The present invention relates generally to resource allocation in wireless hybrid time division multiple access/code division multiple access communication systems. More specifically, the invention relates to assigning uplink and downlink timeslots in such systems.
In addition to communicating over different frequency spectrums, spread spectrum code division multiple access (CDMA) systems carry multiple communications over the same spectrum. The multiple signals are distinguished by their respective chip codes (codes). To more efficiently use the spread spectrum, some hybrid time division multiple access (TDMA)/CDMA systems as illustrated in
One problem in such systems is cross cell interference as illustrated in
Also shown in
Accordingly, there exists a need for reducing cross cell interference.
A hybrid time division duplex/code division multiple access communication system comprises a radio network controller coupled to a plurality of Node-Bs. The radio network controller comprises a resource allocation device for providing each Node-B with a list of timeslots that the Node-B can use to assign uplink timeslots and downlink timeslots. The list of timeslots does not include all potential timeslots as being assignable for uplink communications and does not include all potential timeslots as being assignable for downlink communications. Each of the plurality of Node-Bs comprises an assignment device for dynamically assigning uplink and downlink communications to users of the Node-B in response to the assignable uplink and downlink timeslots of the list.
A method and apparatus for adaptive uplink/downlink resource assignment may include determining uplink interference associated with each of several uplink resources. A wireless network device may produce an uplink list with values for the uplink resources. The device may compare a downlink power level to at least one threshold for each of the downlink resources, wherein at least two of the downlink resources are each associated with a different portion of a frame. The device may produce a downlink list, which may be a bit stream providing an indication, for each downlink resource, indicating whether each of the downlink resources have a downlink power level which is less than or equal to the at least one threshold. The device may send the uplink and downlink lists and may receive an uplink list and a downlink list from each of several neighboring wireless network devices. The device may schedule uplink and downlink resources to a user equipment based on the uplink and downlink lists received.
A method and apparatus for adaptive uplink/downlink resource assignment may include determining downlink and uplink time intervals for communication. A first wireless network device may receive a first list indicating a first assignment for uplink and downlink time intervals in a time division duplex (TDD) frame and determine at least first downlink time intervals for communication in a TDD frame based on the first list. The device may receive a second list indicating a second assignment for uplink and downlink time intervals in a TDD frame and determine at least first uplink time intervals for communication in a TDD frame based on the second list. The device may determine at least second downlink time intervals and second uplink time intervals for communication in a TDD frame based on a third list, wherein the third list indicates a third assignment for uplink and downlink time intervals in a TDD frame, and wherein the second downlink time intervals include downlink time intervals of at least the first downlink time intervals and the second uplink time intervals include uplink time intervals of at least the first uplink time intervals. Further, the device may communicate, with a second wireless device during at least one TDD frame for communication, in the downlink based on at least the second downlink time intervals. Also, the device may communicate, with a second wireless device during at least one TDD frame for communication, in the uplink based on at least the second uplink time intervals. The third list may dynamically change on a TDD frame basis. The first list and the second list may be received from the second wireless device. Further, each time interval may include at least one time slot. In an example, the first wireless device may receive the third list.
Although the following describes timeslot assignment in context of a TDD/CDMA system, the same timeslot elimination procedures and availability lists can be applied to a hybrid TDMA/CDMA system where uplink and downlink communications occur in the same timeslot in a cell.
One procedure for generating the availability list is shown in
Each cell determines its BS-BS interfering cells by estimating interference from the other cells. One approach estimates the BS-BS interfering cells using pre-measured link gains between the base stations 301-3011. If the estimated interference exceeds a threshold, the base stations' cells are considered BS-BS interfering cells, step 77. Based on the threshold comparison, BS-BS interfering cells are determined and stored in a cross interference cell list 84 as illustrated in
Additionally, cells where UEs 321-32n may interfere with other UEs 321-32n are determined, step 78. Due to the relatively low EIPR of UEs 321-32n, the UE-UE interfering cells are in close geographic proximity, such as being adjacent. One UE's 321 uplink transmission can interfere with a neighboring cell's UE reception, as shown in
Using the cross interference cell list 84, for each cell, the potential cross interference cells are determined, step 78. For a particular cell in the vertical axis, each cell in the corresponding row marked with an “I” or “I*” is a cross interference cell. For instance, cell 1 is potentially cross interfered by cells 2, 3, 5, 6, 9 and 10. For each cross interference cell, the timeslot allocation is determined. For instance, using the hypothetical timeslot allocation of table 86 of
For each uplink timeslot allocated in a cross interference cell, a corresponding downlink timeslot is eliminated, step 82. To illustrate for cell 1, cell 2's uplink timeslot 9 eliminates that timeslot from cell 1's possible downlink timeslots as shown in cell 1's availability list 88. After eliminating the appropriate timeslots due to the cross interference cells, an availability list 76 for each cell is produced, step 90. As a result, uplink and downlink timeslots used in cross inference cells are made unavailable reducing cross cell interference.
To relax the assignment conditions, either only the BS-BS interfering cells or only the UE-UE interfering cells are considered. These approaches may lead to freeing up more resources for each cell. However, the looser criteria may result in unacceptable interference levels with respect to some users.
Another approach for determining available timeslots uses interference measurements of timeslots, such as by interference signal code power (ISCP). The interference measurements may be taken at the base stations 301-3011, UEs 321-32n or both.
For the uplink, if the base station's measured interference exceeds a threshold in a timeslot, that timeslot is eliminated for the uplink, step 148. For the downlink, each UE 321, 323, 324 eliminates downlink timeslots for its use, if that UE's interference measurement exceeds a threshold, step 150. An availability list 154 is produced showing the available uplink timeslots and the available downlink timeslots for each UE as illustrated in
Although two cells are adjacent, the location of specific UEs 321-32n in the cells may be distant. To illustrate using
Using a UE specific assignment approach as in
A non-UE specific approach is shown in
Downlink availability is determined on a UE by UE or a collective basis. Using a UE by UE basis per
Using a collective basis per
For sectored cells, the cross interference list and availability lists 84 are constructed for each sector within the cells. The cross interference between all cell's sectors is determined. Although the following discussion focuses on non-sectorized cells, the same approach also applies to sectorized cells where the assigning is performed on a per sector basis instead of a per cell basis.
Using the availability list 76, each base station 301-30n is assigned timeslots to support its communications using the procedure of
Since the base stations 301-30n need to dynamically assign and release timeslots due to varying uplink/downlink demand, the information in the availability list 76 requires updating. For approaches using interference measurements, the updates are performed by updating the measurements and the lists.
For BS-BS and UE-UE approaches, this procedure is shown in
If a downlink timeslot was released, the corresponding timeslots in the cross interference cells are freed for the uplink unless unavailable for other reasons, such as being used as a downlink timeslot in another cross interference cell, step 102. For instance, if timeslot 6 of cell 6 is released as indicated in table 106 as “D**”, cell 1's uplink timeslot 6 is not made available. Cell 9 is a cross interference cell to cell 1, which also uses downlink timeslot 6. By contrast, for cell 7, the release of downlink timeslot 6 frees the cell for uplink communications as shown in cell 7's availability list 108 by an “R.” If an uplink timeslot was released, the corresponding timeslots in the cross interference cells are freed for the downlink unless unavailable for other reasons, step 104.
One approach for using uplink/downlink timeslot assignment is shown in
Another approach for uplink/downlink timeslot assignment is shown in
The selected timeslot is assigned to the communication by the timeslot assignment and release device 1121-112n. To update the lists 76, that node-B 1221-122n updates its list 76. The assigned and released timeslots are also sent to the RNC 110. The RNC 110 directs the appropriate timeslot update information to the other cells. The timeslot information either contains an updated availability list 76 or merely the changes to the list 76. If only the changes are sent, each cell's controller 1201-120n updates its own availability list 76 with that information. The type of timeslot information sent is based on the processing and signaling requirements of the system.
Assigning uplink/downlink timeslots is adaptable to systems supporting differing signaling rates. For systems supporting only slow network signaling, the allocated timeslot information is updated on a daily basis using a statistical analysis of the uplink/downlink demand. Since communication traffic varies during the day, a faster update rate performs better and is preferred. For medium speed network signaling, the updating is performed periodically ranging from a fraction of an hour to several hours. Medium speed network signaling also uses statistical analysis but over a shorter time period. For fast network signaling, the allocated timeslots are updated on a per call basis or frame basis. Once a timeslot is assigned or released, the appropriate lists are updated. The fast network signaling allocates timeslots on an as needed basis. As a result, it more efficiently uses the system's resources.
This application is a continuation of U.S. patent application Ser. No. 15/161,990 filed May 23, 2016, which is a continuation of U.S. patent application Ser. No. 14/746,402 filed Jun. 22, 2015, which issued as U.S. Pat. No. 9,350,521 on May 24, 2016, which is a continuation of U.S. patent application Ser. No. 14/337,868 filed Jul. 22, 2014, which issued as U.S. Pat. No. 9,066,341 on Jun. 23, 2015, which is a continuation of U.S. patent application Ser. No. 12/348,637 filed Jan. 5, 2009, which issued as U.S. Pat. No. 8,842,644 on Sep. 23, 2014, which is a continuation of U.S. patent application Ser. No. 11/347,340 filed Feb. 3, 2006, which issued as U.S. Pat. No. 7,474,644 on Jan. 6, 2009, which is a continuation of U.S. patent application Ser. No. 09/910,329 filed Jul. 20, 2001, which issued as U.S. Pat. No. 6,996,078 on Feb. 7, 2006, which claims the benefit of U.S. Provisional Application Ser. No. 60/221,009 filed Jul. 27, 2000, the contents of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5148548 | Meche et al. | Sep 1992 | A |
5260944 | Tomabechi | Nov 1993 | A |
5303234 | Kou | Apr 1994 | A |
5355522 | Demange | Oct 1994 | A |
5428818 | Meidan et al. | Jun 1995 | A |
5448761 | Ushirokawa | Sep 1995 | A |
5455962 | Kotzin | Oct 1995 | A |
5506848 | Drakopoulos et al. | Apr 1996 | A |
5533013 | Leppanen | Jul 1996 | A |
5572516 | Miya et al. | Nov 1996 | A |
5579306 | Dent | Nov 1996 | A |
5594720 | Papadopoulos et al. | Jan 1997 | A |
5594946 | Menich et al. | Jan 1997 | A |
5627880 | Rozanski et al. | May 1997 | A |
5758090 | Doner | Mar 1998 | A |
5781861 | Kang et al. | Jul 1998 | A |
5859839 | Ahlenius et al. | Jan 1999 | A |
5886988 | Yun et al. | Mar 1999 | A |
5894473 | Dent | Apr 1999 | A |
5898928 | Karlsson et al. | Apr 1999 | A |
5930262 | Sierens et al. | Jul 1999 | A |
5937002 | Andersson et al. | Aug 1999 | A |
5937336 | Kumagai | Aug 1999 | A |
5991622 | Henry, Jr. | Nov 1999 | A |
6009332 | Haartsen | Dec 1999 | A |
6023622 | Plaschke et al. | Feb 2000 | A |
6044249 | Chandra et al. | Mar 2000 | A |
6088335 | I et al. | Jul 2000 | A |
6108321 | Anderson et al. | Aug 2000 | A |
6119011 | Borst et al. | Sep 2000 | A |
6128498 | Benveniste | Oct 2000 | A |
6131030 | Schon et al. | Oct 2000 | A |
6134442 | Borst et al. | Oct 2000 | A |
6144652 | Avidor et al. | Nov 2000 | A |
6154655 | Borst et al. | Nov 2000 | A |
6212384 | Almgren et al. | Apr 2001 | B1 |
6212386 | Briere et al. | Apr 2001 | B1 |
6223037 | Parkkila | Apr 2001 | B1 |
6240125 | Andersson et al. | May 2001 | B1 |
6259685 | Rinne et al. | Jul 2001 | B1 |
6298081 | Almgren et al. | Oct 2001 | B1 |
6301233 | Ku et al. | Oct 2001 | B1 |
6320854 | Farber et al. | Nov 2001 | B1 |
6334057 | Malmgren et al. | Dec 2001 | B1 |
6360077 | Mizoguchi | Mar 2002 | B2 |
6377611 | Hwang | Apr 2002 | B1 |
6434128 | Benz et al. | Aug 2002 | B1 |
6453176 | Lopes et al. | Sep 2002 | B1 |
6456826 | Toskala et al. | Sep 2002 | B1 |
6466794 | Posti et al. | Oct 2002 | B1 |
6526028 | Kondo | Feb 2003 | B1 |
6535747 | Shah et al. | Mar 2003 | B1 |
6542485 | Mujtaba | Apr 2003 | B1 |
6591108 | Herrig | Jul 2003 | B1 |
6591109 | Pan | Jul 2003 | B2 |
6615040 | Benveniste | Sep 2003 | B1 |
6654612 | Avidor et al. | Nov 2003 | B1 |
6658257 | Hirayama et al. | Dec 2003 | B1 |
6714523 | Zeira et al. | Mar 2004 | B2 |
6744743 | Walton et al. | Jun 2004 | B2 |
6791961 | Zeira et al. | Sep 2004 | B2 |
6792273 | Tellinger et al. | Sep 2004 | B1 |
6801543 | Ployer | Oct 2004 | B1 |
6847818 | Furukawa | Jan 2005 | B1 |
6973140 | Hoffmann et al. | Dec 2005 | B2 |
6996078 | Pan | Feb 2006 | B2 |
7050481 | Hulbert | May 2006 | B1 |
7145964 | Hoffmann et al. | Dec 2006 | B2 |
7180877 | Benveniste | Feb 2007 | B1 |
7376104 | Diachina et al. | May 2008 | B2 |
7532888 | Kondo | May 2009 | B2 |
20010038620 | Stanwood et al. | Nov 2001 | A1 |
20010055297 | Benveniste | Dec 2001 | A1 |
20020015393 | Pan et al. | Feb 2002 | A1 |
20020067709 | Yamada et al. | Jun 2002 | A1 |
20020098860 | Pecen et al. | Jul 2002 | A1 |
20020105918 | Yamada et al. | Aug 2002 | A1 |
20020111163 | Hamabe | Aug 2002 | A1 |
20030214918 | Marinier | Nov 2003 | A1 |
20080182609 | Somasundaram et al. | Jul 2008 | A1 |
20120026970 | Winters et al. | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
19820736 | Sep 1999 | DE |
0 837 616 | Apr 1998 | EP |
0 865 172 | Sep 1998 | EP |
1 143 651 | Sep 2000 | EP |
1 087 630 | Mar 2001 | EP |
1 122 895 | Aug 2001 | EP |
2 320 648 | Jun 1998 | GB |
08-065738 | Mar 1996 | JP |
0072459 | Nov 2000 | WO |
01045445 | Jun 2001 | WO |
02005441 | Jan 2002 | WO |
02075963 | Sep 2002 | WO |
Entry |
---|
“Physical Layer Measurements in UTRA TDD Mode.” TSG-RAN WG1 Meeting #8, Hannover, Aug. 30-Sep. 3, 1999. TSGR1#6(99)a79. |
Chen et al., “A Dynamic Channel Assignment Algorithm for Asymmetric Traffic in Voice/Data Integrated TDMA/TDD Mobile Radio,” (1997), pp. 215-219. |
Dinan et al., “Spreading Codes for Direct Sequence CDMA and Wideband CDMA Cellular Networks,” (1998), pp. 48-54. |
Hara et al., “Time Slot Assignment for Cellular SDMA/TDMA Systems with Antenna Arrays,” YRP Mobile Telecommunications Key Technology Research Laboratories Co., Ltd., Department of Electrics, Information Systems and Energy Engineering, Osaka University, pp. 1-4. |
Holma et al., “Evaluation of Interference Between Uplink and Downlink in UTRA/TDD.” IEEE Vehicular Technology Conference, 1999, pp. 2616-2620. |
Kim et al., “Optimal Time Slot Assignment in CDMA Packet Radio Networks,” (1996), pp. 1705-1709. |
Lee et al., “An Adaptive Time Slot Allocation Strategy for W-CDMA/TDD System,” IEEE VTS 53rd Vehicular Technology Conference, Rhodes, Greece, May 6-9, 2001, New York, NY, IEEE, vol. Conf. 53, May 6, 2001. |
Mihailescu et al., “Dynamic Resource Allocation for Packet Transmission in UMTS TDD TD-CDMA Systems,” IEEE, 1999, pp. 1737-1741. |
Minn et al., “Dynamic Assignment of Orthogonal Variable-Spreading-Factor Codes in W-CDMA,” IEEE Journal on Selected Areas in Communications, vol. 18, No. 8, Aug. 2000, pp. 1429-1439. |
Ortigoza-Guerrero et al., “Evaluation of Channel Assignment Strategies for TIA Is-54 System,” (1996), pp. 168-175. |
Kim et al., “Optimal time slot assignment in CDMA packet radio networks,” Vehicular Technology Conference, 1996. Mobile Technology for the Human Race., IEEE 46th vol. 3, 1996, pp. 1705-1709. |
Sourour, “Time Slot Assignment Techniques for TDMA Digital Cellular Systems,” IEEE Transactions on Vehicular Technology, vol. 43, No. 1, Feb. 1994, pp. 121-127. |
Takanashi et al., “Frequency-Segregated Dynamic Channel Allocation for Asynchronized TDMA/TDD Frame Among Base Stations,” IEEE, 1996, pp. 933-937. |
Wie et al., “Time Slot Allocation Scheme Based on a Region Division in CDMA/TDD Systems,” VTC Spring 2001, IEEE VTS 53rd Vehicular Technology Conference, Rhodes, Greece, May 6-9, 2001, New York, NY IEEE, Volume Conf. 53, May 6, 2001. |
Number | Date | Country | |
---|---|---|---|
20170201991 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
60221009 | Jul 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15161990 | May 2016 | US |
Child | 15470292 | US | |
Parent | 14746402 | Jun 2015 | US |
Child | 15161990 | US | |
Parent | 14337868 | Jul 2014 | US |
Child | 14746402 | US | |
Parent | 12348637 | Jan 2009 | US |
Child | 14337868 | US | |
Parent | 11347340 | Feb 2006 | US |
Child | 12348637 | US | |
Parent | 09910329 | Jul 2001 | US |
Child | 11347340 | US |