 | Tan et al. | Dec 2009 | A1 |
20100030532 | Arora et al. | Feb 2010 | A1 |
20100063794 | Hernandez-Rebollar | Mar 2010 | A1 |
20100106044 | Linderman | Apr 2010 | A1 |
20100113910 | Brauers et al. | May 2010 | A1 |
20100280628 | Sankai | Nov 2010 | A1 |
20100292617 | Lei et al. | Nov 2010 | A1 |
20100293115 | Seyed Momen | Nov 2010 | A1 |
20100315266 | Gunawardana et al. | Dec 2010 | A1 |
20110077484 | Van Slyke et al. | Mar 2011 | A1 |
20110092826 | Lee et al. | Apr 2011 | A1 |
20110173204 | Murillo et al. | Jul 2011 | A1 |
20120066163 | Balls et al. | Mar 2012 | A1 |
20120188158 | Tan et al. | Jul 2012 | A1 |
20120265480 | Oshima | Oct 2012 | A1 |
20120283526 | Gommesen et al. | Nov 2012 | A1 |
20130004033 | Trugenberger | Jan 2013 | A1 |
20130077820 | Marais et al. | Mar 2013 | A1 |
20130141375 | Ludwig et al. | Jun 2013 | A1 |
20130207889 | Chang et al. | Aug 2013 | A1 |
20130217998 | Mahfouz et al. | Aug 2013 | A1 |
20130232095 | Tan et al. | Sep 2013 | A1 |
20130317382 | Le | Nov 2013 | A1 |
20130317648 | Assad | Nov 2013 | A1 |
20140052150 | Taylor et al. | Feb 2014 | A1 |
20140092009 | Yen et al. | Apr 2014 | A1 |
20140098018 | Kim et al. | Apr 2014 | A1 |
20140196131 | Lee | Jul 2014 | A1 |
20140198034 | Bailey et al. | Jul 2014 | A1 |
20140198035 | Bailey et al. | Jul 2014 | A1 |
20140223462 | Aimone et al. | Aug 2014 | A1 |
20140240103 | Lake | Aug 2014 | A1 |
20140240223 | Lake et al. | Aug 2014 | A1 |
20140245200 | Holz | Aug 2014 | A1 |
20140249397 | Lake et al. | Sep 2014 | A1 |
20140278441 | Ton et al. | Sep 2014 | A1 |
20140297528 | Agrawal et al. | Oct 2014 | A1 |
20140304665 | Holz | Oct 2014 | A1 |
20140334083 | Bailey | Nov 2014 | A1 |
20140344731 | Holz | Nov 2014 | A1 |
20140355825 | Kim et al. | Dec 2014 | A1 |
20140364703 | Kim et al. | Dec 2014 | A1 |
20140365163 | Jallon | Dec 2014 | A1 |
20140376773 | Holz | Dec 2014 | A1 |
20150006120 | Sett et al. | Jan 2015 | A1 |
20150010203 | Muninder et al. | Jan 2015 | A1 |
20150025355 | Bailey et al. | Jan 2015 | A1 |
20150029092 | Holz et al. | Jan 2015 | A1 |
20150035827 | Yamaoka et al. | Feb 2015 | A1 |
20150045689 | Barone | Feb 2015 | A1 |
20150045699 | Mokaya et al. | Feb 2015 | A1 |
20150051470 | Bailey et al. | Feb 2015 | A1 |
20150057770 | Bailey et al. | Feb 2015 | A1 |
20150070270 | Bailey et al. | Mar 2015 | A1 |
20150070274 | Morozov | Mar 2015 | A1 |
20150084860 | Aleem et al. | Mar 2015 | A1 |
20150109202 | Ataee et al. | Apr 2015 | A1 |
20150124566 | Lake et al. | May 2015 | A1 |
20150128094 | Baldwin et al. | May 2015 | A1 |
20150141784 | Morun et al. | May 2015 | A1 |
20150148641 | Morun et al. | May 2015 | A1 |
20150157944 | Gottlieb | Jun 2015 | A1 |
20150169074 | Ataee et al. | Jun 2015 | A1 |
20150193949 | Katz et al. | Jul 2015 | A1 |
20150223716 | Korkala et al. | Aug 2015 | A1 |
20150234426 | Bailey et al. | Aug 2015 | A1 |
20150261306 | Lake | Sep 2015 | A1 |
20150261318 | Scavezze et al. | Sep 2015 | A1 |
20150277575 | Ataee et al. | Oct 2015 | A1 |
20150296553 | DiFranco et al. | Oct 2015 | A1 |
20150302168 | De Sapio et al. | Oct 2015 | A1 |
20150309563 | Connor | Oct 2015 | A1 |
20150309582 | Gupta | Oct 2015 | A1 |
20150313496 | Connor | Nov 2015 | A1 |
20150325202 | Lake et al. | Nov 2015 | A1 |
20150346701 | Gordon et al. | Dec 2015 | A1 |
20150366504 | Connor | Dec 2015 | A1 |
20150370326 | Chapeskie et al. | Dec 2015 | A1 |
20150370333 | Ataee et al. | Dec 2015 | A1 |
20160011668 | Gilad-Bachrach et al. | Jan 2016 | A1 |
20160049073 | Lee | Feb 2016 | A1 |
20160144172 | Hsueh et al. | May 2016 | A1 |
20160162604 | Xioli et al. | Jun 2016 | A1 |
20160187992 | Yamamoto et al. | Jun 2016 | A1 |
20160235323 | Tadi et al. | Aug 2016 | A1 |
20160239080 | Marcolina et al. | Aug 2016 | A1 |
20160262687 | Imperial | Sep 2016 | A1 |
20160274758 | Bailey | Sep 2016 | A1 |
20160292497 | Kehtarnavaz et al. | Oct 2016 | A1 |
20160313798 | Connor | Oct 2016 | A1 |
20160313801 | Wagner | Oct 2016 | A1 |
20160313899 | Noel | Oct 2016 | A1 |
20160350973 | Shapira et al. | Dec 2016 | A1 |
20170031502 | Rosenberg et al. | Feb 2017 | A1 |
20170035313 | Hong et al. | Feb 2017 | A1 |
20170061817 | Mettler May | Mar 2017 | A1 |
20170080346 | Abbas | Mar 2017 | A1 |
20170090604 | Barbier | Mar 2017 | A1 |
20170091567 | Wang et al. | Mar 2017 | A1 |
20170119472 | Herrmann et al. | May 2017 | A1 |
20170123487 | Hazra et al. | May 2017 | A1 |
20170124816 | Yang et al. | May 2017 | A1 |
20170161635 | Oono et al. | Jun 2017 | A1 |
20170188980 | Ash | Jul 2017 | A1 |
20170259167 | Cook et al. | Sep 2017 | A1 |
20170285756 | Wang et al. | Oct 2017 | A1 |
20170285848 | Rosenberg et al. | Oct 2017 | A1 |
20170296363 | Yetkin et al. | Oct 2017 | A1 |
20170301630 | Nguyen et al. | Oct 2017 | A1 |
20170308118 | Ito | Oct 2017 | A1 |
20170340506 | Zhang | Nov 2017 | A1 |
20180000367 | Longinotti-Buitoni | Jan 2018 | A1 |
20180020978 | Kaifosh et al. | Jan 2018 | A1 |
20180024634 | Kaifosh et al. | Jan 2018 | A1 |
20180024635 | Kaifosh et al. | Jan 2018 | A1 |
20180064363 | Morun et al. | Mar 2018 | A1 |
20180067553 | Morun et al. | Mar 2018 | A1 |
20180088765 | Bailey | Mar 2018 | A1 |
20180095630 | Bailey | Apr 2018 | A1 |
20180101289 | Bailey | Apr 2018 | A1 |
20180120948 | Aleem et al. | May 2018 | A1 |
20180140441 | Poirters | May 2018 | A1 |
20180150033 | Lake et al. | May 2018 | A1 |
20180153430 | Ang et al. | Jun 2018 | A1 |
20180153444 | Yang et al. | Jun 2018 | A1 |
20180154140 | Bouton et al. | Jun 2018 | A1 |
20180301057 | Hargrove et al. | Oct 2018 | A1 |
20180307314 | Connor | Oct 2018 | A1 |
20180321745 | Morun et al. | Nov 2018 | A1 |
20180321746 | Morun et al. | Nov 2018 | A1 |
20180333575 | Bouton | Nov 2018 | A1 |
20180344195 | Morun et al. | Dec 2018 | A1 |
20180360379 | Harrison et al. | Dec 2018 | A1 |
20190025919 | Tadi et al. | Jan 2019 | A1 |
20190033967 | Morun et al. | Jan 2019 | A1 |
20190033974 | Mu et al. | Jan 2019 | A1 |
20190038166 | Tavabi et al. | Feb 2019 | A1 |
20190076716 | Chiou et al. | Mar 2019 | A1 |
20190121305 | Kaifosh et al. | Apr 2019 | A1 |
20190121306 | Kaifosh et al. | Apr 2019 | A1 |
20190150777 | Guo et al. | May 2019 | A1 |
20190192037 | Morun et al. | Jun 2019 | A1 |
20190212817 | Kaifosh et al. | Jul 2019 | A1 |
20190223748 | Al-natsheh et al. | Jul 2019 | A1 |
20190227627 | Kaifosh et al. | Jul 2019 | A1 |
20190228330 | Kaifosh et al. | Jul 2019 | A1 |
20190228533 | Giurgica-Tiron et al. | Jul 2019 | A1 |
20190228579 | Kaifosh et al. | Jul 2019 | A1 |
20190228590 | Kaifosh et al. | Jul 2019 | A1 |
20190228591 | Giurgica-Tiron et al. | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
2902045 | Aug 2014 | CA |
2921954 | Feb 2015 | CA |
2939644 | Aug 2015 | CA |
1838933 | Sep 2006 | CN |
105190578 | Dec 2015 | CN |
106102504 | Nov 2016 | CN |
110312471 | Oct 2019 | CN |
2198521 | Jun 2012 | EP |
2959394 | Dec 2015 | EP |
3104737 | Dec 2016 | EP |
3 487 457 | May 2019 | EP |
H05-277080 | Oct 1993 | JP |
2005-095561 | Apr 2005 | JP |
2010-520561 | Jun 2010 | JP |
2016-507851 | Mar 2016 | JP |
2017-509386 | Apr 2017 | JP |
2015-0123254 | Nov 2015 | KR |
2016-0121552 | Oct 2016 | KR |
10-1790147 | Oct 2017 | KR |
2008022435 | Feb 2008 | WO |
WO 2008109248 | Sep 2008 | WO |
WO 2009042313 | Apr 2009 | WO |
WO 2010104879 | Sep 2010 | WO |
WO 2014130871 | Aug 2014 | WO |
WO 2014186370 | Nov 2014 | WO |
WO 2014194257 | Dec 2014 | WO |
WO 2014197443 | Dec 2014 | WO |
WO 2015027089 | Feb 2015 | WO |
WO 2015073713 | May 2015 | WO |
WO 2015081113 | Jun 2015 | WO |
WO 2015123445 | Aug 2015 | WO |
WO 2015199747 | Dec 2015 | WO |
WO 2016041088 | Mar 2016 | WO |
WO 2017062544 | Apr 2017 | WO |
WO 2017092225 | Jun 2017 | WO |
WO 2017120669 | Jul 2017 | WO |
WO 2017172185 | Oct 2017 | WO |
2018022658 | Feb 2018 | WO |
Entry |
---|
encylopedia.com definition of autoregressive models (Year: 2020). |
PCT/US2017/043686, Oct. 6, 2017, International Search Report and Written Opinion. |
PCT/US2017/043686, Feb. 7, 2019, International Preliminary Report on Patentability. |
PCT/US2017/043693, Oct. 6, 2017, International Search Report and Written Opinion. |
PCT/US2017/043693, Feb. 7, 2019, International Preliminary Report on Patentability. |
PCT/US2017/043791, Oct. 5, 2017, International Search Report and Written Opinion. |
PCT/US2017/043791, Feb. 7, 2019, International Preliminary Report on Patentability. |
PCT/US2017/043792, Oct. 5, 2017, International Search Report and Written Opinion. |
PCT/US2017/043792, Feb. 7, 2019, International Preliminary Report on Patentability. |
PCT/US2018/056768, Jan. 15, 2019, International Search Report and Written Opinion. |
PCT/US2018/061409, Mar. 12, 2019, International Search Report and Written Opinion. |
International Search Report and Written Opinion for International Application No. PCT/US2017/043686 dated Oct. 6, 2017. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/043686 dated Feb. 7, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2017/043693 dated Oct. 6, 2017. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/043693 dated Feb. 7, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2017/043791 dated Oct. 5, 2017. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/043791 dated Feb. 7, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2017/043792 dated Oct. 5, 2017. |
International Preliminary Report on Patentability for International Application No. PCT/US2017/043792 dated Feb. 7, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2018/056768 dated Jan. 15, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2018/061409 dated Mar. 12, 2019. |
Benko et al., Enhancing Input On and Above the Interactive Surface with Muscle Sensing. The ACM International Conference on Interactive Tabletops and Surfaces. ITS '09. 2009:93-100. |
Boyali et al., Spectral Collaborative Representation based Classification for hand gestures recognition on electromyography signals. Biomedical Signal Processing and Control. 2016;24:11-18. |
Cheng et al., A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors. Sensors. 2015;15:23303-24. |
Csapo et al., Evaluation of Human-Myo Gesture Control Capabilities in Continuous Search and Select Operations. 7th IEEE International Conference on Cognitive Infocommunications. 2016;000415-20. |
Delis et al., Development of a Myoelectric Controller Based on Knee Angle Estimation. Biodevices 2009. International Conference on Biomedical Electronics and Devices. Jan. 17, 2009. 7 pages. |
Diener et al., Direct conversion from facial myoelectric signals to speech using Deep Neural Networks. 2015 International Joint Conference on Neural Networks (IJCNN). Oct. 1, 2015. 7 pages. |
Ding et al., HMM with improved feature extraction-based feature parameters for identity recognition of gesture command operators by using a sensed Kinect-data stream. Neurocomputing. 2017;262:108-19. |
Farina et al., Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nature. Biomedical Engineering. 2017;1:1-12. |
Gallina et al., Surface EMG Biofeedback. Surface Electromyography: Physiology, Engineering, and Applications. 2016:485-500. |
Jiang, Purdue University Graduate School Thesis/Dissertation Acceptance. Graduate School Form 30. Updated Jan. 15, 2015. 24 pages. |
Kawaguchi et al., Estimation of Finger Joint Angles Based on Electromechanical Sensing of Wrist Shape. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2017;25(9):1409-18. |
Kim et al., Real-Time Human Pose Estimation and Gesture Recognition from Depth Images Using Superpixels and SVM Classifier. Sensors. 2015;15:12410-27. |
Koerner, Design and Characterization of the Exo-Skin Haptic Device: A Novel Tendon Actuated Textile Hand Exoskeleton. 2017. 5 pages. |
Li et al., Motor Function Evaluation of Hemiplegic Upper-Extremities Using Data Fusion from Wearable Inertial and Surface EMG Sensors. Sensors. MDPI. 2017;17(582):1-17. |
McIntee, A Task Model of Free-Space Movement-Based Geastures. Dissertation. Graduate Faculty of North Carolina State University. Computer Science. 2016. 129 pages. |
Naik et al., Source Separation and Identification issues in bio signals: A solution using Blind source seperation. Intech. 2009. 23 pages. |
Naik et al., Subtle Hand gesture identification for HCI using Temporal Decorrelation Source Separation BSS of surface EMG. Digital Image Computing Techniques and Applications. IEEE Computer Society. 2007;30-7. |
Negro et al., Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation. Journal of Neural Engineering. 2016;13:1-17. |
Saponas et al., Demonstrating the Feasibility of Using Forearm Electromyography for Muscle-Computer Interfaces. CHI 2008 Proceedings. Physiological Sensing for Input. 2008:515-24. |
Saponas et al., Enabling Always-Available Input with Muscle-Computer Interfaces. UIST '09. 2009:167-76. |
Saponas et al., Making Muscle-Computer Interfaces More Practical. CHI 2010: Brauns and Brawn. 2010:851-4. |
Sauras-Perez et al., A Voice and Pointing Gesture Interaction System for Supporting Human Spontaneous Decisions in Autonomous Cars. Clemson University. All Dissertations. 2017. 174 pages. |
Shen et al., I am a Smartwatch and I can Track my User's Arm. University of Illinois at Urbana-Champaign. MobiSys' 16. 12 pages. |
Son et al., Evaluating the utility of two gestural discomfort evaluation methods. PLOS One. 2017. 21 pages. |
Strbac et al., Microsoft Kinect-Based Artificial Perception System for Control of Functional Electrical Stimulation Assisted Grasping. Hindawi Publishing Corporation. BioMed Research International. 2014. 13 pages. |
Torres, Myo Gesture Control Armband. PCMag. Https://www.pcmag.com/article2/0,2817,2485462,00.asp 2015. 9 pages. |
Wodzinski et al., Sequential Classification of Palm Gestures Based on A* Algorithm and MLP Neural Network for Quadrocopter Control. Metrol. Meas. Syst., 2017;24(2):265-76. |
Xue et al., Multiple Sensors Based Hand Motion Recognition Using Adaptive Directed Acyclic Graph. Applied Sciences. MDPI. 2017;7(358):1-14. |
International Search Report and Written Opinion for International Application No. PCT/US2019/028299 dated Aug. 9, 2019. |
Invitation to Pay Additional Fees for International Application No. PCT/US2019/031114 dated Aug. 6, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/034173 dated Sep. 18, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/037302 dated Oct. 11, 2019. |
Invitation to Pay Additional Fees for International Application No. PCT/US2019/049094 dated Oct. 24, 2019. |
Gopura et al., A Human Forearm and wrist motion assist exoskeleton robot with EMG-based fuzzy-neuro control. Proceedings of the 2nd IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Oct. 19-22, 2008. 6 pages. |
Mohamed, Homogeneous cognitive based biometrics for static authentication. Dissertation submitted to University of Victoria, Canada. 2010. 149 pages. URL:http://hdl.handle.net/1828/3211 [last accessed Oct. 11, 2019]. |
Valero-Cuevas et al., Computational Models for Neuromuscular Function. NIH Public Access Author Manuscript. Jun. 16, 2011. 52 pages. |
Yang et al., Surface EMG based handgrip force predictions using gene expression programming. Neurocomputing. 2016;207:568-579. |
International Search Report and Written Opinion for International Application No. PCT/US2018/063215 dated Mar. 21, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015134 dated May 15, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015167 dated May 21, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015174 dated May 21, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015238 dated May 16, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015183 dated May 3, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015180 dated May 28, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/015244 dated May 16, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US19/20065 dated May 16, 2019. |
Arkenbout et al., Robust Hand Motion Tracking through Data Fusion of 5DT Data Glove and Nimble VR Kinect Camera Measurements. Sensors. 2015;15:31644-71. |
Davoodi et al., Development of a Physics-Based Target Shooting Game to Train Amputee Users of Multijoint Upper Limb Prostheses. Presence. Massachusetts Institute of Technology. 2012;21(1):85-95. |
Favorskaya et al., Localization and Recognition of Dynamic Hand Gestures Based on Hierarchy of Manifold Classifiers. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2015;XL-5/W6:1-8. |
Hauschild et al., A Virtual Reality Environment for Designing and Fitting Neural Prosthetic Limbs. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007;15(1):9-15. |
Lee et al., Motion and Force Estimation System of Human Fingers. Journal of Institute of Control, Robotics and Systems. 2011;17(10):1014-1020. |
Lopes et al., Hand/arm gesture segmentation by motion using IMU and EMG sensing. ScienceDirect. Elsevier. Procedia Manufacturing. 2017;11:107-13. |
Martin et al., A Novel Approach of Prosthetic Arm Control using Computer Vision, Biosignals, and Motion Capture. IEEE. 2014. 5 pages. |
Mendes et al., Sensor Fusion and Smart Sensor in Sports and Biomedical Applications. Sensors. 2016;16(1569):1-31. |
Sartori et al., Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies. IEEE Transactions on Biomedical Engineering. 2016;63(5):879-93. |
PCT/US2019/028299, Aug. 9, 2019, International Search Report and Written Opinion. |
PCT/US2019/031114, Aug. 6, 2019, Invitation to Pay Additional Fees. |
PCT/US2019/034173, Sep. 18, 2019 International Search Report and Written Opinion. |
PCT/US2019/037302, Oct. 11, 2019, International Search Report and Written Opinion. |
PCT/US2019/049094, Oct. 24, 2019, Invitation to Pay Additional Fees. |
PCT/US2018/063215, Mar. 21, 2019, International Search Report and Written Opinion. |
PCT/US2019/015134, May 15, 2019, International Search Report and Written Opinion. |
PCT/US2019/015167, May 21, 2019, International Search Report and Written Opinion. |
PCT/US2019/015174, May 21, 2019, International Search Report and Written Opinion. |
PCT/US2019/015238, May 16, 2019, International Search Report and Written Opinion. |
PCT/US2019/015183, May 3, 2019, International Search Report and Written Opinion. |
PCT/US2019/015180, May 28, 2019 , International Search Report and Written Opinion. |
PCT/US2019/015244, May 16, 2019, International Search Report and Written Opinion. |
PCT/US19/20065, May 16, 2019, International Search Report and Written Opinion. |
Extended European Search Report received for EP Patent Application Serial No. 17835141.7 dated Jul. 15, 2020, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20180020951 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62366427 | Jul 2016 | US |