Lift jacks are typically used to lift vehicles when it becomes necessary to change tires or to make minor repairs to the wheels of the vehicles. Lift jacks are available in many different sizes and configurations to enable vehicles to be lifted at different locations on the vehicles. For instance, certain types of lift jacks are suited for lifting vehicles along the frames of the vehicles, while others are suited for lifting vehicles along their bumpers.
Features of the present disclosure are illustrated by way of example and not limited in the following figure(s), in which like numerals indicate like elements, in which:
For simplicity and illustrative purposes, the present disclosure is described by referring mainly to an example thereof. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be readily apparent however, that the present disclosure may be practiced without limitation to these specific details. In other instances, some methods and structures have not been described in detail so as not to unnecessarily obscure the present disclosure. As used herein, the terms “a” and “an” are intended to denote at least one of a particular element, the term “includes” means includes but not limited to, the term “including” means including but not limited to, and the term “based on” means based at least in part on.
Disclosed herein is an adaptor for a lift jack. The adaptor is to be latched onto a tow ring of a vehicle to enable the vehicle to be lifted via the tow ring with a lift jack. Particularly, the adaptor is to be automatically latched to the tow ring through insertion of a runner support of the lift jack into the adaptor and to be automatically unlatched from the tow ring when the runner support of the lift jack is removed from the adaptor. In one regard, therefore, the adaptor disclosed herein enables vehicles to be lifted through use of a lift jack in a safe and relatively easy manner.
With reference first to
As shown in
The lift jack 110 may be suited for lifting vehicles that have relatively large ground clearances, such as all-terrain vehicles, four-wheel drive vehicles, Jeep™ vehicles, etc. In other words, the bar 112 may be relatively tall to accommodate the large ground clearances. In a normal operation, the lift jack 110 may be employed by placing the runner support 116 underneath a frame of a vehicle 120 and manipulating the handle 118 to cause the runner 114 to be jacked up the bar 112 and thus lift the vehicle 120.
According to an example, the adaptor 100 is to receive the ring 124 through one side of the adaptor 100 and to receive the runner support 116 through an opposite side of the adaptor 100. The adaptor 100 may thus function to mate the runner support 116 to the ring 124 and to enable the ring 124 to be raised with the runner support 116. In this regard, the adaptor 100 may enable at least a portion of the vehicle 120 to be lifted by lifting of the ring 124 using the lift jack 110. Lifting of the vehicle 120 in this manner may be relatively simpler than lifting of the vehicle 120 following positioning of the runner support 116 underneath a portion of the vehicle 120 frame. For instance, placement of the runner support 116 underneath a portion of the vehicle 120, such as on a frame or a frame-mounted tubular or flat skid rail, typically requires that a user find an appropriate location on the frame or frame-mounted rail for the runner support 116 as well as to correctly place the runner support 116 underneath the frame or frame-mounted rail, which may be difficult and/or time consuming.
Turning now to
The adaptor 100 is depicted as including a body 200 having a first section 202 and a second section 204. The first section 202 includes a structure 206 that has a generally rectangular shape and includes an opening 210 to receive a ring 124, which may be a D-ring, shackles, or the like, attached to a vehicle 120 (
According to an example, the body 200 is formed of a single sheet of material such as metal, metal alloy, plastic, composite materials, or the like. For instance, the body 200 may be formed by stamping or bending a sheet of metal to have a particular configuration and the stamped or bent sheet of material may be further bent into the shape of the body 200 shown in
The adaptor 100 is also depicted as including a third section 220 positioned on top of the first section 202. The third section 220 may be attached to the first section 202 through any suitable fastening mechanism. For instance, the third section 220 may be attached to the first section 202 through use of an adhesive, mechanical fasteners, etc. In addition, the third section 220 may be formed of a material that differs from that of the body 200. For instance, the third section 220 may be formed of a plastic material, a composite material, a polymer material, etc. According to an example, the third section 220 is formed of a block of material that is not to damage a frame or frame-mounted rail of the vehicle 120.
The third section 220 is also depicted as including a groove 222 formed on the surface of the third section 220 opposite the surface that is in contact with the first section. According to an example, the third section 220 may provide a contact surface in instances in which the adaptor 100 is used in a manner different than the implementation depicted in
Turning now to
As also shown in
As shown in
With reference now to
As also shown in
Turning now to
The description of the method 400 is made with reference to the adaptor 100 illustrated in
At block 402, an adaptor 100 may be positioned on a tow ring 124 of a vehicle 120 to cause the tow ring 124 to be inserted into an opening 210 in the first section 202 of the adaptor 100.
At block 404, a runner support 116 of a lift jack 110 may be inserted into the second section 204 of the adaptor 100. The second section 204 may include a pair of segments 214, 216 that are spaced apart from each other and includes features, e.g., notches 320, to securely contact the runner support 116. In addition, a latching mechanism 230, which is rotatably attached to the pair of segments 214, 216, may be rotated from a first position, e.g., unlocked position, to a section position, e.g., locked position, as the runner support 116 is inserted into the space 212 between the pair of segments 214, 216. As shown in
Particularly, the latching mechanism 230 may automatically be rotated as the runner support 116 is inserted into the space 212. That is, as the runner support 116 is brought close to the latching mechanism 230, a leading surface of the runner support 116 may contact a leading surface of the latching mechanism 230. As the runner support 116 continues to be pushed through the space 212, the runner support 116 may apply sufficient force onto the latching mechanism 230 to cause the latching mechanism 230 to rotate about the pin 218 until the latching mechanism 230 latches onto the ring 124 as shown in
The handle 118 of the lift jack 110 may be manipulated to jack up the runner 114 and thus the vehicle 120 via the ring 124.
Although described specifically throughout the entirety of the instant disclosure, representative examples of the present disclosure have utility over a wide range of applications, and the above discussion is not intended and should not be construed to be limiting, but is offered as an illustrative discussion of aspects of the disclosure.
What has been described and illustrated herein are examples of the disclosure along with some variations. The terms, descriptions and figures used herein are set forth by way of illustration only and are not meant as limitations. Many variations are possible within the scope of the disclosure, which is intended to be defined by the following claims—and their equivalents—in which all terms are meant in their broadest reasonable sense unless otherwise indicated.
This application claims priority to provisional U.S. Application Ser. No. 62/105,531, filed on Jan. 20, 2015, and entitled “ADAPTOR FOR A LIFT JACK,” the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2153722 | Loughmiller | Apr 1939 | A |
2491143 | Weiss | Dec 1949 | A |
2544039 | Pearne | Mar 1951 | A |
2548944 | Chapman | Apr 1951 | A |
2867410 | Southerwick | Jan 1959 | A |
3415490 | Steele | Dec 1968 | A |
3580543 | Hafeli | May 1971 | A |
3758077 | Fisher | Sep 1973 | A |
4629163 | Miller | Dec 1986 | A |
6612615 | Dimand | Sep 2003 | B1 |
7264261 | Konsela | Sep 2007 | B2 |
7370844 | McGriff | May 2008 | B2 |
7416215 | Rosario | Aug 2008 | B1 |
8162290 | Tracy | Apr 2012 | B1 |
20050056818 | Harrah | Mar 2005 | A1 |
20060237700 | Thomas | Oct 2006 | A1 |
20080191183 | Rucks | Aug 2008 | A1 |
20110253954 | Fortner | Oct 2011 | A1 |
20130099086 | Jevne | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
2008066 | May 1979 | GB |
2325917 | Dec 1998 | GB |
Number | Date | Country | |
---|---|---|---|
20160207748 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
62105531 | Jan 2015 | US |