A user may request a web page or other content page via a browser or media player operating on the user's computing device in order to stream content. For example, the browser may request content from a server, such as a streaming server. The streaming server may retrieve a file from an origin server that includes content that can be played by the browser, such as audio or video, and transmit the file to the browser. Before the file has been fully transmitted, the browser may begin playing the content included in the file. Once the content has been played, the file may be discarded by the device operating the browser.
If there is any delay in the transmission of the file such that the speed at which the file is played exceeds the speed at which the file is received, the user may be notified of the delay and playback may be paused. Various factors can contribute to this delay. These factors include, for example, (1) the speed of the wireless or wired connection between the user's device and the Internet, (2) the location of, and load on, the streaming server that provides the content, (3) the size of the requested content, and (4) the processing power of the user's device. When the delay is significant (e.g., several seconds or more), the task of playing content can be frustrating for the user.
Throughout the drawings, reference numbers may be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure.
As described above, if there is any delay in the transmission of a file to a user device such that the speed at which the file is played exceeds the speed at which the file is received, playback may be paused, frustrating the user. Thus, when a user device requests a file from the streaming server, conventional streaming servers immediately request the file from the origin server at the fastest possible rate. While this minimizes situations in which the speed at which the file is played exceeds the speed at which the file is received, this also results in a wasteful usage of bandwidth by the streaming server. For example, some users start, but do not finish, consuming the requested content. Thus, conventional streaming servers waste network resources retrieving a complete file when only a portion of the file was needed. As another example, some users do not consume content in a sequential manner, but rather skip ahead or back to different portions of the content. Conventional streaming servers, by immediately requesting the file from the origin server, may end up retrieving a portion of the file that was not actually needed.
Wasting network bandwidth can prove costly for streaming server operators. For example, some streaming servers request content for thousands to hundreds of thousands of users at any given time. If usage at any given time is high or nearing bandwidth limits, retrieving unnecessary files can cause the retrieval of other, necessary files to be delayed, possibly resulting in the pausing of playback. As another example, some streaming server operators pay network operators for bandwidth usage according to the 95/5 model. In the 95/5 model, network operators may track the amount of bits transmitted or received in 5 minute periods (e.g., resulting in a bitrate corresponding to each 5 minute period). The bitrates falling in the top 5th percentile of all bitrates are dropped and the streaming server operator is charged based on the bitrate of the 95th percentile of all bitrates. If the streaming server is retrieving unnecessary files, this can increase the bitrate of the 95th percentile of all bitrates and therefore the amount charged by the network operator.
Generally described, various embodiments disclosed herein provide a streaming server (referred to herein as an edge system) that throttles the retrieval of files from the origin server to a rate that just exceeds the speed at which the file is played by a browser or media player. Instead of retrieving a file as fast as possible given network conditions, the edge system determines an appropriate retrieval rate based on the contents of the file itself. For example, content (e.g., audio, video, or audiovisual content) has an intrinsic time component. The time it takes to play back content, or a portion of the content, is known. A file size is also known. Thus, the edge server can use this information to retrieve a file from an origin server at a rate that is just fast enough to minimize playback interruption (e.g., 1.1 times faster than normal playback speed, 1.2 times faster than normal playback speed, etc.). The retrieval rate determined by the edge server therefore does not rely on how fast or slow the user device retrieves the file from the edge server. Additional details of the operations performed by the edge server in determining the retrieval rate are described in greater detail below with respect to
Example Content Retrieval Environment
The edge system 104 includes a media fetcher 112, a client media receiver 114, a media re-encoder 116, and a media cache 118. In an embodiment, the media fetcher 112 retrieves files from the origin server 106 at the request of a user via a user device 102. The media fetcher 112 also determines a rate of retrieval from the origin server 106 based on the requested file. For example, the media fetcher 112 receives a request for a file from the user device 102. Specifically, the request indicates a fragment of the file to retrieve, which is typically the first fragment of the file if the user is beginning playback. In some cases, a file can be encoded at different bitrates and therefore the request may also include a desired bitrate. The media fetcher 112 queries the media cache 118 to determine whether the fragment at the desired bitrate is located therein. If the fragment at the desired bitrate is located in the media cache 118, then the media fetcher 112 retrieves the fragment from the media cache 118 and transmits the fragment to the user device 102 to complete the request. If the fragment at the desired bitrate is not located in the media cache 118, then the media fetcher 112 begins the retrieving the fragment from the origin server 106.
The media fetcher 112 can initially retrieve a manifest file associated with the requested file from the origin server 106. Alternatively, the manifest file may be stored in the media cache 118 and retrieved or may be retrieved from the user device 102. The manifest file indicates a playback duration of the content in the requested file or a playback duration of each fragment of the requested file. The manifest file also indicates a bitrate of the requested file or each fragment of the requested file. Using the playback duration information, the media fetcher 112 determines a maximum amount of time available to retrieve a fragment. To minimize playback interruptions, the media fetcher 112 determines a fragment retrieval time that is just faster than the maximum amount of time available to retrieve the fragment. For example, the fragment retrieval time may be 1.1× or 1.2× faster than the maximum amount of time available to retrieve the fragment.
The media fetcher 112 can use the fragment retrieval time, the playback duration information, and the bitrate information to determine a fragment retrieval bitrate. For example, the media fetcher 112 can multiply the playback duration of the fragment by the bitrate of the fragment to determine the bit size of the fragment. The media fetcher 112 can then divide the bit size of the fragment by the fragment retrieval time to determine the bitrate at which the fragment should be retrieved from the origin server 106. Thus, the fragment retrieval bitrate is not determined based on how long a user device 102 actually takes to retrieve and playback a fragment. The media fetcher 112 then retrieves the fragment from the origin server 106 at the fragment retrieval bitrate.
In other embodiments, the request for the fragment from the user device 102 also includes a user device 102 playback rate. For example, the user device 102 can play fragments at a rate faster or slower than the normal playback rate. This information can be provided to the media fetcher 112 as an additional factor in determining the fragment retrieval bitrate. For example, if the user device 102 is playing fragments at 1.5× speed, then the media fetcher 112 can use this information to determine an updated playback duration and use the updated playback duration to determine the maximum amount of time available to retrieve a fragment. The user device 102 playback rate can also indicate whether there are playback interruptions, such as a buffering event. The media fetcher 112 can estimate an updated playback duration based on this indication and use the updated playback duration to appropriately increase the maximum amount of time available to retrieve a fragment. The bit size determination may still be based on the normal or original playback duration. Alternatively, instead of receiving the user device 102 playback rate from the user device 102, the media fetcher 112 can determine the user device 102 playback rate based on a rate at which the user device 102 requests fragments.
In alternate embodiments, the media fetcher 112 uses information other than the manifest file to determine the playback duration information or the bitrate information. For example, the media fetcher 112 can determine this information by analyzing the raw file, based on a type of codec used to encode the content, by performing heuristics on the content (e.g., more solid colors may indicate a smaller file size and thus a lower bitrate), by analyzing metadata attached to a hypertext transfer protocol (HTTP) request, or by analyzing a request pattern of the user device 102 (e.g., the user device 102 generally requests fragments at a given bitrate), or the like.
Once a fragment is retrieved from the origin server 106, the media fetcher 112 stores the fragment in the media cache 118 and transmits the fragment to the user device 102. The media fetcher 112 can repeat the retrieval process described above for the next requested fragment.
Generally, the user device 102 begins playback of a fragment once the fragment is completely received. The user device 102 also sends a confirmation to the media fetcher 112 once a fragment has been completely received along with a request for the next fragment in sequence (or another fragment if the user skips ahead or behind). Thus, the media fetcher 112 sets the fragment retrieval bitrate such that the next fragment is retrieved from the origin server 106 before the user device 102 completes playback of the previous fragment. Accordingly, if fragments are associated with different playback times, then the media fetcher 112 uses the playback time associated with a previous fragment in determining the fragment retrieval bitrate for the next fragment.
In an embodiment, the retrieval process described above applies to each fragment after the initial or first couple of fragments of the requested file. For example, when playback begins and the user device 102 initially requests the file, the initial fragment or the first couple of fragments may be requested from the origin server 106 as fast as possible so that playback begins sooner (if such fragments are not already stored in the media cache 118). In addition, the user device 102 can notify the media fetcher 112 if a fragment buffer is nearly empty or empty and the media fetcher 112 can increase the rate at which subsequent fragments are retrieved from the origin server 106 (at least until the fragment buffer is no longer nearly empty or empty).
The media fetcher 112 can implement additional techniques to reduce bandwidth usage. For example, while the user device 102 request may specify a bitrate, the specified bitrate could be for content that is at a higher resolution than what is capable of being displayed on the user device 102. As an illustrative example, a mobile phone can request content at a bitrate corresponding to 4K video; however, the mobile phone may only be able to display content with resolutions up to 720p. Transmitting the fragment at the bitrate corresponding to 4K video as opposed to a fragment at a bitrate corresponding to 720p video is wasteful because the 4K fragment has a larger file size than the 720p fragment and the user device 102 is not capable of taking advantage of the higher resolution. Thus, the media fetcher 112 can request capabilities of the user device 102 and use this information to ignore the user device 102 request, if necessary, and select the appropriate fragment to retrieve from the media cache 118 or the origin server 106. Alternatively, the media re-encoder 116 or a separate component between the edge system 104 and the origin server 106 can receive the user device 102 capabilities from the media fetcher 112 and downconvert requested fragments to meet the capabilities of the user device 102 (e.g., downconvert from a resolution of 4K to 720p, downconvert from a stereo audio to mono audio, etc.).
Generally, user devices 102 request fragments at bitrates that would not cause playback interruptions (e.g., bitrates less than the available bandwidth of a network connection). In some embodiments, the available bandwidth of the network connection between the user device 102 and the media fetcher 112 fluctuates. Thus, for the same file, the user device 102 can request fragments at different bitrates as the available bandwidth fluctuates. For example, if the initial bandwidth of the network connection is 500 mb/s, the user device 102 may request a first fragment at 400 mb/s. If the available bandwidth then drops to 350 mb/s, the user device 102 may then request a second fragment at 325 mb/s. By retrieving fragments according to the retrieval process described above, the media fetcher 112 can avoid situations in which an entire file at a first bitrate is retrieved, only to be discarded later because the user device 102 later requests fragments at a second bitrate based on changed network conditions.
However, the user device 102 can oscillate between requesting a fragment at a high bitrate and a fragment at a low bitrate. Oscillating requests can cause playback interruption because the user device 102 buffer of fragments may empty earlier than expected. Thus, the media fetcher 112 can identify when such oscillations are occurring (e.g., the user device 102 has requested fragments at two different bitrates a threshold number of times within a certain period of time) and retrieve fragments at both bitrates, regardless of which bitrate the user device 102 request specifies. The fragment at the unrequested bitrate, though, can be retrieved at a slower rate than the fragment at the requested bitrate (but at a rate that is faster than the time to playback the previous fragment). Alternatively, the media fetcher 112 can identify when such oscillations are occurring and instruct the media re-encoder 116 to re-encode the fragment to a new bitrate that is low enough to avoid oscillating requests, as described in greater detail below.
In some embodiments, there are large gaps in bitrates that are available for some fragments in the origin server 106. Thus, when available network bandwidth fluctuates, the user device 102 may request fragments of widely different quality. For example, fragments may be available at 256 mb/s and at 720 mb/s. If the available network bandwidth fluctuates below and above 720 mb/s, then the user may experience a significant drop in quality when the available bandwidth drops below 720 mb/s and the user device 102 then requests a fragment at 256 mb/s. Thus, the media re-encoder 116 or another component between the edge system 104 and the origin server 106 can re-encode fragments as they are requested by the user device 102 to a bitrate that can reliably be requested by the user device 102 given network conditions (e.g., 500 mb/s in this example). The user device 102 can specifically request the re-encoded bitrate or the media fetcher 112 can request the higher bitrate fragment and instruct the media re-encoder 116 to re-encode the fragment to a more reliable bitrate.
In further embodiments, the media fetcher 112 can instruct the media re-encoder 116 to re-encode fragments for some, but not all, user devices 102 requesting the particular fragment. For example, the network bandwidth available to provide a fragment to a plurality of user devices 102 is limited. If the available network bandwidth is limited to the extent that a high bitrate fragment cannot be sent to all of the requesting user devices 102 or to the extent that different fragments cannot all be sent to the respective requesting user devices 102, then the media fetcher 112 can instruct the media re-encoder 116 to re-encode the high bitrate fragment to a lower bitrate fragment. The media fetcher 112 can then send the high bitrate fragment to some user devices 102 and the lower bitrate fragment to other user devices 102 such that all user devices 102 receive a version of the respective requested fragment. The media fetcher 112 can determine which user devices 102 receive a higher bitrate fragment based on which user devices 102 more consistently request the higher bitrate (e.g., the user devices 102 that more consistently request the higher bitrate would be more likely to receive the higher bitrate fragment), user device 102 information, fragment quality information, or the like.
In some cases, available network bandwidth may be limited such that a requested fragment cannot be provided to the user device 102 in a manner that avoids a playback interruption. Thus, if the edge system 104 (e.g., the media fetcher 112) determines that a fragment cannot be retrieved and provided to the user device 102 to avoid playback interruption, the media fetcher 112 can instruct the user device 102 to slow playback of a fragment to a rate that would allow the media fetcher 112 to provide the next fragment to the user device 102 in a manner that avoids a playback interruption (e.g., slowing playback to a 0.95× speed). The media fetcher 112 can determine the slower playback rate based on characteristics of the network bandwidth (e.g., an available upload or download bitrate) and characteristics of the fragment to be retrieved (e.g., the playback duration, the bitrate, etc.).
While the disclosure above is described with respect to audio, video, or audiovisual content, this is not meant to be limiting. For example, the techniques described herein can also be used to retrieve pages of a literary work (e.g., book, magazine, newspaper, etc.) or any other content for which continuous or consistent delivery or presentation is desired. Illustratively, each page of a literary work can be associated with an estimated reading time. The estimated reading time can be specific to a user (e.g., based on analyzing reading patterns of the user) or based on statistics of a plurality of users that have read the particular page (e.g., 90% of users read the page in 2 minutes, which can be set as the estimated reading time). The media fetcher 112 can then retrieve each page from the origin server 106 at a rate that is faster than the estimated reading time.
Furthermore, the techniques used to determine a rate of retrieval from the origin server 106 can also be used to determine a rate of retrieval from a user device 102. The client media receiver 114 is configured to receive content from the user device 102 or other devices via the network 110. Such content can include images, virus definitions, backups, data (e.g., sensor data) from Internet of Things (IoT) devices, audio, video, audiovisual, or the like. The user device 102 can specify a deadline by which transmission of the content to the edge system 104 needs to be complete. The client media receiver 114 can use the size of the content along with the amount of time remaining before the deadline is reached to determine the retrieval bitrate. For example, the client media receiver 114 can divide the size of the content by the amount of time remaining to determine a minimum bitrate. The client media receiver 114 can then retrieve the content at the minimum bitrate or at a bitrate that is just higher than the minimum bitrate (e.g., 1.1× higher, 1.2× higher, etc.). As with the retrieval of content from the origin server 106, throttling the retrieval of content from the user device 102 can also decrease streaming server operator costs.
The user devices 102 can include a wide variety of computing devices, including personal computing devices, terminal computing devices, laptop computing devices, tablet computing devices, electronic reader devices, mobile devices (e.g., mobile phones, media players, handheld gaming devices, etc.), wearable devices with network access and program execution capabilities (e.g., “smart watches” or “smart eyewear”), wireless devices, set-top boxes, gaming consoles, entertainment systems, televisions with network access and program execution capabilities (e.g., “smart TVs”), and various other electronic devices and appliances. Individual user devices 102 may execute media player application 120 to communicate via the network 110 with other computing systems, such as the host system 104, in order to request and play content.
The origin servers 106 (or CDNs server, not shown) can host and provide network-accessible content (e.g., images, audio, video, audiovisual, etc.). The origin servers 106 and CDN servers can correspond to logical associations of one or more computing devices for hosting content and servicing requests for the hosted content over the network 110. For example, an origin server 106 or CDN server can include a web server component corresponding to one or more server computing devices for obtaining and processing requests for content from the edge system 104 or other devices or service providers. In some embodiments, one or more origin servers 106 may be associated with one or more CDN service providers (e.g., entities that manage multiple CDN servers), application service providers, etc.
The edge system 104 may be a single computing device, or it may include multiple distinct computing devices, such as computer servers, logically or physically grouped together to collectively operate as a server system. The components of the edge system 104 can each be implemented in application-specific hardware (e.g., a server computing device with one or more ASICs) such that no software is necessary, or as a combination of hardware and software. In addition, the modules and components of the edge system 104 can be combined on one server computing device or separated individually or into groups on several server computing devices. In some embodiments, the edge system 104 may include additional or fewer components than illustrated in
Example Block Diagram for Determining the Fragment Retrieval Rate
The media fetcher 112 receives the request for the second fragment and requests the second fragment from the media cache 118 (3). In some embodiments, the media cache 118 stores the second fragment and returns a copy of the second fragment to the media fetcher 112. However, as illustrated in
The media fetcher 112 can request the manifest file of the media file (5) from the origin server 106. The media fetcher 112 requests the manifest file if the manifest file is not already stored on the edge system 104. For example, the manifest file may already be stored on the edge system 104 because the media fetcher 112 earlier retrieved the first fragment. The origin server 106 then transmits the manifest file (6) to the media fetcher 112.
The media fetcher 112 determines a second fragment retrieval rate based on the bitrate and the second fragment duration included in the manifest file (7). Alternatively, the second fragment retrieval rate can be based on the bitrate and the first fragment duration included in the manifest file (e.g., the duration of the fragment before the second fragment).
Once the retrieval rate is determined, the media fetcher 112 requests the second fragment to be transmitted at the determined retrieval rate (8). The origin server 106 then proceeds to transmit the second fragment at the determined retrieval rate (9). Once retrieved from the origin server 106, the media fetcher 112 forwards the second fragment (10) to the user device 102 to complete the initial request.
Example Block Diagram for Determining the Retrieval Rate and Re-Encoding a Fragment
The media fetcher 112 determines that the user device 102 is consistently requesting fragments of a first bitrate or a second bitrate (3). For example, the user device 102 may request fragments of the first bitrate rate or the second bitrate consistently over a certain period of time. Thus, assuming the manifest file is already retrieved, the media fetcher 112 determines the retrieval rate based on the second bitrate and the new fragment duration included in the manifest file (4). The media fetcher 112 can use the second bitrate, rather than the first bitrate, to determine the retrieval rate because the second bitrate is higher.
Once the retrieval rate is determined, the media fetcher 112 requests the new fragment to be transmitted at the determined retrieval rate (5). The origin server 106 then proceeds to transmit the new fragment at the determined retrieval rate (6).
The media fetcher 112 then requests the media re-encoder 116 to re-encode the new fragment at a third bitrate between the first bitrate and the second bitrate (7). For example, the third bitrate can be selected such that the user device 102 no longer has to request a lower bitrate fragment when the available network bandwidth fluctuates (e.g., the bitrate can be just below the bottom range of the bandwidth fluctuation). The media re-encoder 116 then re-encodes the new fragment and transmits the re-encoded new fragment (8) to the media fetcher 112. Once the re-encoded new fragment is received, the media fetcher 112 forwards the re-encoded new fragment (9) to the user device 102 to complete the initial request.
Example Block Diagram for Retrieving Content from a User Device
The client media receiver 114 receives the request and determines the media file retrieval rate based on the size of the media file and the transfer deadline (2). For example, the client media receiver 114 can divide the size of the media file by the time remaining before the deadline is reached to determine a minimum retrieval bitrate. The media file retrieval rate can be set to the minimum retrieval bitrate or to a bitrate slightly faster than the minimum retrieval bitrate (1.1× or 1.2× faster).
The client media receiver 114 can then transmit a request to the user device 102 to transfer the media file at the determined media file retrieval rate (3). Once the instruction is received, the user device 102 transmits the media file at the determined media file retrieval rate (4). After the transfer is complete, the client media receiver 114 can store the media file (5) in a media storage database 418 in association with the user or the user device 102.
Example Retrieval Rate Determination Routine
At block 504, a request for a fragment of a media file is received from a user device. For example, the fragment can be a portion of the media file that corresponds with a playback duration.
At block 506, a determination is made whether the fragment is stored in cache. If the fragment is stored in the cache, the retrieval rate determination routine 500 proceeds to block 508. Otherwise, the retrieval rate determination routine 500 proceeds to block 510.
At block 508, the fragment is retrieved from the cache. The retrieval rate determination routine 500 then proceeds to block 516.
At block 510, a retrieval rate for the fragment is determined based on contents of a manifest file associated with the media file. For example, the manifest file can include a playback duration associated with the fragment and a bitrate of the fragment. The playback duration can be used to determine a maximum amount of time available to retrieve the fragment. As an example, the media fetcher 112 can aim to retrieve the file 1.1× or 1.2× faster than the playback duration. Thus, the retrieval time, along with the bitrate of the fragment and the playback duration, can be used to determine the retrieval rate.
At block 512, the fragment is requested from the origin server at a transfer rate that is at least the retrieval rate. For example, the retrieval rate can be the minimum retrieval rate for requesting the fragment to reduce the likelihood that the user device 102 finishes playback of a previous fragment before the requested fragment is retrieved. The fragment can then be received from the origin server at the requested transfer rate, as illustrated at block 514.
At block 516, a determination is made whether to re-encode the fragment. For example, the fragment can be re-encoded if the user device 102 is consistently oscillating between requesting a high bitrate fragment and a low bitrate fragment. The fragment can also be re-encoded if the available network bandwidth between the edge system 104 and various user devices 102 is limited to the extent that not all user devices 102 can receive fragments at requested bitrates. If the fragment is to be re-encoded, the retrieval rate determination routine 500 proceeds to block 518. Otherwise, the retrieval rate determination routine 500 proceeds to block 520.
At block 518, the fragment is re-encoded. The fragment can be re-encoded to a bitrate lower than a requested bitrate, but higher than a bitrate available at the origin server. The retrieval rate determination routine 500 then proceeds to block 520.
At block 520, the fragment or the re-encoded fragment is transmitted to the user device. Once the transmission is complete, the user device may request another fragment and the routine 500 can be repeated. After the fragment is transmitted to the user device, the retrieval rate determination routine 500 may be complete, as shown in block 522.
All of the methods and tasks described herein may be performed and fully automated by a computer system. The computer system may, in some cases, include multiple distinct computers or computing devices (e.g., physical servers, workstations, storage arrays, cloud computing resources, etc.) that communicate and interoperate over a network to perform the described functions. Each such computing device typically includes a processor (or multiple processors) that executes program instructions or modules stored in a memory or other non-transitory computer-readable storage medium or device (e.g., solid state storage devices, disk drives, etc.). The various functions disclosed herein may be embodied in such program instructions, and/or may be implemented in application-specific circuitry (e.g., ASICs or FPGAs) of the computer system. Where the computer system includes multiple computing devices, these devices may, but need not, be co-located. The results of the disclosed methods and tasks may be persistently stored by transforming physical storage devices, such as solid state memory chips and/or magnetic disks, into a different state. In some embodiments, the computer system may be a cloud-based computing system whose processing resources are shared by multiple distinct business entities or other users.
Depending on the embodiment, certain acts, events, or functions of any of the processes or algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (e.g., not all described operations or events are necessary for the practice of the algorithm). Moreover, in certain embodiments, operations or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially.
The various illustrative logical blocks, modules, routines, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware (e.g., ASICs or FPGA devices), computer software that runs on computer hardware, or combinations of both. Moreover, the various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a processor device, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A processor device can be a microprocessor, but in the alternative, the processor device can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor device can include electrical circuitry configured to process computer-executable instructions. In another embodiment, a processor device includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor device can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Although described herein primarily with respect to digital technology, a processor device may also include primarily analog components. For example, some or all of the rendering techniques described herein may be implemented in analog circuitry or mixed analog and digital circuitry. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.
The elements of a method, process, routine, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor device, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of a non-transitory computer-readable storage medium. An exemplary storage medium can be coupled to the processor device such that the processor device can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor device. The processor device and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor device and the storage medium can reside as discrete components in a user terminal.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without other input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
Disjunctive language such as the phrase “at least one of X, Y, or Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y, or Z, or any combination thereof (e.g., X, Y, and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y, and at least one of Z to each be present.
While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it can be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As can be recognized, certain embodiments described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others. The scope of certain embodiments disclosed herein is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Name | Date | Kind |
---|---|---|---|
5063500 | Shorter | Nov 1991 | A |
5341477 | Pitkin et al. | Aug 1994 | A |
5459837 | Caccavale | Oct 1995 | A |
5611049 | Pitts | Mar 1997 | A |
5701467 | Freeston | Dec 1997 | A |
5764910 | Shachar | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5852717 | Bhide et al. | Dec 1998 | A |
5892914 | Pitts | Apr 1999 | A |
5893116 | Simmonds et al. | Apr 1999 | A |
5895462 | Toki | Apr 1999 | A |
5905248 | Russell et al. | May 1999 | A |
5933811 | Angles et al. | Aug 1999 | A |
5937427 | Shinagawa et al. | Aug 1999 | A |
5974454 | Apfel et al. | Oct 1999 | A |
5991306 | Burns et al. | Nov 1999 | A |
5999274 | Lee et al. | Dec 1999 | A |
6016512 | Huitema | Jan 2000 | A |
6018619 | Allard et al. | Jan 2000 | A |
6026452 | Pitts | Feb 2000 | A |
6038601 | Lambert et al. | Mar 2000 | A |
6052718 | Gifford | Apr 2000 | A |
6078960 | Ballard | Jun 2000 | A |
6085234 | Pitts et al. | Jul 2000 | A |
6092100 | Berstis et al. | Jul 2000 | A |
6098096 | Tsirigotis et al. | Aug 2000 | A |
6108703 | Leighton et al. | Aug 2000 | A |
6128279 | O'Neil et al. | Oct 2000 | A |
6151631 | Ansell et al. | Nov 2000 | A |
6157942 | Chu et al. | Dec 2000 | A |
6167438 | Yates et al. | Dec 2000 | A |
6167446 | Lister et al. | Dec 2000 | A |
6173316 | De Boor et al. | Jan 2001 | B1 |
6182111 | Inohara et al. | Jan 2001 | B1 |
6182125 | Borella et al. | Jan 2001 | B1 |
6185598 | Farber et al. | Feb 2001 | B1 |
6192051 | Lipman et al. | Feb 2001 | B1 |
6205475 | Pitts | Mar 2001 | B1 |
6223288 | Byrne | Apr 2001 | B1 |
6243761 | Mogul et al. | Jun 2001 | B1 |
6275496 | Burns et al. | Aug 2001 | B1 |
6286043 | Cuomo et al. | Sep 2001 | B1 |
6286084 | Wexler et al. | Sep 2001 | B1 |
6304913 | Rune | Oct 2001 | B1 |
6324580 | Jindal et al. | Nov 2001 | B1 |
6330602 | Law et al. | Dec 2001 | B1 |
6338082 | Schneider | Jan 2002 | B1 |
6345308 | Abe | Feb 2002 | B1 |
6351743 | DeArdo et al. | Feb 2002 | B1 |
6351775 | Yu | Feb 2002 | B1 |
6363411 | Dugan et al. | Mar 2002 | B1 |
6366952 | Pitts | Apr 2002 | B2 |
6374290 | Scharber et al. | Apr 2002 | B1 |
6377257 | Borrel et al. | Apr 2002 | B1 |
6386043 | Millins | May 2002 | B1 |
6405252 | Gupta et al. | Jun 2002 | B1 |
6408360 | Chamberlain et al. | Jun 2002 | B1 |
6411967 | Van Renesse | Jun 2002 | B1 |
6415280 | Farber et al. | Jul 2002 | B1 |
6430607 | Kavner | Aug 2002 | B1 |
6438592 | Killian | Aug 2002 | B1 |
6442165 | Sitaraman et al. | Aug 2002 | B1 |
6452925 | Sistanizadeh et al. | Sep 2002 | B1 |
6457047 | Chandra et al. | Sep 2002 | B1 |
6459909 | Bilcliff et al. | Oct 2002 | B1 |
6473804 | Kaiser et al. | Oct 2002 | B1 |
6484143 | Swildens et al. | Nov 2002 | B1 |
6484161 | Chipalkatti et al. | Nov 2002 | B1 |
6493765 | Cunningham et al. | Dec 2002 | B1 |
6505241 | Pitts | Jan 2003 | B2 |
6523036 | Hickman et al. | Feb 2003 | B1 |
6529910 | Fleskes | Mar 2003 | B1 |
6529953 | Van Renesse | Mar 2003 | B1 |
6553413 | Leighton et al. | Apr 2003 | B1 |
6560610 | Eatherton et al. | May 2003 | B1 |
6611873 | Kanehara | Aug 2003 | B1 |
6622168 | Datta | Sep 2003 | B1 |
6643357 | Lumsden | Nov 2003 | B2 |
6643707 | Booth | Nov 2003 | B1 |
6654807 | Farber et al. | Nov 2003 | B2 |
6658462 | Dutta | Dec 2003 | B1 |
6665706 | Kenner et al. | Dec 2003 | B2 |
6678717 | Schneider | Jan 2004 | B1 |
6678791 | Jacobs et al. | Jan 2004 | B1 |
6681282 | Golden et al. | Jan 2004 | B1 |
6694358 | Swildens et al. | Feb 2004 | B1 |
6697805 | Choquier et al. | Feb 2004 | B1 |
6718324 | Edlund et al. | Apr 2004 | B2 |
6724770 | Van Renesse | Apr 2004 | B1 |
6732237 | Jacobs et al. | May 2004 | B1 |
6754699 | Swildens et al. | Jun 2004 | B2 |
6754706 | Swildens et al. | Jun 2004 | B1 |
6760721 | Chasen et al. | Jul 2004 | B1 |
6769031 | Bero | Jul 2004 | B1 |
6782398 | Bahl | Aug 2004 | B1 |
6785704 | McCanne | Aug 2004 | B1 |
6795434 | Kumar et al. | Sep 2004 | B1 |
6799214 | Li | Sep 2004 | B1 |
6804706 | Pitts | Oct 2004 | B2 |
6810291 | Card et al. | Oct 2004 | B2 |
6810411 | Coughlin et al. | Oct 2004 | B1 |
6829654 | Jungck | Dec 2004 | B1 |
6862607 | Vermeulen | Mar 2005 | B1 |
6868439 | Basu et al. | Mar 2005 | B2 |
6874017 | Inoue et al. | Mar 2005 | B1 |
6917951 | Orbits et al. | Jul 2005 | B2 |
6925499 | Chen et al. | Aug 2005 | B1 |
6928467 | Peng et al. | Aug 2005 | B2 |
6928485 | Krishnamurthy et al. | Aug 2005 | B1 |
6941562 | Gao et al. | Sep 2005 | B2 |
6963850 | Bezos et al. | Nov 2005 | B1 |
6976090 | Ben-Shaul et al. | Dec 2005 | B2 |
6981017 | Kasriel et al. | Dec 2005 | B1 |
6985945 | Farhat et al. | Jan 2006 | B2 |
6986018 | O'Rourke et al. | Jan 2006 | B2 |
6990526 | Zhu | Jan 2006 | B1 |
6996616 | Leighton et al. | Feb 2006 | B1 |
7003555 | Jungck | Feb 2006 | B1 |
7006099 | Gut et al. | Feb 2006 | B2 |
7007089 | Freedman | Feb 2006 | B2 |
7010578 | Lewin et al. | Mar 2006 | B1 |
7010598 | Sitaraman et al. | Mar 2006 | B2 |
7024466 | Outten et al. | Apr 2006 | B2 |
7031445 | Lumsden | Apr 2006 | B2 |
7032010 | Swildens et al. | Apr 2006 | B1 |
7058633 | Gnagy et al. | Jun 2006 | B1 |
7058706 | Iyer et al. | Jun 2006 | B1 |
7058953 | Willard et al. | Jun 2006 | B2 |
7065587 | Huitema et al. | Jun 2006 | B2 |
7072982 | Teodosiu et al. | Jul 2006 | B2 |
7076633 | Tormasov et al. | Jul 2006 | B2 |
7082476 | Cohen et al. | Jul 2006 | B1 |
7086061 | Joshi et al. | Aug 2006 | B1 |
7092505 | Allison et al. | Aug 2006 | B2 |
7092997 | Kasriel et al. | Aug 2006 | B1 |
7096266 | Lewin et al. | Aug 2006 | B2 |
7099936 | Chase et al. | Aug 2006 | B2 |
7103645 | Leighton et al. | Sep 2006 | B2 |
7114160 | Suryanarayana et al. | Sep 2006 | B2 |
7117262 | Bai et al. | Oct 2006 | B2 |
7133905 | Dilley et al. | Nov 2006 | B2 |
7136922 | Sundaram et al. | Nov 2006 | B2 |
7139808 | Anderson et al. | Nov 2006 | B2 |
7139821 | Shah et al. | Nov 2006 | B1 |
7143169 | Champagne et al. | Nov 2006 | B1 |
7143170 | Swildens et al. | Nov 2006 | B2 |
7146560 | Dang et al. | Dec 2006 | B2 |
7149809 | Barde et al. | Dec 2006 | B2 |
7152118 | Anderson, IV et al. | Dec 2006 | B2 |
7162539 | Garcie-Luna-Aceves | Jan 2007 | B2 |
7174382 | Ramanathan et al. | Feb 2007 | B2 |
7185063 | Kasriel et al. | Feb 2007 | B1 |
7185084 | Sirivara et al. | Feb 2007 | B2 |
7188214 | Kasriel et al. | Mar 2007 | B1 |
7194522 | Swildens et al. | Mar 2007 | B1 |
7194552 | Schneider | Mar 2007 | B1 |
7200667 | Teodosiu et al. | Apr 2007 | B2 |
7216170 | Ludvig et al. | May 2007 | B2 |
7225254 | Swildens et al. | May 2007 | B1 |
7228350 | Hong et al. | Jun 2007 | B2 |
7228359 | Monteiro | Jun 2007 | B1 |
7233978 | Overton et al. | Jun 2007 | B2 |
7240100 | Wein et al. | Jul 2007 | B1 |
7249196 | Peiffer et al. | Jul 2007 | B1 |
7251675 | Kamakura et al. | Jul 2007 | B1 |
7254626 | Kommula et al. | Aug 2007 | B1 |
7254636 | O'Toole, Jr. et al. | Aug 2007 | B1 |
7257581 | Steele et al. | Aug 2007 | B1 |
7260598 | Liskov et al. | Aug 2007 | B1 |
7260639 | Afergan et al. | Aug 2007 | B2 |
7269784 | Kasriel et al. | Sep 2007 | B1 |
7272227 | Beran | Sep 2007 | B1 |
7274658 | Bornstein et al. | Sep 2007 | B2 |
7284056 | Ramig | Oct 2007 | B2 |
7289519 | Liskov | Oct 2007 | B1 |
7293093 | Leighton | Nov 2007 | B2 |
7308499 | Chavez | Dec 2007 | B2 |
7310686 | Uysal | Dec 2007 | B2 |
7316648 | Kelly et al. | Jan 2008 | B2 |
7318074 | Iyengar et al. | Jan 2008 | B2 |
7320131 | O'Toole, Jr. | Jan 2008 | B1 |
7321918 | Burd et al. | Jan 2008 | B2 |
7337968 | Wilz, Sr. et al. | Mar 2008 | B2 |
7339937 | Mitra et al. | Mar 2008 | B2 |
7340505 | Lisiecki et al. | Mar 2008 | B2 |
7363291 | Page | Apr 2008 | B1 |
7363626 | Koutharapu et al. | Apr 2008 | B2 |
7370089 | Boyd et al. | May 2008 | B2 |
7372809 | Chen | May 2008 | B2 |
7373416 | Kagan et al. | May 2008 | B2 |
7376736 | Sundaram et al. | May 2008 | B2 |
7380078 | Ikegaya et al. | May 2008 | B2 |
7389354 | Sitaraman et al. | Jun 2008 | B1 |
7392236 | Rusch et al. | Jun 2008 | B2 |
7398301 | Hennessey et al. | Jul 2008 | B2 |
7406512 | Swildens et al. | Jul 2008 | B2 |
7406522 | Riddle | Jul 2008 | B2 |
7409712 | Brooks et al. | Aug 2008 | B1 |
7430610 | Pace et al. | Sep 2008 | B2 |
7441045 | Skene et al. | Oct 2008 | B2 |
7441261 | Slater et al. | Oct 2008 | B2 |
7454457 | Lowery et al. | Nov 2008 | B1 |
7454500 | Hsu et al. | Nov 2008 | B1 |
7461170 | Taylor et al. | Dec 2008 | B1 |
7464142 | Flurry et al. | Dec 2008 | B2 |
7478148 | Neerdaels | Jan 2009 | B2 |
7492720 | Pruthi et al. | Feb 2009 | B2 |
7496651 | Joshi | Feb 2009 | B1 |
7499998 | Toebes et al. | Mar 2009 | B2 |
7502836 | Menditto et al. | Mar 2009 | B1 |
7505464 | Okmianski et al. | Mar 2009 | B2 |
7506034 | Coates et al. | Mar 2009 | B2 |
7519720 | Fishman et al. | Apr 2009 | B2 |
7519726 | Palliyil et al. | Apr 2009 | B2 |
7523181 | Swildens et al. | Apr 2009 | B2 |
7543024 | Holstege | Jun 2009 | B2 |
7548947 | Kasriel et al. | Jun 2009 | B2 |
7552235 | Chase et al. | Jun 2009 | B2 |
7555542 | Ayers et al. | Jun 2009 | B1 |
7561571 | Lovett et al. | Jul 2009 | B1 |
7565407 | Hayball | Jul 2009 | B1 |
7568032 | Feng et al. | Jul 2009 | B2 |
7573916 | Bechtolsheim et al. | Aug 2009 | B1 |
7574499 | Swildens et al. | Aug 2009 | B1 |
7581009 | Hsu et al. | Aug 2009 | B1 |
7593935 | Sullivan | Sep 2009 | B2 |
7594189 | Walker et al. | Sep 2009 | B1 |
7596619 | Leighton et al. | Sep 2009 | B2 |
7617222 | Coulthard et al. | Nov 2009 | B2 |
7623460 | Miyazaki | Nov 2009 | B2 |
7624169 | Lisiecki et al. | Nov 2009 | B2 |
7631101 | Sullivan et al. | Dec 2009 | B2 |
7640296 | Fuchs et al. | Dec 2009 | B2 |
7650376 | Blumenau | Jan 2010 | B1 |
7653700 | Bahl et al. | Jan 2010 | B1 |
7653725 | Yahiro et al. | Jan 2010 | B2 |
7657613 | Hanson et al. | Feb 2010 | B1 |
7657622 | Douglis et al. | Feb 2010 | B1 |
7661027 | Langen et al. | Feb 2010 | B2 |
7664831 | Cartmell et al. | Feb 2010 | B2 |
7664879 | Chan et al. | Feb 2010 | B2 |
7676570 | Levy et al. | Mar 2010 | B2 |
7680897 | Carter et al. | Mar 2010 | B1 |
7684394 | Cutbill et al. | Mar 2010 | B1 |
7685109 | Ransil et al. | Mar 2010 | B1 |
7685251 | Houlihan et al. | Mar 2010 | B2 |
7693813 | Cao et al. | Apr 2010 | B1 |
7693959 | Leighton et al. | Apr 2010 | B2 |
7702724 | Brydon et al. | Apr 2010 | B1 |
7706740 | Collins et al. | Apr 2010 | B2 |
7707314 | McCarthy et al. | Apr 2010 | B2 |
7711647 | Gunaseelan et al. | May 2010 | B2 |
7711788 | Lev Ran et al. | May 2010 | B2 |
7716367 | Leighton et al. | May 2010 | B1 |
7725602 | Liu et al. | May 2010 | B2 |
7730187 | Raciborski et al. | Jun 2010 | B2 |
7739400 | Lindbo et al. | Jun 2010 | B2 |
7747720 | Toebes et al. | Jun 2010 | B2 |
7756913 | Day | Jul 2010 | B1 |
7756965 | Joshi | Jul 2010 | B2 |
7757202 | Dahlsted et al. | Jul 2010 | B2 |
7761572 | Auerbach | Jul 2010 | B1 |
7765304 | Davis et al. | Jul 2010 | B2 |
7769823 | Jenny et al. | Aug 2010 | B2 |
7773596 | Marques | Aug 2010 | B1 |
7774342 | Virdy | Aug 2010 | B1 |
7783727 | Foley et al. | Aug 2010 | B1 |
7787380 | Aggarwal et al. | Aug 2010 | B1 |
7792989 | Toebes et al. | Sep 2010 | B2 |
7805516 | Kettler et al. | Sep 2010 | B2 |
7809597 | Das et al. | Oct 2010 | B2 |
7813308 | Reddy et al. | Oct 2010 | B2 |
7814229 | Cabrera et al. | Oct 2010 | B1 |
7818454 | Kim et al. | Oct 2010 | B2 |
7827256 | Phillips et al. | Nov 2010 | B2 |
7836177 | Kasriel et al. | Nov 2010 | B2 |
7853719 | Cao et al. | Dec 2010 | B1 |
7865594 | Baumback et al. | Jan 2011 | B1 |
7865953 | Hsieh et al. | Jan 2011 | B1 |
7873065 | Mukerji et al. | Jan 2011 | B1 |
7890612 | Todd et al. | Feb 2011 | B2 |
7899899 | Joshi | Mar 2011 | B2 |
7904875 | Hegyi | Mar 2011 | B2 |
7912921 | O'Rourke et al. | Mar 2011 | B2 |
7925782 | Sivasubramanian et al. | Apr 2011 | B2 |
7930393 | Baumback et al. | Apr 2011 | B1 |
7930402 | Swildens et al. | Apr 2011 | B2 |
7930427 | Josefsberg et al. | Apr 2011 | B2 |
7933988 | Nasuto et al. | Apr 2011 | B2 |
7937477 | Day et al. | May 2011 | B1 |
7945693 | Farber et al. | May 2011 | B2 |
7949779 | Farber et al. | May 2011 | B2 |
7958222 | Pruitt et al. | Jun 2011 | B1 |
7958258 | Yeung et al. | Jun 2011 | B2 |
7962597 | Richardson et al. | Jun 2011 | B2 |
7966404 | Hedin et al. | Jun 2011 | B2 |
7970816 | Chess et al. | Jun 2011 | B2 |
7970940 | van de Ven et al. | Jun 2011 | B1 |
7979509 | Malmskog et al. | Jul 2011 | B1 |
7991910 | Richardson et al. | Aug 2011 | B2 |
7996533 | Leighton et al. | Aug 2011 | B2 |
7996535 | Auerbach | Aug 2011 | B2 |
8000724 | Rayburn et al. | Aug 2011 | B1 |
8001187 | Stochosky | Aug 2011 | B2 |
8010707 | Elzur et al. | Aug 2011 | B2 |
8019869 | Kriegsman | Sep 2011 | B2 |
8024441 | Kommula et al. | Sep 2011 | B2 |
8028090 | Richardson et al. | Sep 2011 | B2 |
8041773 | Abu-Ghazaleh et al. | Oct 2011 | B2 |
8041809 | Sundaram et al. | Oct 2011 | B2 |
8041818 | Gupta et al. | Oct 2011 | B2 |
8042054 | White et al. | Oct 2011 | B2 |
8065275 | Eriksen et al. | Nov 2011 | B2 |
8069231 | Schran et al. | Nov 2011 | B2 |
8073940 | Richardson et al. | Dec 2011 | B1 |
8082348 | Averbuj et al. | Dec 2011 | B1 |
8108623 | Krishnaprasad et al. | Jan 2012 | B2 |
8117306 | Baumback et al. | Feb 2012 | B1 |
8122098 | Richardson et al. | Feb 2012 | B1 |
8122124 | Baumback et al. | Feb 2012 | B1 |
8132242 | Wu | Mar 2012 | B1 |
8135820 | Richardson et al. | Mar 2012 | B2 |
8156199 | Hoche-Mong et al. | Apr 2012 | B1 |
8156243 | Richardson et al. | Apr 2012 | B2 |
8175863 | Ostermeyer et al. | May 2012 | B1 |
8190682 | Paterson-Jones et al. | May 2012 | B2 |
8195837 | McCarthy et al. | Jun 2012 | B2 |
8224971 | Miller et al. | Jul 2012 | B1 |
8224986 | Liskov et al. | Jul 2012 | B1 |
8224994 | Schneider | Jul 2012 | B1 |
8234403 | Richardson et al. | Jul 2012 | B2 |
8239530 | Sundaram et al. | Aug 2012 | B2 |
8250135 | Driesen et al. | Aug 2012 | B2 |
8250211 | Swildens et al. | Aug 2012 | B2 |
8250219 | Raciborski et al. | Aug 2012 | B2 |
8266288 | Banerjee et al. | Sep 2012 | B2 |
8266327 | Kumar et al. | Sep 2012 | B2 |
8271471 | Kamvar et al. | Sep 2012 | B1 |
8280998 | Joshi | Oct 2012 | B2 |
8281035 | Farber et al. | Oct 2012 | B2 |
8291046 | Farber et al. | Oct 2012 | B2 |
8291117 | Eggleston et al. | Oct 2012 | B1 |
8296393 | Alexander et al. | Oct 2012 | B2 |
8301600 | Helmick et al. | Oct 2012 | B1 |
8301645 | Crook | Oct 2012 | B1 |
8321568 | Sivasubramanian et al. | Nov 2012 | B2 |
8380831 | Barber | Feb 2013 | B2 |
8380851 | McCarthy et al. | Feb 2013 | B2 |
8402137 | Sivasuramanian et al. | Mar 2013 | B2 |
8423408 | Barnes et al. | Apr 2013 | B1 |
8423662 | Weihl et al. | Apr 2013 | B1 |
8433749 | Wee et al. | Apr 2013 | B2 |
8447831 | Sivasubramanian et al. | May 2013 | B1 |
8447876 | Verma et al. | May 2013 | B2 |
8452745 | Ramakrishna | May 2013 | B2 |
8452874 | MacCarthaigh et al. | May 2013 | B2 |
8463877 | Richardson | Jun 2013 | B1 |
8468222 | Sakata et al. | Jun 2013 | B2 |
8468245 | Farber et al. | Jun 2013 | B2 |
8473613 | Farber et al. | Jun 2013 | B2 |
8478903 | Farber et al. | Jul 2013 | B2 |
8504721 | Hsu et al. | Aug 2013 | B2 |
8510428 | Joshi | Aug 2013 | B2 |
8510807 | Elazary et al. | Aug 2013 | B1 |
8521851 | Richardson | Aug 2013 | B1 |
8521876 | Goodman et al. | Aug 2013 | B2 |
8521880 | Richardson et al. | Aug 2013 | B1 |
8521908 | Holmes et al. | Aug 2013 | B2 |
8526405 | Curtis et al. | Sep 2013 | B2 |
8527639 | Liskov et al. | Sep 2013 | B1 |
8527658 | Holmes et al. | Sep 2013 | B2 |
8549646 | Stavrou | Oct 2013 | B2 |
8572208 | Farber et al. | Oct 2013 | B2 |
8572210 | Farber et al. | Oct 2013 | B2 |
8577992 | Richardson et al. | Nov 2013 | B1 |
8589996 | Ma et al. | Nov 2013 | B2 |
8606996 | Richardson et al. | Dec 2013 | B2 |
8612565 | Schneider | Dec 2013 | B2 |
8615549 | Knowles et al. | Dec 2013 | B2 |
8619780 | Brandwine | Dec 2013 | B1 |
8626950 | Richardson et al. | Jan 2014 | B1 |
8635340 | Schneider | Jan 2014 | B1 |
8639817 | Sivasubramanian et al. | Jan 2014 | B2 |
8645539 | McCarthy et al. | Feb 2014 | B2 |
8676918 | Richardson et al. | Mar 2014 | B2 |
8683023 | Brandwine et al. | Mar 2014 | B1 |
8683076 | Farber et al. | Mar 2014 | B2 |
8688837 | Richardson et al. | Apr 2014 | B1 |
8712950 | Smith et al. | Apr 2014 | B2 |
8732309 | Richardson et al. | May 2014 | B1 |
8745177 | Kazerani et al. | Jun 2014 | B1 |
8756322 | Lynch | Jun 2014 | B1 |
8756325 | Sivasubramanian et al. | Jun 2014 | B2 |
8756341 | Richardson et al. | Jun 2014 | B1 |
8782236 | Marshall et al. | Jul 2014 | B1 |
8782279 | Eggleston et al. | Jul 2014 | B2 |
8812727 | Sorenson, III et al. | Aug 2014 | B1 |
8819283 | Richardson et al. | Aug 2014 | B2 |
8826032 | Yahalom et al. | Sep 2014 | B1 |
8904009 | Marshall et al. | Dec 2014 | B1 |
8914514 | Jenkins et al. | Dec 2014 | B1 |
8924528 | Richardson et al. | Dec 2014 | B1 |
8930513 | Richardson et al. | Jan 2015 | B1 |
8930544 | Richardson et al. | Jan 2015 | B2 |
8935744 | Osterweil et al. | Jan 2015 | B2 |
8938526 | Richardson et al. | Jan 2015 | B1 |
8949459 | Scholl | Feb 2015 | B1 |
8966318 | Shah | Feb 2015 | B1 |
8972580 | Fleischman et al. | Mar 2015 | B2 |
9003035 | Richardson et al. | Apr 2015 | B1 |
9003040 | MacCarthaigh et al. | Apr 2015 | B2 |
9009286 | Sivasubramanian et al. | Apr 2015 | B2 |
9009334 | Jenkins et al. | Apr 2015 | B1 |
9021127 | Richardson et al. | Apr 2015 | B2 |
9021128 | Sivasubramanian et al. | Apr 2015 | B2 |
9021129 | Richardson et al. | Apr 2015 | B2 |
9026616 | Sivasubramanian et al. | May 2015 | B2 |
9037975 | Taylor et al. | May 2015 | B1 |
9075777 | Pope et al. | Jul 2015 | B1 |
9075893 | Jenkins | Jul 2015 | B1 |
9083675 | Richardson et al. | Jul 2015 | B2 |
9083743 | Patel et al. | Jul 2015 | B1 |
9106701 | Richardson et al. | Aug 2015 | B2 |
9116803 | Agrawal et al. | Aug 2015 | B1 |
9130756 | Richardson et al. | Sep 2015 | B2 |
9130977 | Zisapel et al. | Sep 2015 | B2 |
9137302 | Makhijani et al. | Sep 2015 | B1 |
9154551 | Watson | Oct 2015 | B1 |
9160703 | Richardson et al. | Oct 2015 | B2 |
9172674 | Patel et al. | Oct 2015 | B1 |
9176894 | Marshall et al. | Nov 2015 | B2 |
9185012 | Richardson et al. | Nov 2015 | B2 |
9191338 | Richardson et al. | Nov 2015 | B2 |
9191458 | Richardson et al. | Nov 2015 | B2 |
9195996 | Walsh et al. | Nov 2015 | B1 |
9208097 | Richardson et al. | Dec 2015 | B2 |
9210235 | Sivasubramanian et al. | Dec 2015 | B2 |
9237087 | Risbood et al. | Jan 2016 | B1 |
9237114 | Richardson et al. | Jan 2016 | B2 |
9240954 | Ellsworth et al. | Jan 2016 | B1 |
9246776 | Ellsworth et al. | Jan 2016 | B2 |
9251112 | Richardson et al. | Feb 2016 | B2 |
9253065 | Richardson et al. | Feb 2016 | B2 |
9294391 | Mostert | Mar 2016 | B1 |
9323577 | Marr et al. | Apr 2016 | B2 |
9332078 | Sivasubramanian et al. | May 2016 | B2 |
9386038 | Martini | Jul 2016 | B2 |
9391949 | Richardson et al. | Jul 2016 | B1 |
9407676 | Archer et al. | Aug 2016 | B2 |
9407681 | Richardson et al. | Aug 2016 | B1 |
9407699 | Sivasubramanian et al. | Aug 2016 | B2 |
9444718 | Khakpour et al. | Sep 2016 | B2 |
9444759 | Richardson et al. | Sep 2016 | B2 |
9479476 | Richardson et al. | Oct 2016 | B2 |
9495338 | Hollis et al. | Nov 2016 | B1 |
9497259 | Richardson et al. | Nov 2016 | B1 |
9515949 | Richardson et al. | Dec 2016 | B2 |
9525659 | Sonkin et al. | Dec 2016 | B1 |
9544394 | Richardson et al. | Jan 2017 | B2 |
9571389 | Richardson et al. | Feb 2017 | B2 |
9584328 | Graham-Cumming | Feb 2017 | B1 |
9590946 | Richardson et al. | Mar 2017 | B2 |
9608957 | Sivasubramanian et al. | Mar 2017 | B2 |
9621660 | Sivasubramanian et al. | Apr 2017 | B2 |
9628509 | Holloway et al. | Apr 2017 | B2 |
9628554 | Marshall et al. | Apr 2017 | B2 |
9705922 | Foxhoven et al. | Jul 2017 | B2 |
9712325 | Richardson et al. | Jul 2017 | B2 |
9712484 | Richardson et al. | Jul 2017 | B1 |
9734472 | Richardson et al. | Aug 2017 | B2 |
9742795 | Radlein et al. | Aug 2017 | B1 |
9774619 | Radlein et al. | Sep 2017 | B1 |
9787599 | Richardson et al. | Oct 2017 | B2 |
9787775 | Richardson et al. | Oct 2017 | B1 |
9794216 | Richardson et al. | Oct 2017 | B2 |
9794281 | Radlein et al. | Oct 2017 | B1 |
9800539 | Richardson et al. | Oct 2017 | B2 |
9819567 | Uppal et al. | Nov 2017 | B1 |
9832141 | Raftery | Nov 2017 | B1 |
9887915 | Richardson et al. | Feb 2018 | B2 |
9887931 | Uppal et al. | Feb 2018 | B1 |
9887932 | Uppal et al. | Feb 2018 | B1 |
9888089 | Sivasubramanian et al. | Feb 2018 | B2 |
9893957 | Ellsworth et al. | Feb 2018 | B2 |
9894168 | Sivasubramanian et al. | Feb 2018 | B2 |
9912740 | Richardson et al. | Mar 2018 | B2 |
9929959 | Mostert | Mar 2018 | B2 |
9930131 | MacCarthaigh et al. | Mar 2018 | B2 |
20010000811 | May et al. | May 2001 | A1 |
20010025305 | Yoshiasa et al. | Sep 2001 | A1 |
20010027479 | Delaney et al. | Oct 2001 | A1 |
20010032133 | Moran | Oct 2001 | A1 |
20010034704 | Farhat et al. | Oct 2001 | A1 |
20010049741 | Skene et al. | Dec 2001 | A1 |
20010052016 | Skene et al. | Dec 2001 | A1 |
20010056416 | Garcia-Luna-Aceves | Dec 2001 | A1 |
20010056500 | Farber et al. | Dec 2001 | A1 |
20020002613 | Freeman et al. | Jan 2002 | A1 |
20020004846 | Garcia-Luna-Aceves et al. | Jan 2002 | A1 |
20020007413 | Garcia-Luna-Aceves et al. | Jan 2002 | A1 |
20020010783 | Primak et al. | Jan 2002 | A1 |
20020010798 | Ben-Shaul et al. | Jan 2002 | A1 |
20020035624 | Jun-Hyeong | Mar 2002 | A1 |
20020048269 | Hong et al. | Apr 2002 | A1 |
20020049608 | Hartsell et al. | Apr 2002 | A1 |
20020049857 | Farber et al. | Apr 2002 | A1 |
20020052942 | Swildens et al. | May 2002 | A1 |
20020062372 | Hong et al. | May 2002 | A1 |
20020065910 | Dutta | May 2002 | A1 |
20020068554 | Dusse | Jun 2002 | A1 |
20020069420 | Russell et al. | Jun 2002 | A1 |
20020078233 | Biliris et al. | Jun 2002 | A1 |
20020082858 | Heddaya et al. | Jun 2002 | A1 |
20020083118 | Sim | Jun 2002 | A1 |
20020083148 | Shaw et al. | Jun 2002 | A1 |
20020083178 | Brothers | Jun 2002 | A1 |
20020083198 | Kim et al. | Jun 2002 | A1 |
20020087374 | Boubez et al. | Jul 2002 | A1 |
20020091786 | Yamaguchi et al. | Jul 2002 | A1 |
20020091801 | Lewin et al. | Jul 2002 | A1 |
20020092026 | Janniello et al. | Jul 2002 | A1 |
20020099616 | Sweldens | Jul 2002 | A1 |
20020099850 | Farber et al. | Jul 2002 | A1 |
20020101836 | Dorenbosch | Aug 2002 | A1 |
20020103820 | Cartmell et al. | Aug 2002 | A1 |
20020103972 | Satran et al. | Aug 2002 | A1 |
20020107944 | Bai et al. | Aug 2002 | A1 |
20020112049 | Elnozahy et al. | Aug 2002 | A1 |
20020116481 | Lee | Aug 2002 | A1 |
20020116491 | Boyd et al. | Aug 2002 | A1 |
20020116582 | Copeland et al. | Aug 2002 | A1 |
20020120666 | Landsman et al. | Aug 2002 | A1 |
20020120782 | Dillon et al. | Aug 2002 | A1 |
20020124047 | Gartner et al. | Sep 2002 | A1 |
20020124098 | Shaw | Sep 2002 | A1 |
20020129123 | Johnson et al. | Sep 2002 | A1 |
20020131428 | Pecus et al. | Sep 2002 | A1 |
20020133741 | Maeda et al. | Sep 2002 | A1 |
20020135611 | Deosaran et al. | Sep 2002 | A1 |
20020138286 | Engstrom | Sep 2002 | A1 |
20020138437 | Lewin et al. | Sep 2002 | A1 |
20020138443 | Schran et al. | Sep 2002 | A1 |
20020143675 | Orshan | Oct 2002 | A1 |
20020143989 | Huitema et al. | Oct 2002 | A1 |
20020145993 | Chowdhury et al. | Oct 2002 | A1 |
20020147770 | Tang | Oct 2002 | A1 |
20020147774 | Lisiecki et al. | Oct 2002 | A1 |
20020150094 | Cheng et al. | Oct 2002 | A1 |
20020150276 | Chang | Oct 2002 | A1 |
20020152326 | Orshan | Oct 2002 | A1 |
20020154157 | Sherr et al. | Oct 2002 | A1 |
20020156884 | Bertram et al. | Oct 2002 | A1 |
20020156911 | Croman et al. | Oct 2002 | A1 |
20020161745 | Call | Oct 2002 | A1 |
20020161767 | Shapiro et al. | Oct 2002 | A1 |
20020163882 | Bornstein et al. | Nov 2002 | A1 |
20020165912 | Wenocur et al. | Nov 2002 | A1 |
20020169890 | Beaumont et al. | Nov 2002 | A1 |
20020184368 | Wang | Dec 2002 | A1 |
20020188722 | Banerjee et al. | Dec 2002 | A1 |
20020194324 | Guha | Dec 2002 | A1 |
20020194382 | Kausik et al. | Dec 2002 | A1 |
20020198953 | O'Rourke et al. | Dec 2002 | A1 |
20030002484 | Freedman | Jan 2003 | A1 |
20030005111 | Allan | Jan 2003 | A1 |
20030007482 | Khello et al. | Jan 2003 | A1 |
20030009488 | Hart, III | Jan 2003 | A1 |
20030009591 | Hayball et al. | Jan 2003 | A1 |
20030026410 | Lumsden | Feb 2003 | A1 |
20030028642 | Agarwal et al. | Feb 2003 | A1 |
20030033283 | Evans et al. | Feb 2003 | A1 |
20030037108 | Peiffer et al. | Feb 2003 | A1 |
20030037139 | Shteyn | Feb 2003 | A1 |
20030041094 | Lara et al. | Feb 2003 | A1 |
20030046343 | Krishnamurthy et al. | Mar 2003 | A1 |
20030065739 | Shnier | Apr 2003 | A1 |
20030070096 | Pazi et al. | Apr 2003 | A1 |
20030074401 | Connell et al. | Apr 2003 | A1 |
20030074471 | Anderson et al. | Apr 2003 | A1 |
20030074472 | Lucco et al. | Apr 2003 | A1 |
20030079027 | Slocombe et al. | Apr 2003 | A1 |
20030093523 | Cranor et al. | May 2003 | A1 |
20030099202 | Lear et al. | May 2003 | A1 |
20030099237 | Mitra et al. | May 2003 | A1 |
20030101278 | Garcia-Luna-Aceves et al. | May 2003 | A1 |
20030112792 | Cranor et al. | Jun 2003 | A1 |
20030120741 | Wu et al. | Jun 2003 | A1 |
20030126387 | Watanabe | Jul 2003 | A1 |
20030133554 | Nykanen et al. | Jul 2003 | A1 |
20030135467 | Okamoto | Jul 2003 | A1 |
20030135509 | Davis et al. | Jul 2003 | A1 |
20030140087 | Lincoln et al. | Jul 2003 | A1 |
20030145038 | Tariq et al. | Jul 2003 | A1 |
20030145066 | Okada et al. | Jul 2003 | A1 |
20030149581 | Chaudhri et al. | Aug 2003 | A1 |
20030154239 | Davis et al. | Aug 2003 | A1 |
20030154284 | Bernardin et al. | Aug 2003 | A1 |
20030163722 | Anderson, IV | Aug 2003 | A1 |
20030172145 | Nguyen | Sep 2003 | A1 |
20030172183 | Anderson, IV et al. | Sep 2003 | A1 |
20030172291 | Judge et al. | Sep 2003 | A1 |
20030174648 | Wang et al. | Sep 2003 | A1 |
20030177321 | Watanabe | Sep 2003 | A1 |
20030182305 | Balva et al. | Sep 2003 | A1 |
20030182413 | Allen et al. | Sep 2003 | A1 |
20030182447 | Schilling | Sep 2003 | A1 |
20030187935 | Agarwalla et al. | Oct 2003 | A1 |
20030187970 | Chase et al. | Oct 2003 | A1 |
20030191822 | Leighton et al. | Oct 2003 | A1 |
20030200394 | Ashmore et al. | Oct 2003 | A1 |
20030204602 | Hudson et al. | Oct 2003 | A1 |
20030206520 | Wu et al. | Nov 2003 | A1 |
20030229682 | Day | Dec 2003 | A1 |
20030233423 | Dilley et al. | Dec 2003 | A1 |
20030233445 | Levy et al. | Dec 2003 | A1 |
20030233455 | Leber et al. | Dec 2003 | A1 |
20030236700 | Arning et al. | Dec 2003 | A1 |
20030236779 | Choi et al. | Dec 2003 | A1 |
20040003032 | Ma et al. | Jan 2004 | A1 |
20040010562 | Itonaga | Jan 2004 | A1 |
20040010563 | Forte et al. | Jan 2004 | A1 |
20040010588 | Slater et al. | Jan 2004 | A1 |
20040010601 | Afergan | Jan 2004 | A1 |
20040010621 | Afergan et al. | Jan 2004 | A1 |
20040015584 | Cartmell et al. | Jan 2004 | A1 |
20040019518 | Abraham et al. | Jan 2004 | A1 |
20040024841 | Becker et al. | Feb 2004 | A1 |
20040030620 | Benjamin et al. | Feb 2004 | A1 |
20040034744 | Karlsson et al. | Feb 2004 | A1 |
20040039798 | Hotz et al. | Feb 2004 | A1 |
20040044731 | Chen et al. | Mar 2004 | A1 |
20040044791 | Pouzzner | Mar 2004 | A1 |
20040054757 | Ueda et al. | Mar 2004 | A1 |
20040059805 | Dinker et al. | Mar 2004 | A1 |
20040064335 | Yang | Apr 2004 | A1 |
20040064501 | Jan et al. | Apr 2004 | A1 |
20040068542 | Lalonde et al. | Apr 2004 | A1 |
20040073596 | Kloninger et al. | Apr 2004 | A1 |
20040073707 | Dillon | Apr 2004 | A1 |
20040073867 | Kausik et al. | Apr 2004 | A1 |
20040078468 | Hedin et al. | Apr 2004 | A1 |
20040078487 | Cernohous et al. | Apr 2004 | A1 |
20040083283 | Sundaram et al. | Apr 2004 | A1 |
20040083307 | Uysal | Apr 2004 | A1 |
20040117455 | Kaminksy et al. | Jun 2004 | A1 |
20040128344 | Trossen | Jul 2004 | A1 |
20040128346 | Melamed et al. | Jul 2004 | A1 |
20040148520 | Talpade et al. | Jul 2004 | A1 |
20040167981 | Douglas et al. | Aug 2004 | A1 |
20040167982 | Cohen et al. | Aug 2004 | A1 |
20040172466 | Douglas et al. | Sep 2004 | A1 |
20040184456 | Binding et al. | Sep 2004 | A1 |
20040194085 | Beaubien et al. | Sep 2004 | A1 |
20040194102 | Neerdaels | Sep 2004 | A1 |
20040203630 | Wang | Oct 2004 | A1 |
20040205149 | Dillon et al. | Oct 2004 | A1 |
20040205162 | Parikh | Oct 2004 | A1 |
20040215823 | Kleinfelter et al. | Oct 2004 | A1 |
20040221019 | Swildens et al. | Nov 2004 | A1 |
20040221034 | Kausik et al. | Nov 2004 | A1 |
20040246948 | Lee et al. | Dec 2004 | A1 |
20040249939 | Amini et al. | Dec 2004 | A1 |
20040249971 | Klinker | Dec 2004 | A1 |
20040249975 | Tuck et al. | Dec 2004 | A1 |
20040250119 | Shelest et al. | Dec 2004 | A1 |
20040254921 | Cohen et al. | Dec 2004 | A1 |
20040267906 | Truty | Dec 2004 | A1 |
20040267907 | Gustafsson | Dec 2004 | A1 |
20050010653 | McCanne | Jan 2005 | A1 |
20050021706 | Maggi et al. | Jan 2005 | A1 |
20050021862 | Schroeder et al. | Jan 2005 | A1 |
20050027882 | Sullivan et al. | Feb 2005 | A1 |
20050038967 | Umbehocker et al. | Feb 2005 | A1 |
20050044270 | Grove et al. | Feb 2005 | A1 |
20050102683 | Branson et al. | May 2005 | A1 |
20050108169 | Balasubramanian et al. | May 2005 | A1 |
20050108262 | Fawcett | May 2005 | A1 |
20050108529 | Juneau | May 2005 | A1 |
20050114296 | Farber et al. | May 2005 | A1 |
20050117717 | Lumsden | Jun 2005 | A1 |
20050132083 | Raciborski et al. | Jun 2005 | A1 |
20050147088 | Bao et al. | Jul 2005 | A1 |
20050149529 | Gutmans | Jul 2005 | A1 |
20050157712 | Rangarajan et al. | Jul 2005 | A1 |
20050160133 | Greenlee et al. | Jul 2005 | A1 |
20050163168 | Sheth et al. | Jul 2005 | A1 |
20050168782 | Kobashi et al. | Aug 2005 | A1 |
20050171959 | Deforche et al. | Aug 2005 | A1 |
20050172080 | Miyauchi | Aug 2005 | A1 |
20050181769 | Kogawa | Aug 2005 | A1 |
20050188073 | Nakamichi et al. | Aug 2005 | A1 |
20050192008 | Desai et al. | Sep 2005 | A1 |
20050198170 | LeMay et al. | Sep 2005 | A1 |
20050198303 | Knauerhase et al. | Sep 2005 | A1 |
20050198334 | Farber et al. | Sep 2005 | A1 |
20050198453 | Osaki | Sep 2005 | A1 |
20050198571 | Kramer et al. | Sep 2005 | A1 |
20050216483 | Armstrong et al. | Sep 2005 | A1 |
20050216569 | Coppola et al. | Sep 2005 | A1 |
20050216674 | Robbin et al. | Sep 2005 | A1 |
20050223095 | Volz et al. | Oct 2005 | A1 |
20050228856 | Swildens et al. | Oct 2005 | A1 |
20050229119 | Torvinen | Oct 2005 | A1 |
20050232165 | Brawn et al. | Oct 2005 | A1 |
20050234864 | Shapiro | Oct 2005 | A1 |
20050240574 | Challenger et al. | Oct 2005 | A1 |
20050256880 | Nam Koong et al. | Nov 2005 | A1 |
20050259645 | Chen et al. | Nov 2005 | A1 |
20050259672 | Eduri | Nov 2005 | A1 |
20050262248 | Jennings, III et al. | Nov 2005 | A1 |
20050266835 | Agrawal et al. | Dec 2005 | A1 |
20050267937 | Daniels et al. | Dec 2005 | A1 |
20050267991 | Huitema et al. | Dec 2005 | A1 |
20050267992 | Huitema et al. | Dec 2005 | A1 |
20050267993 | Huitema et al. | Dec 2005 | A1 |
20050278259 | Gunaseelan et al. | Dec 2005 | A1 |
20050283759 | Peteanu et al. | Dec 2005 | A1 |
20050283784 | Suzuki | Dec 2005 | A1 |
20060013158 | Ahuja et al. | Jan 2006 | A1 |
20060020596 | Liu et al. | Jan 2006 | A1 |
20060020684 | Mukherjee et al. | Jan 2006 | A1 |
20060020714 | Girouard et al. | Jan 2006 | A1 |
20060020715 | Jungck | Jan 2006 | A1 |
20060021001 | Giles et al. | Jan 2006 | A1 |
20060026067 | Nicholas et al. | Feb 2006 | A1 |
20060026154 | Altinel et al. | Feb 2006 | A1 |
20060031239 | Koenig | Feb 2006 | A1 |
20060031319 | Nelson et al. | Feb 2006 | A1 |
20060031503 | Gilbert | Feb 2006 | A1 |
20060034494 | Holloran | Feb 2006 | A1 |
20060036720 | Faulk, Jr. | Feb 2006 | A1 |
20060036966 | Yevdayev | Feb 2006 | A1 |
20060037037 | Miranz | Feb 2006 | A1 |
20060039352 | Karstens | Feb 2006 | A1 |
20060041614 | Oe | Feb 2006 | A1 |
20060045005 | Blackmore et al. | Mar 2006 | A1 |
20060047787 | Aggarwal et al. | Mar 2006 | A1 |
20060047813 | Aggarwal et al. | Mar 2006 | A1 |
20060059246 | Grove | Mar 2006 | A1 |
20060063534 | Kokkonen et al. | Mar 2006 | A1 |
20060064476 | Decasper et al. | Mar 2006 | A1 |
20060064500 | Roth et al. | Mar 2006 | A1 |
20060070060 | Tantawi et al. | Mar 2006 | A1 |
20060074750 | Clark et al. | Apr 2006 | A1 |
20060075084 | Lyon | Apr 2006 | A1 |
20060075139 | Jungck | Apr 2006 | A1 |
20060083165 | McLane et al. | Apr 2006 | A1 |
20060085536 | Meyer et al. | Apr 2006 | A1 |
20060088026 | Mazur et al. | Apr 2006 | A1 |
20060107036 | Randle et al. | May 2006 | A1 |
20060112066 | Hamzy | May 2006 | A1 |
20060112176 | Liu et al. | May 2006 | A1 |
20060120385 | Atchison et al. | Jun 2006 | A1 |
20060129665 | Toebes et al. | Jun 2006 | A1 |
20060136453 | Kwan | Jun 2006 | A1 |
20060143293 | Freedman | Jun 2006 | A1 |
20060146820 | Friedman et al. | Jul 2006 | A1 |
20060149529 | Nguyen et al. | Jul 2006 | A1 |
20060155823 | Tran et al. | Jul 2006 | A1 |
20060155862 | Kathi et al. | Jul 2006 | A1 |
20060161541 | Cencini | Jul 2006 | A1 |
20060165051 | Banerjee et al. | Jul 2006 | A1 |
20060168088 | Leighton et al. | Jul 2006 | A1 |
20060173957 | Robinson | Aug 2006 | A1 |
20060179080 | Meek et al. | Aug 2006 | A1 |
20060184936 | Abels et al. | Aug 2006 | A1 |
20060190605 | Franz et al. | Aug 2006 | A1 |
20060193247 | Naseh et al. | Aug 2006 | A1 |
20060195866 | Thukral | Aug 2006 | A1 |
20060206568 | Verma et al. | Sep 2006 | A1 |
20060206586 | Ling et al. | Sep 2006 | A1 |
20060218265 | Farber et al. | Sep 2006 | A1 |
20060218304 | Mukherjee et al. | Sep 2006 | A1 |
20060224752 | Parekh et al. | Oct 2006 | A1 |
20060227740 | McLaughlin et al. | Oct 2006 | A1 |
20060227758 | Rana et al. | Oct 2006 | A1 |
20060230137 | Gare et al. | Oct 2006 | A1 |
20060230265 | Krishna | Oct 2006 | A1 |
20060233155 | Srivastava | Oct 2006 | A1 |
20060253546 | Chang et al. | Nov 2006 | A1 |
20060253609 | Andreev et al. | Nov 2006 | A1 |
20060259581 | Piersol | Nov 2006 | A1 |
20060259690 | Vittal et al. | Nov 2006 | A1 |
20060259984 | Juneau | Nov 2006 | A1 |
20060265497 | Ohata et al. | Nov 2006 | A1 |
20060265508 | Angel et al. | Nov 2006 | A1 |
20060265516 | Schilling | Nov 2006 | A1 |
20060265720 | Cai et al. | Nov 2006 | A1 |
20060271641 | Stavrakos et al. | Nov 2006 | A1 |
20060282522 | Lewin et al. | Dec 2006 | A1 |
20060288119 | Kim et al. | Dec 2006 | A1 |
20070005689 | Leighton et al. | Jan 2007 | A1 |
20070005801 | Kumar et al. | Jan 2007 | A1 |
20070005892 | Mullender et al. | Jan 2007 | A1 |
20070011267 | Overton et al. | Jan 2007 | A1 |
20070014241 | Banerjee et al. | Jan 2007 | A1 |
20070021998 | Laithwaite et al. | Jan 2007 | A1 |
20070028001 | Phillips et al. | Feb 2007 | A1 |
20070038729 | Sullivan et al. | Feb 2007 | A1 |
20070038994 | Davis et al. | Feb 2007 | A1 |
20070041393 | Westhead et al. | Feb 2007 | A1 |
20070043859 | Ruul | Feb 2007 | A1 |
20070050522 | Grove et al. | Mar 2007 | A1 |
20070050703 | Lebel | Mar 2007 | A1 |
20070055764 | Dilley et al. | Mar 2007 | A1 |
20070061440 | Sundaram et al. | Mar 2007 | A1 |
20070064610 | Khandani | Mar 2007 | A1 |
20070076872 | Juneau | Apr 2007 | A1 |
20070086429 | Lawrence et al. | Apr 2007 | A1 |
20070094361 | Hoynowski et al. | Apr 2007 | A1 |
20070101061 | Baskaran et al. | May 2007 | A1 |
20070101377 | Six et al. | May 2007 | A1 |
20070118667 | McCarthy et al. | May 2007 | A1 |
20070118668 | McCarthy et al. | May 2007 | A1 |
20070134641 | Lieu | Jun 2007 | A1 |
20070156726 | Levy | Jul 2007 | A1 |
20070156919 | Potti et al. | Jul 2007 | A1 |
20070162331 | Sullivan | Jul 2007 | A1 |
20070168336 | Ransil et al. | Jul 2007 | A1 |
20070168517 | Weller | Jul 2007 | A1 |
20070174426 | Swildens et al. | Jul 2007 | A1 |
20070174442 | Sherman et al. | Jul 2007 | A1 |
20070174490 | Choi et al. | Jul 2007 | A1 |
20070183342 | Wong et al. | Aug 2007 | A1 |
20070198982 | Bolan et al. | Aug 2007 | A1 |
20070204107 | Greenfield et al. | Aug 2007 | A1 |
20070208737 | Li et al. | Sep 2007 | A1 |
20070219795 | Park et al. | Sep 2007 | A1 |
20070220010 | Ertugrul | Sep 2007 | A1 |
20070233705 | Farber et al. | Oct 2007 | A1 |
20070233706 | Farber et al. | Oct 2007 | A1 |
20070233846 | Farber et al. | Oct 2007 | A1 |
20070233884 | Farber et al. | Oct 2007 | A1 |
20070243860 | Aiello et al. | Oct 2007 | A1 |
20070244964 | Challenger et al. | Oct 2007 | A1 |
20070245022 | Olliphant et al. | Oct 2007 | A1 |
20070250467 | Mesnik et al. | Oct 2007 | A1 |
20070250560 | Wein et al. | Oct 2007 | A1 |
20070250601 | Amlekar et al. | Oct 2007 | A1 |
20070250611 | Bhogal et al. | Oct 2007 | A1 |
20070253377 | Janneteau et al. | Nov 2007 | A1 |
20070255843 | Zubev | Nov 2007 | A1 |
20070263604 | Tal | Nov 2007 | A1 |
20070266113 | Koopmans et al. | Nov 2007 | A1 |
20070266311 | Westphal | Nov 2007 | A1 |
20070266333 | Cossey et al. | Nov 2007 | A1 |
20070270165 | Poosala | Nov 2007 | A1 |
20070271375 | Hwang | Nov 2007 | A1 |
20070271385 | Davis et al. | Nov 2007 | A1 |
20070271560 | Wahlert et al. | Nov 2007 | A1 |
20070271608 | Shimizu et al. | Nov 2007 | A1 |
20070280229 | Kenney | Dec 2007 | A1 |
20070288588 | Wein et al. | Dec 2007 | A1 |
20070291739 | Sullivan et al. | Dec 2007 | A1 |
20080005057 | Ozzie et al. | Jan 2008 | A1 |
20080008089 | Bornstein et al. | Jan 2008 | A1 |
20080016233 | Schneider | Jan 2008 | A1 |
20080025304 | Venkataswami et al. | Jan 2008 | A1 |
20080037536 | Padmanabhan et al. | Feb 2008 | A1 |
20080046550 | Mazur et al. | Feb 2008 | A1 |
20080046596 | Afergan et al. | Feb 2008 | A1 |
20080056207 | Eriksson et al. | Mar 2008 | A1 |
20080065724 | Seed et al. | Mar 2008 | A1 |
20080065745 | Leighton et al. | Mar 2008 | A1 |
20080071859 | Seed et al. | Mar 2008 | A1 |
20080071987 | Karn et al. | Mar 2008 | A1 |
20080072264 | Crayford | Mar 2008 | A1 |
20080082551 | Farber et al. | Apr 2008 | A1 |
20080082662 | Dandliker et al. | Apr 2008 | A1 |
20080086434 | Chesla | Apr 2008 | A1 |
20080086559 | Davis et al. | Apr 2008 | A1 |
20080086574 | Raciborski et al. | Apr 2008 | A1 |
20080092242 | Rowley | Apr 2008 | A1 |
20080101358 | Van Ewijk et al. | May 2008 | A1 |
20080103805 | Shear et al. | May 2008 | A1 |
20080104268 | Farber et al. | May 2008 | A1 |
20080109679 | Wright et al. | May 2008 | A1 |
20080114829 | Button et al. | May 2008 | A1 |
20080125077 | Velazquez et al. | May 2008 | A1 |
20080126706 | Newport et al. | May 2008 | A1 |
20080134043 | Georgis et al. | Jun 2008 | A1 |
20080140800 | Farber et al. | Jun 2008 | A1 |
20080147866 | Stolorz et al. | Jun 2008 | A1 |
20080147873 | Matsumoto | Jun 2008 | A1 |
20080155059 | Hardin et al. | Jun 2008 | A1 |
20080155061 | Afergan et al. | Jun 2008 | A1 |
20080155613 | Benya et al. | Jun 2008 | A1 |
20080155614 | Cooper et al. | Jun 2008 | A1 |
20080162667 | Verma et al. | Jul 2008 | A1 |
20080162821 | Duran et al. | Jul 2008 | A1 |
20080162843 | Davis et al. | Jul 2008 | A1 |
20080172488 | Jawahar et al. | Jul 2008 | A1 |
20080189437 | Halley | Aug 2008 | A1 |
20080201332 | Souders et al. | Aug 2008 | A1 |
20080215718 | Stolorz et al. | Sep 2008 | A1 |
20080215730 | Sundaram et al. | Sep 2008 | A1 |
20080215735 | Farber et al. | Sep 2008 | A1 |
20080215747 | Menon et al. | Sep 2008 | A1 |
20080215750 | Farber et al. | Sep 2008 | A1 |
20080215755 | Farber et al. | Sep 2008 | A1 |
20080222281 | Dilley et al. | Sep 2008 | A1 |
20080222291 | Weller et al. | Sep 2008 | A1 |
20080222295 | Robinson et al. | Sep 2008 | A1 |
20080228574 | Stewart et al. | Sep 2008 | A1 |
20080228920 | Souders et al. | Sep 2008 | A1 |
20080235400 | Slocombe et al. | Sep 2008 | A1 |
20080256087 | Piironen et al. | Oct 2008 | A1 |
20080256175 | Lee et al. | Oct 2008 | A1 |
20080263135 | Olliphant | Oct 2008 | A1 |
20080275772 | Suryanarayana et al. | Nov 2008 | A1 |
20080281946 | Swildens et al. | Nov 2008 | A1 |
20080281950 | Wald et al. | Nov 2008 | A1 |
20080288722 | Lecoq et al. | Nov 2008 | A1 |
20080301670 | Gouge et al. | Dec 2008 | A1 |
20080312766 | Couckuyt | Dec 2008 | A1 |
20080319862 | Golan et al. | Dec 2008 | A1 |
20080320123 | Houlihan et al. | Dec 2008 | A1 |
20080320269 | Houlihan et al. | Dec 2008 | A1 |
20090013063 | Soman | Jan 2009 | A1 |
20090016236 | Alcala et al. | Jan 2009 | A1 |
20090029644 | Sue et al. | Jan 2009 | A1 |
20090031367 | Sue | Jan 2009 | A1 |
20090031368 | Ling | Jan 2009 | A1 |
20090031376 | Riley et al. | Jan 2009 | A1 |
20090043900 | Barber | Feb 2009 | A1 |
20090049098 | Pickelsimer et al. | Feb 2009 | A1 |
20090063038 | Shrivathsan et al. | Mar 2009 | A1 |
20090063704 | Taylor et al. | Mar 2009 | A1 |
20090070533 | Elazary et al. | Mar 2009 | A1 |
20090083228 | Shatz et al. | Mar 2009 | A1 |
20090083279 | Hasek | Mar 2009 | A1 |
20090086728 | Gulati et al. | Apr 2009 | A1 |
20090086741 | Zhang | Apr 2009 | A1 |
20090089869 | Varghese | Apr 2009 | A1 |
20090094252 | Wong et al. | Apr 2009 | A1 |
20090103707 | McGary et al. | Apr 2009 | A1 |
20090106202 | Mizrahi | Apr 2009 | A1 |
20090106381 | Kasriel et al. | Apr 2009 | A1 |
20090112703 | Brown | Apr 2009 | A1 |
20090125393 | Hwang et al. | May 2009 | A1 |
20090125934 | Jones et al. | May 2009 | A1 |
20090132368 | Cotter et al. | May 2009 | A1 |
20090132640 | Verma et al. | May 2009 | A1 |
20090132648 | Swildens et al. | May 2009 | A1 |
20090138533 | Iwasaki et al. | May 2009 | A1 |
20090144411 | Winkler et al. | Jun 2009 | A1 |
20090144412 | Ferguson et al. | Jun 2009 | A1 |
20090150926 | Schlack | Jun 2009 | A1 |
20090157504 | Braemer et al. | Jun 2009 | A1 |
20090157850 | Gagliardi et al. | Jun 2009 | A1 |
20090158163 | Stephens et al. | Jun 2009 | A1 |
20090164331 | Bishop et al. | Jun 2009 | A1 |
20090164614 | Christian et al. | Jun 2009 | A1 |
20090177667 | Ramos et al. | Jul 2009 | A1 |
20090182815 | Czechowski et al. | Jul 2009 | A1 |
20090182837 | Rogers | Jul 2009 | A1 |
20090182945 | Aviles et al. | Jul 2009 | A1 |
20090187575 | DaCosta | Jul 2009 | A1 |
20090198817 | Sundaram et al. | Aug 2009 | A1 |
20090204682 | Jeyaseelan et al. | Aug 2009 | A1 |
20090210549 | Hudson et al. | Aug 2009 | A1 |
20090233623 | Johnson | Sep 2009 | A1 |
20090241167 | Moore | Sep 2009 | A1 |
20090248697 | Richardson et al. | Oct 2009 | A1 |
20090248786 | Richardson et al. | Oct 2009 | A1 |
20090248787 | Sivasubramanian et al. | Oct 2009 | A1 |
20090248852 | Fuhrmann et al. | Oct 2009 | A1 |
20090248858 | Sivasubramanian et al. | Oct 2009 | A1 |
20090248893 | Richardson et al. | Oct 2009 | A1 |
20090249222 | Schmidt et al. | Oct 2009 | A1 |
20090253435 | Olofsson | Oct 2009 | A1 |
20090254661 | Fullagar et al. | Oct 2009 | A1 |
20090259588 | Lindsay | Oct 2009 | A1 |
20090259971 | Rankine et al. | Oct 2009 | A1 |
20090262741 | Jungck et al. | Oct 2009 | A1 |
20090271498 | Cable | Oct 2009 | A1 |
20090271577 | Campana et al. | Oct 2009 | A1 |
20090271730 | Rose et al. | Oct 2009 | A1 |
20090276771 | Nickolov et al. | Nov 2009 | A1 |
20090279444 | Ravindran et al. | Nov 2009 | A1 |
20090282038 | Subotin et al. | Nov 2009 | A1 |
20090287750 | Banavar et al. | Nov 2009 | A1 |
20090307307 | Igarashi | Dec 2009 | A1 |
20090327489 | Swildens et al. | Dec 2009 | A1 |
20090327517 | Sivasubramanian et al. | Dec 2009 | A1 |
20090327914 | Adar et al. | Dec 2009 | A1 |
20100005175 | Swildens et al. | Jan 2010 | A1 |
20100011061 | Hudson et al. | Jan 2010 | A1 |
20100011126 | Hsu et al. | Jan 2010 | A1 |
20100020699 | On | Jan 2010 | A1 |
20100023601 | Lewin et al. | Jan 2010 | A1 |
20100023621 | Ezolt et al. | Jan 2010 | A1 |
20100030662 | Klein | Feb 2010 | A1 |
20100030914 | Sparks et al. | Feb 2010 | A1 |
20100034470 | Valencia-Campo et al. | Feb 2010 | A1 |
20100036944 | Douglis et al. | Feb 2010 | A1 |
20100042725 | Jeon et al. | Feb 2010 | A1 |
20100049862 | Dixon | Feb 2010 | A1 |
20100057894 | Glasser | Mar 2010 | A1 |
20100070603 | Moss et al. | Mar 2010 | A1 |
20100082320 | Wood et al. | Apr 2010 | A1 |
20100082787 | Kommula et al. | Apr 2010 | A1 |
20100088367 | Brown et al. | Apr 2010 | A1 |
20100088405 | Huang et al. | Apr 2010 | A1 |
20100095008 | Joshi | Apr 2010 | A1 |
20100100629 | Raciborski et al. | Apr 2010 | A1 |
20100103837 | Jungck et al. | Apr 2010 | A1 |
20100111059 | Bappu et al. | May 2010 | A1 |
20100115133 | Joshi | May 2010 | A1 |
20100115342 | Shigeta et al. | May 2010 | A1 |
20100121953 | Friedman et al. | May 2010 | A1 |
20100121981 | Drako | May 2010 | A1 |
20100122069 | Gonion | May 2010 | A1 |
20100125626 | Lucas et al. | May 2010 | A1 |
20100125673 | Richardson et al. | May 2010 | A1 |
20100125675 | Richardson et al. | May 2010 | A1 |
20100131646 | Drako | May 2010 | A1 |
20100138559 | Sullivan et al. | Jun 2010 | A1 |
20100150155 | Napierala | Jun 2010 | A1 |
20100161799 | Maloo | Jun 2010 | A1 |
20100169392 | Lev Ran et al. | Jul 2010 | A1 |
20100169452 | Atluri et al. | Jul 2010 | A1 |
20100174811 | Musiri et al. | Jul 2010 | A1 |
20100192225 | Ma et al. | Jul 2010 | A1 |
20100217801 | Leighton et al. | Aug 2010 | A1 |
20100217856 | Falkena | Aug 2010 | A1 |
20100223364 | Wei | Sep 2010 | A1 |
20100226372 | Watanabe | Sep 2010 | A1 |
20100228819 | Wei | Sep 2010 | A1 |
20100257024 | Holmes et al. | Oct 2010 | A1 |
20100257266 | Holmes et al. | Oct 2010 | A1 |
20100257566 | Matila | Oct 2010 | A1 |
20100268789 | Yoo et al. | Oct 2010 | A1 |
20100268814 | Cross et al. | Oct 2010 | A1 |
20100274765 | Murphy et al. | Oct 2010 | A1 |
20100281482 | Pike et al. | Nov 2010 | A1 |
20100293296 | Hsu et al. | Nov 2010 | A1 |
20100293479 | Rousso et al. | Nov 2010 | A1 |
20100299427 | Joshi | Nov 2010 | A1 |
20100299438 | Zimmerman et al. | Nov 2010 | A1 |
20100299439 | McCarthy et al. | Nov 2010 | A1 |
20100312861 | Kolhi et al. | Dec 2010 | A1 |
20100318508 | Brawer et al. | Dec 2010 | A1 |
20100322255 | Hao et al. | Dec 2010 | A1 |
20100325365 | Colglazier et al. | Dec 2010 | A1 |
20100332595 | Fullagar et al. | Dec 2010 | A1 |
20110010244 | Hatridge | Jan 2011 | A1 |
20110029598 | Arnold et al. | Feb 2011 | A1 |
20110040893 | Karaoguz et al. | Feb 2011 | A1 |
20110051738 | Xu | Mar 2011 | A1 |
20110055386 | Middleton et al. | Mar 2011 | A1 |
20110055714 | Vemulapalli et al. | Mar 2011 | A1 |
20110055921 | Narayanaswamy et al. | Mar 2011 | A1 |
20110058675 | Brueck et al. | Mar 2011 | A1 |
20110072138 | Canturk et al. | Mar 2011 | A1 |
20110072366 | Spencer | Mar 2011 | A1 |
20110078000 | Ma et al. | Mar 2011 | A1 |
20110078230 | Sepulveda | Mar 2011 | A1 |
20110085654 | Jana et al. | Apr 2011 | A1 |
20110087769 | Holmes et al. | Apr 2011 | A1 |
20110096987 | Morales et al. | Apr 2011 | A1 |
20110113467 | Agarwal et al. | May 2011 | A1 |
20110153938 | Verzunov et al. | Jun 2011 | A1 |
20110153941 | Spatscheck et al. | Jun 2011 | A1 |
20110154318 | Oshins et al. | Jun 2011 | A1 |
20110161461 | Niven-Jenkins | Jun 2011 | A1 |
20110166935 | Armentrout et al. | Jul 2011 | A1 |
20110182290 | Perkins | Jul 2011 | A1 |
20110191445 | Dazzi | Aug 2011 | A1 |
20110191447 | Dazzi | Aug 2011 | A1 |
20110191449 | Swildens et al. | Aug 2011 | A1 |
20110191459 | Joshi | Aug 2011 | A1 |
20110196892 | Xia | Aug 2011 | A1 |
20110208876 | Richardson et al. | Aug 2011 | A1 |
20110208958 | Stuedi et al. | Aug 2011 | A1 |
20110209064 | Jorgensen et al. | Aug 2011 | A1 |
20110219120 | Farber et al. | Sep 2011 | A1 |
20110219372 | Agarwal et al. | Sep 2011 | A1 |
20110238501 | Almeida | Sep 2011 | A1 |
20110238793 | Bedare et al. | Sep 2011 | A1 |
20110239215 | Sugai | Sep 2011 | A1 |
20110252142 | Richardson et al. | Oct 2011 | A1 |
20110252143 | Baumback et al. | Oct 2011 | A1 |
20110258049 | Ramer et al. | Oct 2011 | A1 |
20110258614 | Tamm | Oct 2011 | A1 |
20110270964 | Huang et al. | Nov 2011 | A1 |
20110276623 | Girbal | Nov 2011 | A1 |
20110296053 | Medved et al. | Dec 2011 | A1 |
20110302304 | Baumback et al. | Dec 2011 | A1 |
20110320522 | Endres et al. | Dec 2011 | A1 |
20110320559 | Foti | Dec 2011 | A1 |
20120011190 | Driesen et al. | Jan 2012 | A1 |
20120023090 | Holloway et al. | Jan 2012 | A1 |
20120036238 | Sundaram et al. | Feb 2012 | A1 |
20120066360 | Ghosh | Mar 2012 | A1 |
20120072600 | Richardson et al. | Mar 2012 | A1 |
20120078998 | Son et al. | Mar 2012 | A1 |
20120079096 | Cowan et al. | Mar 2012 | A1 |
20120079115 | Richardson et al. | Mar 2012 | A1 |
20120089972 | Scheidel et al. | Apr 2012 | A1 |
20120096065 | Suit et al. | Apr 2012 | A1 |
20120110515 | Abramoff et al. | May 2012 | A1 |
20120124184 | Sakata et al. | May 2012 | A1 |
20120131177 | Brandt et al. | May 2012 | A1 |
20120136697 | Peles et al. | May 2012 | A1 |
20120143688 | Alexander | Jun 2012 | A1 |
20120159476 | Ramteke et al. | Jun 2012 | A1 |
20120166516 | Simmons et al. | Jun 2012 | A1 |
20120169646 | Berkes et al. | Jul 2012 | A1 |
20120173677 | Richardson et al. | Jul 2012 | A1 |
20120173760 | Jog et al. | Jul 2012 | A1 |
20120179796 | Nagaraj et al. | Jul 2012 | A1 |
20120179817 | Bade et al. | Jul 2012 | A1 |
20120179839 | Raciborski et al. | Jul 2012 | A1 |
20120198043 | Hesketh et al. | Aug 2012 | A1 |
20120198071 | Black et al. | Aug 2012 | A1 |
20120224516 | Stojanovski et al. | Sep 2012 | A1 |
20120226649 | Kovacs et al. | Sep 2012 | A1 |
20120233329 | Dickinson et al. | Sep 2012 | A1 |
20120233522 | Barton et al. | Sep 2012 | A1 |
20120233668 | Leafe et al. | Sep 2012 | A1 |
20120239725 | Hartrick et al. | Sep 2012 | A1 |
20120246129 | Rothschild et al. | Sep 2012 | A1 |
20120254961 | Kim et al. | Oct 2012 | A1 |
20120257628 | Bu et al. | Oct 2012 | A1 |
20120259954 | McCarthy et al. | Oct 2012 | A1 |
20120278229 | Vishwanathan et al. | Nov 2012 | A1 |
20120278831 | van Coppenolle et al. | Nov 2012 | A1 |
20120303785 | Sivasubramanian et al. | Nov 2012 | A1 |
20120303804 | Sundaram et al. | Nov 2012 | A1 |
20120311648 | Swildens et al. | Dec 2012 | A1 |
20120324089 | Joshi | Dec 2012 | A1 |
20130003735 | Chao et al. | Jan 2013 | A1 |
20130007100 | Trahan et al. | Jan 2013 | A1 |
20130007101 | Trahan et al. | Jan 2013 | A1 |
20130007102 | Trahan et al. | Jan 2013 | A1 |
20130007241 | Trahan et al. | Jan 2013 | A1 |
20130007273 | Baumback et al. | Jan 2013 | A1 |
20130019311 | Swildens et al. | Jan 2013 | A1 |
20130034099 | Hikichi et al. | Feb 2013 | A1 |
20130041872 | Aizman et al. | Feb 2013 | A1 |
20130046869 | Jenkins et al. | Feb 2013 | A1 |
20130054675 | Jenkins et al. | Feb 2013 | A1 |
20130055374 | Kustarz et al. | Feb 2013 | A1 |
20130067530 | Spektor et al. | Mar 2013 | A1 |
20130080420 | Taylor et al. | Mar 2013 | A1 |
20130080421 | Taylor et al. | Mar 2013 | A1 |
20130080576 | Taylor et al. | Mar 2013 | A1 |
20130080577 | Taylor et al. | Mar 2013 | A1 |
20130080623 | Thireault | Mar 2013 | A1 |
20130080627 | Kukreja et al. | Mar 2013 | A1 |
20130080636 | Friedman et al. | Mar 2013 | A1 |
20130086001 | Bhogal et al. | Apr 2013 | A1 |
20130117282 | Mugali, Jr. et al. | May 2013 | A1 |
20130117849 | Golshan et al. | May 2013 | A1 |
20130130221 | Kortemeyer et al. | May 2013 | A1 |
20130133057 | Yoon et al. | May 2013 | A1 |
20130151646 | Chidambaram et al. | Jun 2013 | A1 |
20130191499 | Ludin et al. | Jul 2013 | A1 |
20130198341 | Kim | Aug 2013 | A1 |
20130212300 | Eggleston et al. | Aug 2013 | A1 |
20130219020 | McCarthy et al. | Aug 2013 | A1 |
20130227165 | Liu | Aug 2013 | A1 |
20130246567 | Green et al. | Sep 2013 | A1 |
20130254269 | Sivasubramanian et al. | Sep 2013 | A1 |
20130263256 | Dickinson et al. | Oct 2013 | A1 |
20130268616 | Sakata et al. | Oct 2013 | A1 |
20130275549 | Field | Oct 2013 | A1 |
20130279335 | Ahmadi | Oct 2013 | A1 |
20130305046 | Mankovski et al. | Nov 2013 | A1 |
20130311583 | Humphreys et al. | Nov 2013 | A1 |
20130311605 | Richardson et al. | Nov 2013 | A1 |
20130311989 | Ota et al. | Nov 2013 | A1 |
20130318153 | Sivasubramanian et al. | Nov 2013 | A1 |
20130339429 | Richardson et al. | Dec 2013 | A1 |
20130346567 | Richardson et al. | Dec 2013 | A1 |
20140006577 | Joe et al. | Jan 2014 | A1 |
20140007239 | Sharpe et al. | Jan 2014 | A1 |
20140019605 | Boberg | Jan 2014 | A1 |
20140022951 | Lemieux | Jan 2014 | A1 |
20140036675 | Wang et al. | Feb 2014 | A1 |
20140040478 | Hsu et al. | Feb 2014 | A1 |
20140047104 | Rodriguez | Feb 2014 | A1 |
20140053022 | Forgette et al. | Feb 2014 | A1 |
20140059120 | Richardson et al. | Feb 2014 | A1 |
20140059198 | Richardson et al. | Feb 2014 | A1 |
20140059379 | Ren et al. | Feb 2014 | A1 |
20140082165 | Marr et al. | Mar 2014 | A1 |
20140082614 | Klein et al. | Mar 2014 | A1 |
20140089917 | Attalla et al. | Mar 2014 | A1 |
20140108672 | Ou et al. | Apr 2014 | A1 |
20140122698 | Batrouni et al. | May 2014 | A1 |
20140122725 | Batrouni et al. | May 2014 | A1 |
20140137111 | Dees et al. | May 2014 | A1 |
20140149601 | Carney et al. | May 2014 | A1 |
20140164817 | Bartholomy et al. | Jun 2014 | A1 |
20140165061 | Greene et al. | Jun 2014 | A1 |
20140215019 | Ahrens | Jul 2014 | A1 |
20140257891 | Richardson et al. | Sep 2014 | A1 |
20140280679 | Dey et al. | Sep 2014 | A1 |
20140297870 | Eggleston et al. | Oct 2014 | A1 |
20140310402 | Giaretta et al. | Oct 2014 | A1 |
20140310811 | Hentunen | Oct 2014 | A1 |
20140325155 | Marshall et al. | Oct 2014 | A1 |
20140331328 | Wang et al. | Nov 2014 | A1 |
20140337472 | Newton et al. | Nov 2014 | A1 |
20140351871 | Bomfim | Nov 2014 | A1 |
20140365666 | Richardson et al. | Dec 2014 | A1 |
20150006615 | Wainner et al. | Jan 2015 | A1 |
20150019686 | Backholm | Jan 2015 | A1 |
20150026407 | McLellan et al. | Jan 2015 | A1 |
20150067171 | Yum | Mar 2015 | A1 |
20150074228 | Drake | Mar 2015 | A1 |
20150081842 | Richardson et al. | Mar 2015 | A1 |
20150088972 | Brand et al. | Mar 2015 | A1 |
20150089621 | Khalid | Mar 2015 | A1 |
20150106864 | Li | Apr 2015 | A1 |
20150154051 | Kruglick | Jun 2015 | A1 |
20150156279 | Vaswani et al. | Jun 2015 | A1 |
20150172379 | Richardson et al. | Jun 2015 | A1 |
20150172407 | MacCarthaigh et al. | Jun 2015 | A1 |
20150172414 | Richardson et al. | Jun 2015 | A1 |
20150172415 | Richardson et al. | Jun 2015 | A1 |
20150188734 | Petrov | Jul 2015 | A1 |
20150188994 | Marshall et al. | Jul 2015 | A1 |
20150189042 | Sun et al. | Jul 2015 | A1 |
20150195244 | Richardson et al. | Jul 2015 | A1 |
20150200991 | Kwon | Jul 2015 | A1 |
20150207733 | Richardson et al. | Jul 2015 | A1 |
20150215270 | Sivasubramanian et al. | Jul 2015 | A1 |
20150215656 | Pulung et al. | Jul 2015 | A1 |
20150229710 | Sivasubramanian et al. | Aug 2015 | A1 |
20150244580 | Saavedra | Aug 2015 | A1 |
20150256647 | Richardson et al. | Sep 2015 | A1 |
20150288647 | Chhabra et al. | Oct 2015 | A1 |
20150319194 | Richardson et al. | Nov 2015 | A1 |
20150319260 | Watson | Nov 2015 | A1 |
20150334082 | Richardson et al. | Nov 2015 | A1 |
20160006672 | Saavedra | Jan 2016 | A1 |
20160021197 | Pogrebinsky et al. | Jan 2016 | A1 |
20160026568 | Marshall et al. | Jan 2016 | A1 |
20160028644 | Richardson et al. | Jan 2016 | A1 |
20160028755 | Vasseur et al. | Jan 2016 | A1 |
20160036857 | Foxhoven et al. | Feb 2016 | A1 |
20160041910 | Richardson et al. | Feb 2016 | A1 |
20160065665 | Richardson et al. | Mar 2016 | A1 |
20160072669 | Saavedra | Mar 2016 | A1 |
20160072720 | Richardson et al. | Mar 2016 | A1 |
20160088118 | Sivasubramanian et al. | Mar 2016 | A1 |
20160132600 | Woodhead et al. | May 2016 | A1 |
20160134492 | Ellsworth et al. | May 2016 | A1 |
20160142367 | Richardson et al. | May 2016 | A1 |
20160182454 | Phonsa et al. | Jun 2016 | A1 |
20160182542 | Staniford | Jun 2016 | A1 |
20160205062 | Mosert | Jul 2016 | A1 |
20160241637 | Marr et al. | Aug 2016 | A1 |
20160241639 | Brookins et al. | Aug 2016 | A1 |
20160241651 | Sivasubramanian et al. | Aug 2016 | A1 |
20160294678 | Khakpour et al. | Oct 2016 | A1 |
20160308959 | Richardson et al. | Oct 2016 | A1 |
20160366202 | Phillips | Dec 2016 | A1 |
20170041428 | Katsev | Feb 2017 | A1 |
20170085495 | Richardson et al. | Mar 2017 | A1 |
20170126557 | Richardson et al. | May 2017 | A1 |
20170126796 | Hollis et al. | May 2017 | A1 |
20170142062 | Richardson et al. | May 2017 | A1 |
20170153980 | Araújo et al. | Jun 2017 | A1 |
20170155678 | Araújo et al. | Jun 2017 | A1 |
20170180217 | Puchala et al. | Jun 2017 | A1 |
20170180267 | Puchala et al. | Jun 2017 | A1 |
20170214755 | Sivasubramanian et al. | Jul 2017 | A1 |
20170250821 | Richardson et al. | Aug 2017 | A1 |
20170257340 | Richardson et al. | Sep 2017 | A1 |
20170353395 | Richardson et al. | Dec 2017 | A1 |
20180063027 | Rafferty | Mar 2018 | A1 |
20180097631 | Uppal et al. | Apr 2018 | A1 |
20180097634 | Uppal et al. | Apr 2018 | A1 |
20180097831 | Uppal et al. | Apr 2018 | A1 |
20180109553 | Radlein et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2741 895 | May 2010 | CA |
1422468 | Jun 2003 | CN |
1511399 | Jul 2004 | CN |
1605182 | Apr 2005 | CN |
101189598 | May 2008 | CN |
101460907 | Jun 2009 | CN |
103731481 | Apr 2014 | CN |
1603307 | Dec 2005 | EP |
1351141 | Oct 2007 | EP |
2008167 | Dec 2008 | EP |
3156911 | Apr 2017 | EP |
07-141305 | Jun 1995 | JP |
2001-0506093 | May 2001 | JP |
2001-249907 | Sep 2001 | JP |
2002-024192 | Jan 2002 | JP |
2002-044137 | Feb 2002 | JP |
2002-323986 | Nov 2002 | JP |
2003-167810 | Jun 2003 | JP |
2003-167813 | Jun 2003 | JP |
2003-522358 | Jul 2003 | JP |
2003188901 | Jul 2003 | JP |
2004-070935 | Mar 2004 | JP |
2004-532471 | Oct 2004 | JP |
2004-533738 | Nov 2004 | JP |
2005-537687 | Dec 2005 | JP |
2007-133896 | May 2007 | JP |
2007-207225 | Aug 2007 | JP |
2008-515106 | May 2008 | JP |
2009-071538 | Apr 2009 | JP |
2012-509623 | Apr 2012 | JP |
2012-209623 | Oct 2012 | JP |
WO 2002069608 | Sep 2002 | WO |
WO 2005071560 | Aug 2005 | WO |
WO 2007007960 | Jan 2007 | WO |
WO 2007126837 | Nov 2007 | WO |
WO 2009124006 | Oct 2009 | WO |
WO 2010002603 | Jan 2010 | WO |
WO 2012044587 | Apr 2012 | WO |
WO 2012065641 | May 2012 | WO |
WO 2014047073 | Mar 2014 | WO |
WO 2017106455 | Jun 2017 | WO |
Entry |
---|
International Search Report and Written Opinion in PCT/US/2016/ 066848 dated May 1, 2017. |
Guo, F., Understanding Memory Resource Management in Vmware vSphere 5.0, Vmware, 2011, pp. 1-29. |
Hameed, CC, “Disk Fragmentation and System Performance”, Mar. 14, 2008, 3 pages. |
Liu, “The Ultimate Guide to Preventing DNS-based DDoS Attacks”, Retrieved from http://www.infoworld.com/article/2612835/security/the-ultimate-guide-to-preventing-dns-based-ddos-attacks.html, Published Oct. 30, 2013. |
Ragan, “Three Types of DNS Attacks and How to Deal with Them”, Retrieved from http://www.csoonline.com/article/2133916/malware-cybercrime/three-types-of-dns-attacks-and-how-to-deal-with-them.html, Published Aug. 28, 2013. |
Office Action in European Application No. 11767118.0 dated Feb. 3, 2017. |
Office Action in European Application No. 09839809.2 dated Dec. 8, 2016. |
Office Action in Japanese Application No. 2014-225580 dated Oct. 3, 2016. |
Partial Supplementary Search Report in European Application No. 09826977.2 dated Oct. 4, 2016. |
Decision of Rejection in Chinese Application No. 201180046104.0 dated Oct. 17, 2016. |
Office Action in Canadian Application No. 2816612 dated Oct. 7, 2016. |
Office Action in Chinese Application No. 201310717573.1 dated Jul. 29, 2016. |
“Non-Final Office Action dated Jan. 3, 2012,” U.S. Appl. No. 12/652,541; Jan. 3, 2012; 35 pages. |
“Final Office Action dated Sep. 5, 2012,” U.S. Appl. No. 12/652,541; Sep. 5, 2012; 40 pages. |
“Notice of Allowance dated Jan. 4, 2013,” U.S. Appl. No. 12/652,541; Jan. 4, 2013; 11 pages. |
“Non-Final Office Action dated Apr. 30, 2014,” U.S. Appl. No. 13/842,970; 20 pages. |
“Final Office Action dated Aug. 19, 2014,” U.S. Appl. No. 13/842,970; 13 pages. |
“Notice of Allowance dated Dec. 5, 2014,” U.S. Appl. No. 13/842,970; 6 pages. |
Canonical Name (CNAME) DNS Records, domainavenue.com, Feb. 1, 2001, XP055153783, Retrieved from the Internet: URL:http://www.domainavenue.com/cname.htm [retrieved on Nov. 18, 2014]. |
“Content delivery network”, Wikipedia, the free encyclopedia, Retrieved from the Internet: URL:http://en.wikipedia.org/w/index.php?title=Contentdelivery network&oldid=601009970, XP055153445, Mar. 24, 2008. |
“Global Server Load Balancing with ServerIron,” Foundry Networks, retrieved Aug. 30, 2007, from http://www.foundrynet.com/pdf/an-global-server-load-bal.pdf, 7 pages. |
“Grid Computing Solutions,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/software/grid, 3 pages. |
“Grid Offerings,” Java.net, retrieved May 3, 2006, from http://wiki.java.net/bin/view/Sungrid/OtherGridOfferings, 8 pages. |
“Recent Advances Boost System Virtualization,” eWeek.com, retrieved from May 3, 2006, http://www.eWeek.com/article2/0, 1895, 1772626,00.asp, 5 pages. |
“Scaleable Trust of Next Generation Management (STRONGMAN),” retrieved May 17, 2006, from http://www.cis.upenn.edu/˜dsl/STRONGMAN/, 4 pages. |
“Sun EDA Compute Ranch,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://sun.com/processors/ranch/brochure.pdf, 2 pages. |
“Sun Microsystems Accelerates UltraSP ARC Processor Design Program With New Burlington, Mass. Compute Ranch,” Nov. 6, 2002, Sun Microsystems, Inc. retrieved May 3, 2006, from http://www.sun.com/smi/Press/sunflash/2002-11/sunflash.20021106.3 .xml, 2 pages. |
“Sun N1 Grid Engine 6,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/software/gridware/index.xml, 3 pages. |
“Sun Opens New Processor Design Compute Ranch,” Nov. 30, 2001, Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/smi/Press/sunflash/2001-11/sunflash.20011130.1.xml, 3 pages. |
“The Softricity Desktop,” Softricity, Inc., retrieved May 3, 2006, from http://www.softricity.com/products/, 3 pages. |
“Xen—The Xen virtual Machine Monitor,” University of Cambridge Computer Laboratory, Retrieved Nov. 8, 2005, from http://www.cl.cam.ac.uk/Research/SRG/netos/xen/, 2 pages. |
“XenFaq,” retrieved Nov. 8, 2005, from http://wiki.xensource.com/xenwiki/XenFaq?action=print, 9 pages. |
Abi, Issam, et al., “A Business Driven Management Framework for Utility Computing Environments,” Oct. 12, 2004, HP Laboratories Bristol, HPL-2004-171, retrieved Aug. 30, 2007, from http://www.hpl.hp.com/techreports/2004/HPL-2004-171.pdf, 14 pages. |
American Bar Association; Digital Signature Guidelines Tutorial [online]; Feb. 10, 2002 [retrieved on Mar. 2, 2010]; Retrieved from the internet: (URL: http://web.archive.org/web/20020210124615/www.abanet.org/scitech/ec/isc/dsg-tutorial.html; pp. 1-8. |
Armour et al.: “A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities”; Management Science, vol. 9, No. 2 (Jan. 1963); pp. 294-309. |
Baglioni et al., “Preprocessing and Mining Web Log Data for Web Personalization”, LNAI 2829, 2003, pp. 237-249. |
Barbir, A., et al., “Known Content Network (CN) Request-Routing Mechanisms”, Request for Comments 3568, [online], IETF, Jul. 2003, [retrieved on Feb. 26, 2013], Retrieved from the Internet: (URL: http://tools.ietf.org/rfc/rfc3568.txt). |
Bellovin, S., “Distributed Firewalls,” ;login;:37-39, Nov. 1999, http://www.cs.columbia.edu/-smb/papers/distfw. html, 10 pages, retrieved Nov. 11, 2005. |
Blaze, M., “Using the KeyNote Trust Management System,” Mar. 1, 2001, from http://www.crypto.com/trustmgt/kn.html, 4 pages, retrieved May 17, 2006. |
Brenton, C., “What is Egress Filtering and How Can I Implement It?—Egress Filtering v 0.2,” Feb. 29, 2000, SANS Institute, http://www.sans.org/infosecFAQ/firewall/egress.htm, 6 pages. |
Byun et al., “A Dynamic Grid Services Deployment Mechanism for On-Demand Resource Provisioning”, IEEE International Symposium on Cluster Computing and the Grid:863-870, 2005. |
Chipara et al, “Realtime Power-Aware Routing in Sensor Network”, IEEE, 2006, 10 pages. |
CLark, C., “Live Migration of Virtual Machines,” May 2005, NSDI '05: 2nd Symposium on Networked Systems Design and Implementation, Boston, MA, May 2-4, 2005, retrieved from http://www.usenix.org/events/nsdi05/tech/full_papers/clark/clark.pdf, 14 pages. |
Coulson, D., “Network Security Iptables,” Apr. 2003, Linuxpro, Part 2, retrieved from http://davidcoulson.net/writing/lxf/38/iptables.pdf, 4 pages. |
Coulson, D., “Network Security Iptables,” Mar. 2003, Linuxpro, Part 1, retrieved from http://davidcoulson.net/writing/lxf/39/iptables.pdf, 4 pages. |
Deleuze, C., et al., A DNS Based Mapping Peering System for Peering CDNs, draft-deleuze-cdnp-dnsmap-peer-00.txt, Nov. 20, 2000, 20 pages. |
Demers, A., “Epidemic Algorithms For Replicated Database Maintenance,” 1987, Proceedings of the sixth annual ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia, Canada, Aug. 10-12, 1987, 12 pages. |
Gruener, J., “A Vision of Togetherness,” May 24, 2004, NetworkWorld, retrieved May 3, 2006, from, http://www.networkworld.com/supp/2004/ndc3/0524virt.html, 9 pages. |
Gunther et al, “Measuring Round Trip Times to determine the Distance between WLAN Nodes”,May 2005, In Proc. of Networking 2005, all pages. |
Gunther et al, “Measuring Round Trip Times to determine the Distance between WLAN Nodes”, Dec. 18, 2004, Technical University Berlin, all pages. |
Hartung et al.; Digital rights management and watermarking of multimedia content for m-commerce applications; Published in: Communications Magazine, IEEE (vol. 38, Issue: 11 ); Date of Publication: Nov. 2000; pp. 78-84; IEEE Xplore. |
Horvath et al., “Enhancing Energy Efficiency in Multi-tier Web Server Clusters via Prioritization,” in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International , vol., No., pp. 1-6, Mar. 26-30, 2007. |
Ioannidis, S., et al., “Implementing a Distributed Firewall,” Nov. 2000, (ACM) Proceedings of the ACM Computer and Communications Security (CCS) 2000, Athens, Greece, pp. 190-199, retrieved from http://www.cis.upenn.edu/˜dls/STRONGMAN/Papers/df.pdf, 10 pages. |
Joseph, Joshy, et al., “Introduction to Grid Computing,” Apr. 16, 2004, retrieved Aug. 30, 2007, from http://www.informit.com/articles/printerfriendly.aspx?p=169508, 19 pages. |
Kalafut et al., Understanding Implications of DNS Zone Provisioning., Proceeding IMC '08 Proceedings of the 8th AMC SIGCOMM conference on Internet measurement., pp. 211-216., ACM New York, NY, USA., 2008. |
Kato, Yoshinobu , Server load balancer—Difference in distribution technique and supported protocol—Focus on function to meet the needs, Nikkei Communications, Japan, Nikkei Business Publications, Inc., Mar. 20, 2000, vol. 314, pp. 114 to 123. |
Kenshi, P., “Help File Library: Iptables Basics,” Justlinux, retrieved Dec. 1, 2005, from http://www.justlinux.com/nhf/Security/Iptables_Basics.html, 4 pages. |
Liu et al., “Combined mining of Web server logs and web contents for classifying user navigation patterns and predicting users' future requests,” Data & Knowledge Engineering 61 (2007) pp. 304-330. |
Maesono, et al., “A Local Scheduling Method considering Data Transfer in Data Grid,” Technical Report of IEICE, vol. 104, No. 692, pp. 435-440, The Institute of Electronics, Information and Communication Engineers, Japan, Feb. 2005. |
Meng et al., “Improving the Scalability of Data Center Networks with Traffic-Aware Virtual Machine Placement”; Proceedings of the 29th Conference on Information Communications, INFOCOM'10, pp. 1154-1162. Piscataway, NJ. IEEE Press, 2010. |
Mulligan et al.; How DRM-based content delivery systems disrupt expectations of “personal use”; Published in: Proceeding DRM '03 Proceedings of the 3rd ACM workshop on Digital rights management; 2003; pp. 77-89; ACM Digital Library. |
Shankland, S., “Sun to buy start-up to bolster N1,” Jul. 30, 2003, CNet News.com, retrieved May 3, 2006, http://news.zdnet.com/2100-3513_22-5057752.html, 8 pages. |
Sharif et al, “Secure In-VM Monitoring Using Hardware Virtualization”, Microsoft, Oct. 2009 http://research.microsoft.com/pubs/153179/sim-ccs09.pdf; 11 pages. |
Strand, L., “Adaptive distributed firewall using intrusion detection,” Nov. 1, 2004, University of Oslo Department of Informatics, retrieved Mar. 8, 2006, from http://gnist.org/˜lars/studies/master/StrandLars-master.pdf, 158 pages. |
Takizawa, et al., “Scalable MultiReplication Framework on The Grid,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2004, No. 81, pp. 247-252, Japan, Aug. 1, 2004. |
Tan et al., “Classification: Basic Concepts, Decision Tree, and Model Evaluation”, Introduction in Data Mining; http://www-users.cs.umn.edu/˜kumar/dmbook/ch4.pdf, 2005, pp. 245-205. |
Van Renesse, R., “Astrolabe: A Robust and Scalable Technology for Distributed System Monitoring, Management, and Data Mining,” May 2003, ACM Transactions on Computer Systems (TOCS), 21 (2): 164-206, 43 pages. |
Vijayan, J., “Terraspring Gives Sun's N1 a Boost,” Nov. 25, 2002, Computerworld, retrieved May 3, 2006, from http://www.computerworld.com/printthis/2002/0,4814, 76159,00.html, 3 pages. |
Virtual Iron Software Home, Virtual Iron, retrieved May 3, 2006, from http://www.virtualiron.com/, 1 page. |
Waldspurger, CA., “Spawn: A Distributed Computational Economy,” Feb. 1992, IEEE Transactions on Software Engineering, 18(2): 103-117, 15 pages. |
Watanabe, et al., “Remote Program Shipping System for GridRPC Systems,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2003, No. 102, pp. 73-78, Japan, Oct. 16, 2003. |
Xu et al., “Decision tree regression for soft classification of remote sensing data”, Remote Sensing of Environment 97 (2005) pp. 322-336. |
Yamagata, et al., “A virtual-machine based fast deployment tool for Grid execution environment, ” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2006, No. 20, pp. 127-132, Japan, Feb. 28, 2006. |
Zhu, Xiaoyun, et al., “Utility-Driven Workload Management Using Nested Control Design,” Mar. 29, 2006, HP Laboratories Palo Alto, HPL-2005-193(R.1), retrieved Aug. 30, 2007, from http://www.hpl.hp.com/techreports/2005/HPL-2005-193R1.pdf, 9 pages. |
Supplementary European Search Report in Application No. 09729072.0 2266064 dated Dec. 10, 2014. |
First Singapore Written Opinion in Application No. 201006836-9, dated Oct. 12, 2011 in 12 pages. |
Singapore Written Opinion in Application No. 201006836-9, dated Apr. 30, 2012 in 10 pages. |
First Office Action in Chinese Application No. 200980111422.3 dated Apr. 13, 2012. |
First Office Action in Japanese Application No. 2011-502138 dated Feb. 1, 2013. |
Singapore Written Opinion in Application No. 201006837-7, dated Oct. 12, 2011 in 11 pages. |
Supplementary European Search Report in Application No. 09727694.3 dated Jan. 30, 2012 in 6 pages. |
Singapore Examination Report in Application No. 201006837-7 dated Mar. 16, 2012. |
First Office Action in Chinese Application No. 200980111426.1 dated Feb. 16, 2013. |
Second Office Action in Chinese Application No. 200980111426.1 dated Dec. 25, 2013. |
Third Office Action in Chinese Application No. 200980111426.1 dated Jul. 7, 2014. |
Fourth Office Action in Chinese Application No. 200980111426.1 dated Jan. 15, 2015. |
Fifth Office Action in Chinese Application No. 200980111426.1 dated Aug. 14, 2015. |
First Office Action in Japanese Application No. 2011-502139 dated Nov. 5, 2013. |
Decision of Rejection in Application No. 2011-502139 dated Jun. 30, 2014. |
Office Action in Japanese Application No. 2011-502139 dated Aug. 17, 2015. |
Singapore Written Opinion in Application No. 201006874-0, dated Oct. 12, 2011. |
First Office Action in Japanese Application No. 2011-502140 dated Dec. 7, 2012. |
First Office Action in Chinese Application No. 200980119995.0 dated Jul. 6, 2012. |
Second Office Action in Chinese Application No. 200980119995.0 dated Apr. 15, 2013. |
Examination Report in Singapore Application No. 201006874-0 dated May 16, 2012. |
Search Report for European Application No. 09839809.2 dated May 11, 2015. |
Supplementary European Search Report in Application No. 09728756.9 dated Jan. 8, 2013. |
First Office Action in Chinese Application No. 200980119993.1 dated Jul. 4, 2012. |
Second Office Action in Chinese Application No. 200980119993.1 dated Mar. 12, 2013. |
Third Office Action in Chinese Application No. 200980119993.1 dated Oct. 21, 2013. |
First Office Action in Japanese Application No. 2011-503091 dated Nov. 18, 2013. |
Office Action in Japanese Application No. 2014-225580 dated Oct. 26, 2015. |
Search Report and Written Opinion issued in Singapore Application No. 201006873-2 dated Oct. 12, 2011. |
First Office Action is Chinese Application No. 200980125551.8 dated Jul. 4, 2012. |
First Office Action in Japanese Application No. 2011-516466 dated Mar. 6, 2013. |
Second Office Action in Japanese Application No. 2011-516466 dated Mar. 17, 2014. |
Decision of Refusal in Japanese Application No. 2011-516466 dated Jan. 16, 2015. |
Office Action in Japanese Application No. 2011-516466 dated May 30, 2016. |
Office Action in Canadian Application No. 2726915 dated May 13, 2013. |
First Office Action in Korean Application No. 10-2011-7002461 dated May 29, 2013. |
First Office Action in Chinese Application No. 200980145872.4 dated Nov. 29, 2012. |
First Office Action in Canadian Application No. 2741895 dated Feb. 25, 2013. |
Second Office Action in Canadian Application No. 2741895 dated Oct. 21, 2013. |
Search Report and Written Opinion in Singapore Application No. 201103333-9 dated Nov. 19, 2012. |
Examination Report in Singapore Application No. 201103333-9 dated Aug. 13, 2013. |
International Search Report and Written Opinion in PCT/US2011/053302 dated Nov. 28, 2011 in 11 pages. |
International Preliminary Report on Patentability in PCT/US2011/053302 dated Apr. 2, 2013. |
First Office Action in Japanese Application No. 2013-529454 dated Feb. 3, 2014 in 6 pages. |
Office Action in Japanese Application No. 2013-529454 dated Mar. 9, 2015 in 8 pages. |
First Office Action issued in Australian Application No. 2011307319 dated Mar. 6, 2014 in 5 pages. |
Search Report and Written Opinion in Singapore Application No. 201301573-0 dated Jul. 1, 2014. |
First Office Action in Chinese Application No. 201180046104.0 dated Nov. 3, 2014. |
Second Office Action in Chinese Application No. 201180046104.0 dated Sep. 29, 2015. |
Third Office Action in Chinese Application No. 201180046104.0 dated Apr. 14, 2016. |
Examination Report in Singapore Application No. 201301573-0 dated Dec. 22, 2014. |
International Preliminary Report on Patentability in PCT/US2011/061486 dated May 22, 2013. |
International Search Report and Written Opinion in PCT/US2011/061486 dated Mar. 30, 2012 in 11 pages. |
Office Action in Canadian Application No. 2816612 dated Nov. 3, 2015. |
First Office Action in Chinese Application No. 201180053405.6 dated Feb. 10, 2015. |
Second Office Action in Chinese Application No. 201180053405.6 dated Dec. 4, 2015. |
Office Action in Japanese Application No. 2013-540982 dated Jun. 2, 2014. |
Written Opinion in Singapore Application No. 201303521-7 dated May 20, 2014. |
Office Action in Japanese Application No. 2015-533132 dated Apr. 25, 2016. |
Office Action in Canadian Application No. 2884796 dated Apr. 28, 2016. |
Office Action in Russian Application No. 2015114568 dated May 16, 2016. |
International Search Report and Written Opinion in PCT/US07/07601 dated Jul. 18, 2008 in 11 pages. |
International Preliminary Report on Patentability in PCT/US2007/007601 dated Sep. 30, 2008 in 8 pages. |
Supplementary European Search Report in Application No. 07754164.7 dated Dec. 20, 2010 in 7 pages. |
Office Action in Chinese Application No. 200780020255.2 dated Mar. 4, 2013. |
Office Action in Indian Application No. 3742/KOLNP/2008 dated Nov. 22, 2013. |
Office Action in Japanese Application No. 2012-052264 dated Dec. 11, 2012 in 26 pages. |
Office Action in Japanese Application No. 2013-123086 dated Apr. 15, 2014 in 3 pages. |
Office Action in Japanese Application No. 2013-123086 dated Dec. 2, 2014 in 4 pages. |
Office Action in Japanese Application No. 2015-075644 dated Apr. 5, 2016. |
Office Action in European Application No. 07754164.7 dated Dec. 14, 2015. |
Office Action in Chinese Application No. 201310537815.9 dated Jul. 5, 2016. |
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Nov. 6, 2004 (Nov. 6, 2004), Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference Pittsburgh, PA, USA Nov. 6-12, 2004, Piscataway, NJ, USA, IEEE, 1730 Massachusetts Ave., NW Washington, DC 20036-1992 USA, 12 pages. |
Zhao et al., “Distributed file system support for virtual machines in grid computing”, Jun. 4, 2004 (Jun. 4, 2004), High Performance Distributed Computing, 2004. Proceedings. 13th IEEE International Symposium on Honolulu, HI, USA Jun. 4-6, 2004, Piscataway, NJ, USA, IEEE, p. 202-211. |
Office Action in Indian Application No. 5937/CHENP/2010 dated Jan. 19, 2018. |
Office Action in Indian Application No. 6210/CHENP/2010 dated Mar. 27, 2018. |
Office Action in Chinese Application No. 201310537815.9 dated Feb. 1, 2018. |
Office Action in European Application No. 07754164.7 dated Jan. 25, 2018. |
Supplementary Examination Report in Singapore Application No. 11201501987U dated May 17, 2017. |
Office Action in Chinese Application No. 201310537815.9 dated Jun. 2, 2017.. |
Office Action in Canadian Application No. 2816612 dated Aug. 8, 2017. |
International Search Report and Written Opinion in PCT/US2017/055156 dated Dec. 13, 2017. |