1. Field of the Invention
The invention relates to solar powered aircraft. More particularly, the invention relates to a system and method for altering a configuration of a solar-panel covered wing structure of a solar powered aircraft to increase collection of solar radiation during the day, while also minimizing power consumption at night.
2. Background Art
The concept of high-altitude, long-endurance solar powered aircraft has been demonstrated by a number of air vehicle research projects in the past. In 1974, AstroFlight built the first solar powered drone, Sunrise I. The promising results of the 32 foot span, Sunrise I, led to the Sunrise II, which with 4480 solar cells, was theoretically capable of attaining a service ceiling of 75,000 feet. Sunrise II flew successfully, but broke up in flight at 22,000 ft due to a suspected aeroelastic problem. The next advance in solar powered flight occurred in 1980 with AeroVironment's Gossamer Penguin, which performed the first human carrying solar flight, followed by the Solar Challenger, which reached an altitude of 12,000 feet on its flight across the English Channel. NASA's High Altitude Solar (HALSOL) project in 1995 saw the flight of the Pathfinder, which reached an altitude of 50,000 feet. This was followed by the Pathfinder-Plus which, with its new 19% efficient silicon solar cells, was able to reach 80,201 feet. The Pathfinder aircraft then led directly to the Centurion. The Centurion was aimed at creating an aircraft that would have a real world scientific application. The Centurion had a span of 206 feet with 62,120 bi-facial solar cells.
Under NASA's Environmental Research Aircraft and Sensor Technology Program, 1998-2003, the Centurion was modified to become Helios. The Helios prototype was designed as a proof of concept high-altitude unmanned aerial vehicle that could fly on long endurance environmental science or telecommunications relay missions lasting for weeks or months. Helios (shown in
The best example of previously built and flown state of the art is the AeroVironment aircraft, culminating in the Helios. Much of this is described in U.S. Pat. No. 5,810,284, to Hibbs, et al. (hereinafter, the Hibbs Patent). The Hibbs Patent shows a very large wingspan aircraft, with the solar collection and other mass distributed along a very high aspect ratio wing. This allowed the use of a very light wing spar, and the simple, clean design consumed very low power during the night. As discussed in great detail below, night time power usage is especially critical, because the storage system is quite heavy, and there is a storage “round trip” efficiency. This means that a large amount of solar energy must be collected to provide even a small amount of power at night. In the example given in the Hibbs Patent, 2.5 Watt hours of electrical power had to be collected during the day to provide 1 Watt hour at night.
However, a significant limitation of the airplane disclosed in the Hibbs patent is that it is poor at collecting energy during the winter time at high latitudes. For example, London, England is approximately 51.5 degrees latitude. At winter solstice, the peak elevation of the sun above the horizon is only 15 degrees, and the horizontal solar collector, as shown in the Hibbs Patent, will collect at most 25% of the energy it would collect with the sun overhead. Another significant limitation is that at high latitudes, the aircraft must fly predominantly towards the west, so the sun, at peak elevations, will be predominantly off the left wingtip. Thus the normal flexing of the wing, such as shown in flight on Helios, aims much of the wing panels away from the sun, while also putting some of the remainder of the wing in the shadow of the left wing tip. Thus the net collection capability is likely only about 15% of what it could optimally collect with the sun overhead. The poor collection geometry of the airplane disclosed in the Hibbs Patent (i.e., the horizontal solar panels), combined with short days and long nights makes it very difficult for the Hibbs' airplane to collect enough solar energy.
Nevertheless, improved collection geometry has been suggested in the prior art. An example is shown in U.S. Pat. No. 4,415,133, issued in 1983 to Phillips (hereinafter the Phillips Patent). This configuration is also shown in NASA Technical Paper 1675, “Some Design Considerations for Solar-Powered Aircraft,” published in June, 1980, also by Phillips. The cruciform configuration shown is capable of flying in any desired roll attitude, and thus can have its solar array track the sun in elevation. While the cruciform configuration disclosed in the Phillips Patent provides improved solar energy collection than the configuration shown in the Hibbs Patent, it has twice as much wing area as is needed to produce lift, and thus incurs a significant penalty in drag and thus energy required to fly, especially during the night (when no solar radiation energy collection can occur).
Another NASA study published in 1983, Contractor Report CR-3699 by Hall, Dimiceli, Fortenbach and Parks, entitled “A Preliminary Study of Solar Powered Aircraft and Associated Power Trains” (hereinafter the 1983 NASA C. Report) looked at, among other things, a wide range of configurations that attempted to combine both low power consumption at night with good solar radiation energy collection geometry during the day. Some of these configurations are shown in FIGS. 46 and 47 of the report, on pages 120 and 121 respectively. Configurations 2 and 3 in FIG. 46 shows aircraft that have pointable collectors, but exhibit high drag both during days and nights. FIG. 4 shows an early attempt to combine improved solar energy collection with good night time power efficiency. As those of ordinary skill in the art can appreciate, however, only one of the elevated wing panels has good solar energy collection. For westward flight with the sun off the left wing-tip, the left wing has poor solar energy collection, as mentioned above, and can shadow the right wing.
Variable geometry designs are shown in FIG. 47 of the 1983 NASA C. Report, particularly in configurations 14, 17 and 18. All of these have a large wing span, and all of the wing provide lift for low night time energy consumption. Configurations 17 and 18 are symmetric in both day and night modes, but require solar cells on the bottom of one tip and on the top of the other. This is good for typical westerly winds, but for the occasional easterly winds, cells would be needed on both sides of both tips, which is both a mass and cost penalty. Configuration 14 of FIG. 47 provides solar cells on top of both tips, but is not symmetric, and it was believed that the control systems of the time would not be able to fly the airplane.
Furthermore, in configurations 14, 17 and 18, the wing-tips were only able to be oriented vertically or horizontally. Thus, while they were pretty good at solar radiation energy collection with the sun on the horizon or overhead, their solar radiation energy collection is significantly reduced when the sun is at 30° to 40° elevation angle with respect to the horizon.
A significant shortcoming of all three configurations shown in FIG. 47 of the 1983 NASA C. Report is that when the wing-tips are vertical, they cannot support their own weight. As a result, a large downwardly directed load is brought upon the tips of the center section. To enable the aircraft to support such large load factors, a large structural mass is designed into the aircraft. Because the tips cannot support their own weight, the fraction of the span that could be pivoted up is limited.
In U.S. Pat. No. 7,198,225, issued in 2007, to Lisoski and Kendall (hereinafter referred to as the Lisoski Patent), which also relates to the Helios type aircraft, a variant of Helios is proposed with variable wing angles to improve solar radiation energy collection, as shown in FIGS. 6E and 6F. However, as those of ordinary skill in the art can appreciate, the configurations shown in FIGS. 6E and 6F of the Lisoski Patent are essentially the same concept shown in FIG. 46 of the 1983 NASA C. Report, configuration 4.
All of the above concepts have some problems with either solar collection at low sun elevation angles, sun collection at medium sun elevation angles, night time energy requirements or excessive structural mass. Thus, there is a need for a solar aircraft configuration that can effectively adapt to a wide range of sun angles, does not carry collectors that are not useful at some sun angles, has very low drag for low night time energy requirements, and also does not require excessive structural mass, and thus can allocate a large mass to the energy storage system.
While the historical solar powered aircraft have increased flight duration and altitude over time, none have exhibited the ability to fly at high latitudes, nor have any shown greater duration than perhaps a day or two. Thus, historical solar powered aircraft all have limitations due to poor high latitude solar collection efficiency due to the horizontal nature of their arrays and insufficient energy storage to fly through a long winter night.
Thus, a need exists for a solar powered aircraft that can overcomes the deficiencies of the prior art, by operating at high latitudes and during long periods of darkness.
It is therefore a general aspect of the invention to provide a solar powered aircraft that will obviate or minimize problems of the type previously described.
According to a first aspect of the present invention, an aircraft is provided, comprising: at least a first wing panel, wherein the first wing panel includes at least one hinge interface, wherein each of the at least one hinge interfaces are configured to rotationally interface with a complementary hinge interface on at least a second wing panel, such that the first wing panel can rotate with respect to the second wing panel within a predetermined angular range; and a control system, wherein the control system is configured to acquire aircraft information and atmospheric information, and further wherein the control system is configured to use the acquired aircraft information and acquired atmospheric information to alter the angle between the first wing panel and the second wing panel.
According to the first aspect, the wing panel comprises: an upper and lower surface, wherein one or both of the upper and lower surfaces includes one or more photovoltaic cells, wherein each of the one or more photovoltaic cells is configured to convert solar radiation energy into electricity. Still further according to the first aspect, the control system is further configured to alter the angle between the first and second wing panels to substantially maximize collection of solar radiation energy.
According to the first aspect, the aircraft further comprises at least one battery or other energy storage device configured to store electrical energy generated by the photovoltaic cells, and still further comprises at least one electrically driven motor. Further still, the aircraft is a solar powered aircraft.
According to the first aspect, the aircraft information is selected from the group consisting of, velocity information of the aircraft, altitude information of the aircraft, attitude information of the aircraft, acceleration information of the aircraft, position information of the aircraft with respect to the earth, and position information of the aircraft with respect to the sun.
According to the first aspect, the atmospheric information is selected from the group consisting of wind speed and direction information, temperature, atmospheric pressure, and relative humidity.
According to the first aspect, the wing panel of the aircraft further comprises: an upper and lower surface, wherein one or both of the upper and lower surfaces includes at least one solar thermal collection cell, wherein each of the at least one solar thermal collection cell is configured to convert solar thermal energy into electricity.
According to the first aspect, the control system is further configured to alter the angle between the first and second wing panels to substantially maximize collection of solar radiation energy.
According to the first aspect, the aircraft further comprises at least one battery or other energy storage device, configured to store electrical energy generated by the photovoltaic cells, and still further comprises at least one electrically driven motor.
According to the first aspect, the aircraft further comprises any number of additional wing panels, wherein each of the any number of additional wing panels includes at least one hinge interface, wherein each of the at least one hinge interfaces are configured to rotationally interface with a complementary hinge interface on an adjacent wing panel, such that each of the adjacent wing panels can rotate with respect to any of the wing panels including the adjacent wing panels within a predetermined angular range; and wherein the control system is further configured to alter the angle between any pair of adjacent wing panels coupled together by the at least one hinge interface.
According to the first aspect, the control system is further configured to alter an angle between at least one of the wing panels and the horizon, and the control system is further configured to alter the angle between at least one of the wing panels and the horizon in order to substantially maximize collection of solar energy.
According to the first aspect, the one or more of the wing panels comprises control surfaces configured to alter or maintain flight characteristics of the aircraft, and wherein the control system is further configured to unlock at least one of the hinge interfaces and use control surface deflections and a turn rate of the aircraft to reposition the wing panels coupled together.
According to the first aspect, the aircraft further comprises a tail boom; and a tail structure, and wherein the tail structure includes a plurality of control surfaces configured to alter or maintain flight characteristics of the aircraft, at least one or more photovoltaic cells, and a rotational pivot configured to rotationally attach the tail structure to the tail boom, and further wherein the control system is configured to manipulate the plurality of control surfaces to rotate the tail structure about a central axis of the tail boom via the rotational pivot.
According to the first aspect, the control system is further configured to rotate the tail structure to collect solar radiation energy via the photovoltaic cells, and the control system is further configured to rotate the tail structure to maximize collection of solar radiation energy via the photovoltaic cells. Still further according to the first aspect, the control system is further configured to rotate the tail structure to substantially decrease flutter loads on the tail structure.
According to the first aspect, the aircraft further comprises a tail boom; and a tail structure, and wherein the tail structure includes a plurality of control surfaces configured to alter or maintain flight characteristics of the aircraft, at least one or more solar thermal collection cells, and a rotational pivot configured to rotationally attach the tail structure to the tail boom, and further wherein the control system is configured to manipulate the plurality of control surfaces to rotate the tail structure about a central axis of the tail boom via the rotational pivot.
According to the first aspect, the control system is further configured to rotate the tail structure to collect solar thermal energy via the at least one or more solar thermal collection cells, and the control system is further configured to rotate the tail structure to maximize collection of solar thermal energy via the at least one or more solar thermal collection cells.
According to the first aspect, the aircraft further comprises a tail boom; a motor; and a tail structure, and wherein the tail structure includes a plurality of control surfaces configured to alter or maintain flight characteristics of the aircraft, at least one or more photovoltaic cells, and a rotational pivot configured to rotationally attach the tail structure to the tail boom, and further wherein the control system is configured to operate the motor to rotate the tail structure about a central axis of the tail boom via the rotational pivot.
According to the first aspect, the control system is further configured to rotate the tail structure to collect solar radiation energy via the photovoltaic cells, and the control system is further configured to rotate the tail structure to maximize collection of solar radiation energy via the photovoltaic cells.
According to the first aspect, the aircraft further comprises a tail boom; a motor; and a tail structure, and wherein the tail structure includes a plurality of control surfaces configured to alter or maintain flight characteristics of the aircraft, at least one or more solar thermal collection cells, and a rotational pivot configured to rotationally attach the tail structure to the tail boom, and further wherein the control system is configured to operate the motor to rotate the tail structure about a central axis of the tail boom via the rotational pivot.
According to the first aspect, the control system is further configured to rotate the tail structure to collect solar thermal energy via the at least one or more solar thermal collection cells, and the control system is further configured to rotate the tail structure to maximize collection of solar thermal energy via the at least one or more solar thermal collection cells.
According to the first aspect, the wing panel of the aircraft comprises an upper and lower surface, wherein one or both of the upper and lower surfaces includes one or more dipole antenna elements, wherein each of the one or more dipole antenna elements is configured to transmit and receive electromagnetic energy.
According to the first aspect, the control system is further configured to alter the angle between the first and second wing panels to substantially maximize transmission gain and reception gain of each of the one or more dipole antenna elements with respect to a remote transceiver, and wherein the control system is further configured to transmit electromagnetic energy to, and receive electromagnetic energy from, a transceiver located at an altitude higher than the aircraft, and wherein the control system is further configured to transmit electromagnetic energy to, and receive electromagnetic energy from, a transceiver located at an altitude lower than the aircraft.
According to the first aspect, the first wing panel includes a first dipole antenna element; and the second wing panel includes a second dipole antenna element, and the control system is further configured to alter the angle between the first and second wing panels, such that the transmission and reception gain of the first dipole antenna element is substantially maximized with respect to a first transceiver at a first location, and the transmission and reception gain of the second dipole antenna element is substantially maximized with respect to a second transceiver at a second location, such that communications can occur between the first and second transceivers through the first and second dipole antenna elements.
According to a second aspect of the present invention, a tail assembly for use on an aircraft is provided comprising: a tail boom; and a tail structure, wherein the tail structure includes a plurality of control surfaces configured to alter or maintain flight characteristics of the aircraft, at least one or more photovoltaic cells, or at least one or more solar thermal collection cells, or both photovoltaic cells and solar thermal collection cells, and a rotational pivot configured to rotationally attach the tail structure to the tail boom, and further wherein the control system is configured to manipulate the plurality of control surfaces to rotate the tail structure about a central axis of the tail boom via the rotational pivot.
According to the second aspect, the control system is further configured to rotate the tail structure to collect solar radiation energy via the photovoltaic cells, or the at least one or more solar thermal collection cells, or both the photovoltaic cells and the solar thermal collection cells, and the control system is further configured to rotate the tail structure to substantially maximize collection of solar radiation energy via the photovoltaic cells or the at least one or more solar thermal collection cells, or both the photovoltaic cells and the solar thermal collection cells. Further still, the control system is further configured to rotate the tail structure to substantially decrease flutter loads on the tail structure.
According to a third aspect of the present invention, a tail assembly for use on an aircraft is provided comprising: a tail boom; a motor; and a tail structure, wherein the tail structure includes a plurality of control surfaces configured to alter or maintain flight characteristics of the aircraft, at least one or more photovoltaic cells, or at least one or more solar thermal collection cells, or both photovoltaic cells and solar thermal collection cells, and a rotational pivot configured to rotationally attach the tail structure to the tail boom, and further wherein the control system is configured to operate the motor to rotate the tail structure about a central axis of the tail boom via the rotational pivot.
According to the third aspect, the control system is further configured to rotate the tail structure to collect solar radiation energy via the photovoltaic cells, or the at least one or more solar thermal collection cells, or both the photovoltaic cells and the solar thermal collection cells, and the control system is further configured to rotate the tail structure to substantially maximize collection of solar radiation energy via the photovoltaic cells or the at least one or more solar thermal collection cells, or both the photovoltaic cells and the solar thermal collection cells. Furthermore, according to the third aspect, the control system is further configured to rotate the tail structure to substantially decrease flutter loads on the tail structure.
According to a fourth aspect of the present invention, an aircraft is provided, comprising: a wing panel, wherein the wing panel includes an upper and lower surface, and wherein one or both of the upper and lower surfaces includes one or more photovoltaic cells, wherein each of the one or more photovoltaic cells is configured to convert solar radiation energy into electricity; and a control system, wherein the control system is configured to acquire aircraft information and atmospheric information, and further wherein the control system is configured to use the acquired aircraft information and atmospheric information to alter the angle between the wing panel and a horizon, to substantially maximize collection of solar radiation energy.
According to the fourth aspect, the aircraft further comprises at least one battery or other energy storage device configured to store electrical energy generated by the photovoltaic cells, and the aircraft further comprises at least one electrically driven motor.
According to the fourth aspect, the aircraft information is selected from the group consisting of velocity information of the aircraft, altitude information of the aircraft, attitude information of the aircraft, acceleration information of the aircraft, position information of the aircraft with respect to the earth, and position information of the aircraft with respect to the sun.
According to the fourth aspect, the atmospheric information is selected from the group consisting of wind speed and direction information, temperature, atmospheric pressure, and relative humidity.
According to a fifth aspect of the present invention, a method of operating an aircraft is provided, comprising the steps of: rotating a first wing panel with respect to a second wing panel, wherein the first and second wing panels are rotational coupled; collecting solar radiation energy by photovoltaic cells located on one or both of an upper and lower surface of each of the first and second wing panels; and energizing an electrical motor.
According to the fifth aspect, the step of rotating the wing panel comprises: optimizing collection of solar radiation energy by the photovoltaic cells by rotating each of the first and second wing panels such that each is at an optimal angle with respect to the sun.
According to the fifth aspect, the method further comprises rotating any number of wing panels, wherein each wing panel is rotationally coupled to at most two adjacent wing panels and at least one adjacent wing panel, such that each of the any number of wing panels can be rotated within a predetermined angular range with respect to each adjacent wing panel; and optimizing collection of solar radiation energy by the photovoltaic cells on each wing panel by rotating each of the any number of wing panels such that each is at an optimal angle with respect to the sun.
The novel features and advantages of the present invention will best be understood by reference to the detailed description of the preferred embodiments that follows, when read in conjunction with the accompanying drawings, in which:
The various features of the preferred embodiments will now be described with reference to the drawing figures, in which like parts are identified with the same reference characters. The following description of the presently contemplated best mode of practicing the invention is not to be taken in a limiting sense, but is provided merely for the purpose of describing the general principles of the invention.
According to exemplary embodiments, the system and method for a non-planar adaptive wing structure can work on several different types of aircraft. According to a preferred embodiment, the system and method for a non-planar adaptive wing structure can work on a solar powered aircraft. Thus, the discussion below should not be construed to be limited to any one particular type of aircraft. By way of example only, and according to a preferred embodiment, discussion is made of light, unmanned aerial vehicles. More particularly, and according to a preferred embodiment, the discussion below refers to solar powered modular constituent unmanned aerial vehicles (MC UAVs). The UAVs are referred to as “modular constituent” because they are designed to be fit together, and are generally and substantially identical. As those of ordinary skill in the present art can appreciate, however, even though each UAV can comprise the appropriate hardware and controller components to allow non-planar adaptive wing structure, the UAV's themselves can be of different shapes, sizes, and with different payloads and capabilities, yet still can accomplish non-planar adaptive wing structure according to exemplary embodiments.
According to an exemplary embodiment, aircraft 100 is composed of multiple substantially identical solar regenerative fuel cell electric propulsion modular constituent UAV's (MC UAVs 2). As discussed above, MC UAV's 2 are connected together; this enables aircraft 100 to incorporate a non-planar adaptive wing structure according to an exemplary embodiment. An alternate embodiment would have a single aircraft with multiple wing panels permanently attached with hinges that allow the non-planar adaptive wing structure. The non-planar adaptive wing structure allows ultra-efficient flight during the night (as shown in
Hinge interface 12 allow aircraft 100 to adapt a ‘Z-wing’ geometry according to an exemplary embodiment for efficient solar energy collection at high latitudes, as shown
According to exemplary embodiments, aircraft 100 comprises a wing length of between about 100 meters and about 200 meters. According to a preferred embodiment, the wing length of aircraft 100 is about 150 meters. According to exemplary embodiments, aircraft 100 comprises a wing chord of between about 2.5 meters and about 7.5 meters. According to a preferred embodiment, the wing chord of aircraft 100 is about 5 meters. According to exemplary embodiments, aircraft 100 comprises a tail size that is between about 15% and about 25% of the total wing area. According to a preferred embodiment, the tail size of aircraft 100 is about 20% of the total wing area. According to exemplary embodiments, aircraft 100 can maintain a constant indicated air speed of between about 53 meters-per-second (m/s) and about 73 m/s. According to a preferred embodiment, aircraft 100 can maintain an indicated air speed of about 63 m/s. According to exemplary embodiments, aircraft 100 can operate at an altitude of about 22.5 kilometers. According to a preferred embodiment, aircraft 100 can operate at an altitude of about 21.5 kilometers. According to exemplary embodiments, aircraft 100 operates at a wing loading of between about 35 pascals and about 45 pascals. According to a preferred embodiment, aircraft 100 operates at a wing loading of about 40 pascals. According to exemplary embodiments, aircraft 100 comprises a coefficient of wing lift CL of between about 0.53 and about 0.59. According to a preferred embodiment, aircraft 100 comprises a coefficient of wing lift CL of about 0.56. According to exemplary embodiments, aircraft 100 comprises double-sided energy storage cells with an efficiency of between about 30% and about 50%, while allowing for between about 15% and about 25% loss due to shadowing on the wings' lower surface(s). According to a preferred embodiment, aircraft 100 comprises double-sided energy storage cells with an efficiency of about 40%, while allowing for about 20% loss due to shadowing on the wings' lower surface(s). According to exemplary embodiments, aircraft 100 comprises an energy storage between about 700 Whr/kg and about 900 Whr/kg. According to a preferred embodiment, aircraft 100 comprises an energy storage of about 800 Whir/kg. As those of ordinary skill in the art can appreciate, the above-described quantities for various aircraft specifications, including wing span, energy storage, energy consumption, and several other specifications and quantities, have been provided solely for purposes of illustration, and not limitation in any manner whatsoever.
As discussed below, in regard to tail boom 14, tail structure 16 and rotational pivot 20, cruciform tails with solar radiation panels 24 that are flown to track the sun elevation provide significant benefits in solar energy collection. According to an exemplary embodiment, tail structure 16 can also provide improved control over the aeroelastic modes, both in damping and in control power. As those of ordinary skill in the art can appreciate, many different types of materials can be used in constructing various components of MC UAV 2. For example, according to exemplary embodiments, wrapped carbon fiber and/or wrapped carbon epoxy, carbon fiber, kevlar cable, aluminum extrusions, molded carbon fiber laminates and carbon fiber foam sandwich structures can be used for many different component structures of MC UAV 2. Still further, molded carbon fiber laminates and machined aluminum, and machined titanium with bonded karon bearing surfaces can be used for other structures. Kapton or Tedar film, kevlar skinned foam, and carbon skinned balsa can be used for still other components structures of MC UAV 2 according to exemplary embodiments. According to a preferred embodiment, the main structure of MC UAV 2 can be fabricated from carbon, with a conductor embedded therein. A main structure fabricated in this manner means that the main structure can act as a power bus for different electrical components. Structural aluminum could be used, but the resistance is generally about two times that of pure aluminum (which cannot be used because it is too soft). In a structure that is designed for stiffness, the soft aluminum could still give an advantage. If carbon is used to manufacture the main structure of MC UAV 2, then aluminum is preferably not used as a conductor because of the well known effects of galvanic corrosion. Other metals that can be used with carbon include copper, or aluminum that is electrically isolated from the carbon by a layer of fiberglass.
Rotation of hinge interfaces 12 is controlled by a control system 22, discussed in greater detail below. Rotation of aircraft 100 as shown in
When wing panels 8 are not lifting substantially vertically (i.e., when the wing panels 8 are at an angle with respect to the horizon (see
As discussed above, there are several methods for controlling aircraft 100. Control system 22 can operate in an autonomous mode, or can accept remote control signals from a remote operator. Such remote operators can transmit signals via line-of-sight transmissions, through satellite communication systems, or from the ground to another aircraft to aircraft 100, and through other methods. Furthermore, control system 22 can control the configuration of aircraft 100 in several ways. First, it can forward commands to a motor that is associated with each of several hinge interfaces 12 that can then cause a first wing panel 8a to rotate with respect to second wing panel 8b (and so on for other wing panels 8). Or, control system 22 can interpret commands given to it via a remote operator (or from itself when operating in the autonomous mode) to put aircraft 100 in a particular configuration (i.e., wing outer panel elevation angle μ, wing panel dihedral angle Γ), by rolling aircraft 100 through manipulation of its ailerons to create enough force to cause wing panels 8a-c to move with respect to one another if they are unrestricted at the appropriate moment. That is, control system 22 can cause the ailerons to roll aircraft 100; as aircraft 100 rolls, control system 22 “unlocks” one or more hinge interfaces at the appropriate moment such that the angular momentum created by the roll is sufficient to cause a first wing panel 8 to move in relationship to an adjacent wing panel 8. In this manner, battery power is conserved; the size of the batteries can be reduced, and the weight and space savings can be used for additional payload, or other items.
A wing panel elevation angle μ of about 75° gives 100% collection efficiency, but a large amount of that power is needed to fly aircraft 100. According to a preferred embodiment, a wing panel elevation angle μ of about 52° provides the highest net power (shown by the vertical line in
Based upon air vehicle's 100 configuration as determined in
Aircraft 100 is capable of flying at northern (or southern) latitudes more efficiently than flat wing panel aircraft due to its ability to vary the wing panel elevation angle μ, and wing panel dihedral angle Γ. At lower northern latitude, that is, as the latitude approaches the equator (from both sides), the overall advantage of aircraft 100 is still significant over flat panel aircraft, but does begin to decrease. In one significant manner, however, aircraft 100 maintains a clear advantage in that at sunrise and sunset aircraft 100 can sustain higher powered flight better than a flat wing panel aircraft due to its ability to gather more of the setting or just rising sun than a flat wing panel solar powered aircraft.
The power numbers for the day are plotted in
Line B represents the gross power out of solar panels 6. From about 0 hours past midnight to about 8 hours past midnight, there is no energy input. Then, at about 8 hours past midnight, the sun rises and the power out of solar panels 6 climbs dramatically, especially because aircraft 100 is now tracking the sun. At about 16 hours or so past midnight, till about 8 hours or so past midnight, the power output from solar panels 6 drops off equally dramatically, and falls to zero as the sky becomes dark.
Line C represents the net energy flow into batteries 6. During the dark hours, from about 8 hours before midnight to about 8 hours after midnight, there is a net energy loss with respect to batteries 6. During the daylight hours, from about 8 hours past midnight to about 16 hours past midnight, there is a net energy flow into batteries 6. Of course, without a make-up in energy from solar cells 6, aircraft 100 would eventually fail to have enough battery power and would drop out of the sky. As those of ordinary skill in the art can appreciate,
As discussed above, tail boom 14 is connected to tail structure 16 via rotational pivot 20. According to an exemplary embodiment, rotation pivot 20 allows tail structure 16 to freely rotate via control of control system 22. Control of rotation of tail structure 16 can be accomplished by altering flight control surfaces 18, via control system 22, or by rotating tail structure 16 via a motor, for example. According to an exemplary embodiment, tail structure 16 and stabilizers 17a-d can be configured as two horizontal stabilizers 17c, d with elevation flight control surfaces (elevators) 18c, d, and two vertical stabilizers 17a, b with yaw flight control surfaces (rudders) 18a, b. However, as those of ordinary skill in the art can appreciate, as tail structure 16 rotates with respect to tail boom 14 (along with respect to the remaining portion(s) of MC UAV 2 and aircraft 100), each flight control surface 18 can operate in manner different than before rotation. Solar radiation panels 24, as shown in
With the addition of solar radiation panels 24 to stabilizers 17a-b as shown in
As is well known to those of ordinary skill in the art of antennas, the radiation pattern of a dipole antenna is shaped as a torus, and is influenced by the frequency of the transmitting/receiving signal, length of the antenna, and other parameters. The center of the torus lies parallel to and along the dipole antenna element itself. Therefore, if dipole antenna 32 is placed on wing panel 8 on MC UAV 2 as shown in
According to an exemplary embodiment, dipole antenna 32 can be a separate element in regard to wing panel 8. According to a preferred embodiment, dipole antenna 32 can be an integral component of wing panel 8 such as, for example, a wing spar the traverses substantially the entire length, or a portion thereof, of wing panel 8. In the latter, preferred embodiment, as long as the spar is suitably conductive, it can be used as a dipole antenna. A detailed description of the interconnection of dipole antenna 32, whether as a stand-alone or separate element, or an integral component of wing panel 8, to a transceiver (not shown) is, as those of ordinary skill in the art can appreciate, neither necessary for an understanding of the invention, nor within the scope of this discussion. Therefore, for the dual purposes of clarity and brevity, a detailed discussion of the interconnection of dipole antenna 32 to a transceiver and its operation for all of its various embodiments has been omitted.
Dipole antenna 32 on aircraft 100 can be used in many different scenarios. For example, a communications link can be created between ground-based personnel (e.g., police, border patrol, among others) and other related personnel at distant locations via a satellite or airborne communication link, as shown in
According to an exemplary embodiment, in operation, dipole antenna 32 needs to be properly aligned to satellite 36 (or another communication objective) in much the same that solar panels 8 need to be aligned with the sun. Of course, if air vehicle includes solar panels 8 and dipole antennas 32, there can be a conflict between maximizing antenna gain of dipole antenna 32 and maximizing solar energy collection (as those of ordinary skill in the art can appreciate, both solar panels and dipole antenna 32 are substantially similar in that both are antennas, and thus operate in accordance with well known electromagnetic principles). However, because of the unique nature of wing panels 8 and the special configuration of aircraft 100, much of the difficulty in cross alignment can be substantially minimized because of their ability to orient themselves at several different angle with respect to each other. That is, very often one or two wing panels can be oriented to the sun, to maximize solar radiation exposure, while two or more wing panels 8 can be oriented to maximize antenna gain in the direction of the airborne or space-based transceiver/communication-objective. Maximization, in this case, might mean less than optimal, but still better than a flat panel wing, for either solar exposure or dipole antenna 32 orientation.
The present invention has been described with reference to certain exemplary embodiments thereof. However, it will be readily apparent to those skilled in the art that it is possible to embody the invention in specific forms other than those of the exemplary embodiments described above. This may be done without departing from the spirit and scope of the invention. The exemplary embodiments are merely illustrative and should not be considered restrictive in any way. The scope of the invention is defined by the appended claims and their equivalents, rather than by the preceding description.
All United States patents and applications, foreign patents, and publications discussed above are hereby incorporated herein by reference in their entireties.
This application is a divisional of U.S. patent application Ser. No. 12/211,027, filed Sep. 15, 2008, which claims the benefit of priority under 35 U.S.C. §119(e) from U.S. Provisional Application Ser. No. 60/972,720, entitled “NON-PLANAR ADAPTIVE WING SOLAR AIRCRAFT”, filed on Sep. 14, 2007, the entire contents of both incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60972720 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12211027 | Sep 2008 | US |
Child | 13272680 | US |