Adaptor for surgical instrument for converting rotary input to linear output

Information

  • Patent Grant
  • 9713466
  • Patent Number
    9,713,466
  • Date Filed
    Friday, May 16, 2014
    10 years ago
  • Date Issued
    Tuesday, July 25, 2017
    6 years ago
Abstract
An adaptor for a powered surgical instrument includes a casing, a cam drum, a first linear driver, and a second linear driver. The cam drum defines and is translatable along a longitudinal axis of the adaptor between a retracted position and an advanced position. The cam drum is being supported for rotation about the longitudinal axis. The cam drum defines first and second radial cam grooves about an outer surface thereof. The first cam groove defines a first profile and the second cam groove defines a second profile. The first linear driver includes a first cam follower disposed in the first cam groove and the second linear driver includes a second cam follower disposed in the second cam groove. The first and second linear drivers are supported for movement between advanced and retracted positions in response to rotation of the cam drum.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to surgical instruments and, more specifically, to an adaptor to convert rotary input from a handle of a surgical instrument into linear output for a loading unit.


2. Discussion of Related Art


As medical and hospital costs continue to increase, surgeons are constantly striving to develop advanced surgical techniques. Advances in the surgical field are often related to the development of operative techniques which involve less invasive surgical procedures which reduce overall patient trauma. In this manner, the length of hospital stays and thus, medical costs can be significantly reduced.


One of the truly great advances to reduce the invasiveness of surgical procedures is endoscopic surgery. Endoscopic surgery involves performing surgical procedures through small incisions formed in body walls. There are many common endoscopic surgical procedures, including arthroscopy, laparoscopy (pelviscopy), gastroentroscopy and laryngobronchoscopy, just to name a few. Typically, trocars are utilized for creating incisions through which the endoscopic surgery is performed. Trocar tubes or cannula devices can be extended through the incisions to provide access for endoscopic surgical tools. A camera or endoscope can be inserted through a trocar tube to permit visual inspection and magnification of the body cavity. The surgeon can then perform diagnostic and therapeutic procedures at the surgical site with the aid of specialized instrumentation, such as, forceps, cutters, applicators, and the like which are designed to fit through additional cannulas.


In many surgical procedures, it is often necessary to suture body organs or tissue. Traditionally, suturing was accomplished by hand using a needle attached to a suture material. This procedure required open access to the tissue to be sutured. Upon the advent of endoscopic surgical procedures, endoscopic suturing instruments have been developed. The development of endoscopic suturing instruments is especially challenging because of the small openings through which the suturing of body organs or tissues must be accomplished.


A number of surgical device manufacturers have developed product lines with proprietary powered drive systems for operating and/or manipulating surgical devices. In many instances the surgical devices include a powered handle assembly, which is reusable, and a disposable loading unit or the like that is selectively connected to the powered handle assembly prior to use and then disconnected from the loading unit following use in order to be disposed of or in some instances sterilized for re-use.


Loading units for performing suturing procedures, endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures, and transverse anastomosis procedures, typically require a linearly driven actuator to actuate the loading unit. As such, these loading units are not compatible with surgical devices and/or handle assemblies that have a rotary driven actuator.


In order to make linearly driven loading units compatible with powered surgical devices or handle assemblies that provide a rotary driven actuator, a need exists for adapters or adapter assemblies to interface between and interconnect the linearly driven loading units with the powered rotary driven surgical devices or handle assemblies.


SUMMARY

In an aspect of the present disclosure, an adaptor for a powered surgical instrument includes a casing, a cam drum, a first linear driver, and a second linear driver. The cam drum defines a longitudinal axis and is translatable between retracted and advanced positions in relation to the casing. The cam drum is supported for rotation about the longitudinal axis and defines first and second radial cam grooves about an outer surface thereof. The first cam groove defines a first profile and the second cam groove defines a second profile. The first linear driver includes a first cam follower disposed in the first cam groove. The first linear driver is supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis. The second linear driver includes a second cam follower disposed in the second cam groove. The second linear driver is supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis.


In aspects, the adaptor includes a lead screw that is rotatable about the longitudinal axis. The lead screw may be received within a lead screw passage defined by cam drum. Rotation of the cam drum may effect longitudinal translation of the cam drum and the first and second linear drivers along the longitudinal axis.


In some aspects, the second cam groove is positioned distal to the first cam groove.


In certain aspects, the adaptor includes a cam drum gear that is coupled to the cam drum. Rotation of the cam drum gear may effect rotation of the cam drum. In embodiments, the adaptor includes a middle gear and a cam drum input shaft disposed about axes that are parallel to the longitudinal axis. The cam drum input shaft may be engaged with the middle gear and the middle gear may be engaged with the cam drum gear such that rotation of the cam drum input shaft effects rotation of the cam drum. The middle gear may be in continuous engagement with the cam drum input shaft and the cam drum gear as the cam drum is longitudinally translated between the retracted and advanced positions.


In particular aspects, the first and second linear drivers define a first pair of linear drivers. In addition, as the cam drum is rotated, the first and second profiles of the first and second cam grooves translate the first pair of linear drivers through a cycle having four phases of movement. In the first phase of movement, the first and second linear drivers may longitudinally advance in relation to the casing. In the second phase of movement, the first linear driver may be longitudinally fixed in relation to the casing and the second linear driver may longitudinally advance in relation to the casing. In a third phase of movement, the first linear driver may be longitudinally fixed and the second linear driver may longitudinally retract in relation to the casing. In a fourth phase of movement, the first and second linear drivers may both be longitudinally fixed in relation to the casing.


In aspects, the adaptor includes a second pair of linear drivers having a third linear driver and a fourth linear driver. The third linear driver may include a third cam follower disposed in the first cam groove. The third linear driver may be supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis. The fourth linear driver may include a fourth cam follower disposed in the second cam groove. The fourth linear driver may be supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis. As the cam drum is rotated, the first and second profiles of the first and second cam grooves may translate the second pair of linear drivers through the cycle. The third linear driver may be positioned about the cam drum in opposed relation to the first linear driver and the fourth linear driver may be positioned about the cam drum in opposed relation to the second linear driver. In embodiments, the first, second, third, and fourth cam followers are positioned in the first and second cam grooves such that when the first pair of linear drivers begin the first phase of movement, the second pair of linear drivers is in the fourth phase of movement. In other embodiments, the first, second, third, and fourth cam followers are positioned in the first and second cam grooves such that when the first pair of linear drivers begin the third phase of movement, the second pair of linear drivers begin the first phase of movement.


In some aspects, the adaptor includes an articulation assembly having an articulation shaft, an articulation drum, an articulation cam, and an articulation arm. The articulation shaft may extend along an axis parallel to the longitudinal axis and may be engaged with the articulation drum to effect rotation of the articulation drum when the articulation shaft is rotated. The articulation cam may be disposed within the articulation drum. The articulation cam and the articulation drum may be radially fixed relative to one another. The articulation cam may define a proximal camming surface and the articulation drum may define a distal camming surface. The proximal and distal camming surfaces may be helical surfaces. The articulation arm may include an articulation cam follower that is disposed between the proximal and distal camming surfaces. The articulation cam follower may longitudinally translate between a first articulated position, a straight position, and a second articulated position as the articulation drum and the articulation cam are rotated about the longitudinal axis. The straight configuration of the articulation arm may be about halfway between the first and second articulated positions of the articulation arm.


In some aspects of the present disclosure, a powered surgical instrument includes a handle, an adaptor, and a loading unit. The handle includes a receiver. The adaptor may be any of the adaptors detailed herein and includes a casing, a handle interface, a cam drum, a first pair of linear drivers, a second pair of linear drivers, and a locking mechanism. The casing has proximal and distal end portions. The handle interface is disposed in the proximal end portion of the adaptor and is releasably coupled to the receiver of the handle. The locking mechanism is positioned adjacent the distal end portion of the casing. The locking mechanism includes a release switch and a lock bar that are operatively associated with one another. The locking mechanism has a locked configuration and an unlocked configuration. The loading unit includes a connector assembly that is releasably secured within the locking mechanism of the adaptor when the locking mechanism is in the locked configuration.


In aspects, the handle interface includes a cam drum input shaft that is operatively associated with the cam drum to rotate the cam drum about the longitudinal axis.


In some aspects, the adaptor includes a distal cover and an articulation assembly disposed substantially within the distal cover. The distal cover may be disposed over the distal end portion of the casing and may include an articulation shaft, an articulation drum, an articulation cam, and an articulation arm. The articulation shaft may extend along an axis parallel to the longitudinal axis and may be engaged with the articulation drum to effect rotation of the articulation drum when the articulation shaft is rotated. The articulation cam may be disposed within and radially fixed relative to the articulation drum. The articulation cam may define a proximal camming surface and the articulation drum may define a distal camming surface. The articulation arm may include an articulation cam follow that is positioned between the proximal and distal camming surfaces. As the articulation drum and the articulation cam are rotated about the longitudinal axis, the proximal and distal camming surfaces may engage the articulation cam follower to longitudinal translate the articulation arm between a first articulated position, a straight position, and a second articulated position. In embodiments, the locking mechanism includes a lock arm that is operatively associated with the lock bar and the articulation drum may define an articulation lock groove. When the articulation assembly is in the straight position, the articulation interlock groove may be aligned with the lock arm to receive the lock arm. When the articulation assembly is in an articulated position, the articulation interlock groove may be offset from the lock arm to prevent the locking mechanism from transitioning to the unlocked configuration.


In particular aspects, the distal end portion of the casing defines a locking opening and a locking groove and the loading unit includes a guide lug. The locking groove receiving the guide lug to align the loading unit with the adaptor. The distal end portion of the casing may define a lug lock in communication with the locking groove and radially offset from the locking groove. When the guide lug is captured in the lug lock, the loading unit may be secured to the adaptor. The lock bar may be disposed within the locking groove. In the locked configuration of the locking mechanism, the lock bar may extend past the lug lock to capture the guide lug in the lug lock. In the unlocked configuration of the locking mechanism, the lock bar may be retracted to a position proximal to the lug lock to allow the guide lug to rotate out of the lug lock.


Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present disclosure are described hereinbelow with reference to the drawings, wherein:



FIG. 1 is a rear perspective view of an embodiment of a surgical instrument in accordance with the present disclosure including a handle, a stitching adaptor, and a stitching loading unit;



FIG. 2 is a rear perspective view of the surgical instrument of FIG. 1 with the parts separated;



FIG. 3 is an enlarged view of the indicated area of detail of FIG. 2;



FIG. 4 is an exploded view of the stitching adaptor of FIG. 2;



FIG. 5 is an enlarged view of the cam drum assembly of FIG. 4;



FIG. 6 is a perspective view of the cam drum assembly and the cam drum input shaft of FIG. 4 engaged in a fully retracted position;



FIG. 7 is a perspective view of the cam drum assembly and the cam drum input shaft of FIG. 4 engaged in a fully extended position;



FIG. 8 is a cross-sectional view taken along section line 8-8 of FIG. 2;



FIG. 9 is a cross-sectional view taken along section line 9-9 of FIG. 8;



FIG. 10 is a cross-sectional view taken along section line 10-10 of FIG. 9;



FIG. 11 is a cross-sectional view taken along section line 11-11 of FIG. 9;



FIG. 12 is a cross-sectional view taken along section line 12-12 of FIG. 9;



FIG. 13 is a cross-sectional view taken along section line 13-13 of FIG. 9;



FIG. 14 is a front perspective view of the articulation assembly of FIG. 4 with the parts separated;



FIG. 15 is a rear perspective view of the articulation assembly of FIG. 4;



FIG. 16 is a perspective view of the surgical instrument of FIG. 1 with the stitching loading unit separated from the stitching adaptor;



FIG. 17 is an enlarged view of the indicated area of detail of FIG. 16;



FIG. 18 is a cut-away view of the stitching adaptor;



FIG. 19 is a cross-sectional view taken along section line 19-19 of FIG. 17;



FIG. 20 is a front perspective view of the distal end portion of the stitching adaptor of FIG. 17 with the distal cover removed;



FIG. 21 is a front perspective view of the distal end of the stitching adaptor of FIG. 20 with the articulation drum removed;



FIG. 22 is a front perspective view of the distal end of the stitching adaptor of FIG. 21 with the articulation cam removed;



FIG. 23 is a front perspective view of the distal end of the stitching adaptor of FIG. 22;



FIGS. 24-26 are a progression of front perspective views of the stitching loading unit of FIG. 16 being secured to the stitching adaptor of FIG. 23;



FIG. 27 is a cut-away view of the stitching adaptor and the stitching loading unit of FIG. 24; and



FIG. 28 is a cut-away view of the stitching adaptor and the stitching loading unit of FIG. 25.





DETAILED DESCRIPTION

Embodiments of the present disclosure are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Throughout this description, the term “proximal” refers to the portion of the device or component thereof that is closest to the clinician and the term “distal” refers to the portion of the device or component thereof that is furthest from the clinician.


Referring now to FIGS. 1 and 2, an exemplary embodiment of a surgical instrument 10 is provided in accordance with present disclosure including a handle 20, an adaptor 30, and a stitching loading unit 40. The surgical instrument 10 is configured to capture tissue within the stitching loading unit 40, create stitches through the captured tissue with sutures disposed within the stitching loading unit 40, and sever the captured tissue within the stitching loading unit 40. An exemplary embodiment of such a stitching loading unit is disclosed in commonly owned and co-pending U.S. patent application Ser. No. 14/507,900, the contents of which are hereby incorporated by reference in its entirety.


The handle 20 is a powered handle and may include one or more drive shafts (not shown) that rotate independently of one another. The handle 20 includes a control interface 22 and a receiver 24. The control interface 22 includes one or more control(s) associated with rotary drive shafts (not shown) within the handle 20 (e.g., an actuator button, a rotate button, a clamp button, a stitch button, etc.). The receiver 24 is supported at the distal end of the handle 20 and includes a recess configured to receive an interface (e.g., a handle interface 50 (FIG. 2) of the adaptor 30) of an adaptor or loading unit (e.g., a connector 44 of the loading unit 40). An exemplary example of such a powered handle is disclosed in commonly owned and co-pending U.S. patent application Ser. No. 13/484,975 filed May 31, 2012, and published as U.S. Patent Publication No. 2012/0253329 on Oct. 4, 2012, the contents of which are hereby incorporated by reference in its entirety. It is also contemplated that the handle 20 may be a manually driven handle with one or more output shafts.


The adaptor 30 converts the rotary motion of the drive shafts of the handle 20 into linear motion of linear drivers 65a-d (FIG. 5) to manipulate the stitching loading unit 40 as detailed below. The stitching loading unit 40 includes a jaw assembly 41 having first and second jaw members 43a, 43b for stitching and severing tissue captured therein, and a connector 44 (FIG. 2) for releasably securing the stitching loading unit 40 to the adaptor 30.


With reference to FIG. 3, the handle interface 50 of the adaptor 30 includes a cam drum input shaft 52, a lead screw input shaft 54, an articulation input shaft 56, and an interface 58 supported within the body 50a. Interface 58 is positioned on the proximal end of the adaptor 30. The body 50a of the handle interface 50 is configured to be received within the recess defined in a distal end of the receiver 24 of the handle 20 (FIG. 2). Each of the input shafts 52, 54, 56 is configured to operably engage a respective drive shaft (not shown) of the handle 20 within the receiver 24 such that actuation of the input shafts can be selectively controlled through operation of the handle 20. The handle interface 50 may define one or more interface grooves 51 and include one or more interface protrusions 53 that guide the handle interface 50 into the receiver 24 of the handle 20 and ensure that only compatible adaptors 30 are connectable to particular handles 20. The interface grooves 51 and the interface protrusions 53 may also radially align the handle interface 50 with the handle 20 such that each of the input shafts 52, 54, 56 engages a respective drive shaft of the handle 20.


The connector 58 communicates with a receiver (not shown) of the handle 20 to transmit to the handle 20 characteristics of the adaptor 30 and the loading unit 40. These characteristics of the adaptor 30 and the loading unit 40 are provided to a controller (not shown) of the handle 20 such that the handle 20 can be properly operated to control the loading unit 40. The characteristics may include, but are not limited to, the type of loading unit, the manufacturer of the loading unit, the manufacturer of the adaptor 30, the serial numbers of the loading unit or the adaptor 30, the clamping force of the jaw assembly 41, the required torque applied to each of the input shafts 52, 54, 56, the required speed of each of the input shafts 52, 54, 56, and the type of adaptor. The connector 58 may also transmit power or control signals from the handle 20 to the adaptor 30. As shown, the connector 58 is a contact connector; however, it is also contemplated that the connector 58 may be a non-contact connector, e.g., a connector that inductively transfers power or control signals.


Referring to FIG. 4, the adaptor 30 includes an outer casing 31, the handle interface 50, a cam drum assembly 60, and an articulation assembly 70. As illustrated, the body 50a of the handle interface 50 extends proximally from a proximal end of the outer casing 31. The articulation assembly 70 includes an articulation drum 72, an articulation drum 74, and an articulation shaft 76. The articulation assembly 70 is positioned adjacent a distal end of the outer casing 31 within a distal cover 36. The distal cover 36 is secured to the distal end surface 37 of the outer casing 31 over a distal end portion 38 of the outer casing 31. The articulation assembly 70 is disposed substantially between the distal end surface 37 of the outer casing 31 and the distal cover 36.


With reference to FIGS. 5 and 6, the cam drum assembly 60 includes a cam drum gear 61, a cam drum 62, a plurality of linear drivers 65a-d, and a middle gear 69. The cam drum gear 61 defines a keyed opening 61a that mates with a raised surface 62a formed at a proximal end of the cam drum 62 to rotatably fix the cam drum gear 61 to the cam drum 62. The cam drum 62 is cylindrical and defines a first or proximal cam groove 63, a second or distal cam groove 64, and a threaded lead screw passage 62b. Each cam groove 63, 64 includes a channel disposed within the outer surface of the cam drum 62 that is configured and dimensioned to receive a cam follower 66 of one of the linear drivers 65a-d to facilitate longitudinal translation of the linear drivers 65a-d as detailed below.


Each linear driver 65a-d includes a proximal portion 66a and a linear drive arm 67. The linear drive arm 67 has a distal end which supports an engagement hook 68. The proximal portion 66a supports the cam follower 66 and is configured to mate with adjacent linear drivers 65a-d to substantially enclose the cam drum 62 within the proximal portions 66a of the linear drivers 65a-d as shown in FIG. 6. The proximal portion 66a of each of the linear drivers 65a-d may include mating flanges 66b that slidably engage the mating flanges 66b of the adjacent linear drivers 65a-d to facilitate linear movement of the linear drivers 65a-d in relation to each other along an axis parallel to the longitudinal axis of the adaptor 30.


As detailed above, the cam follower 66c protrudes from an inner surface of the proximal portion 66a of each of the linear drivers 65a-d and is received within one of the proximal or distal cam grooves 63, 64. The cam followers 66c of adjacent linear drivers 65a-d are positioned within different cam grooves 63, 64 and the cam followers 66c of opposing linear drivers 65a-d are positioned within the same cam grooves 63, 64. As the cam drum 62 is rotated, each cam follower 66c moves within a respective cam groove 63, 64 to effect longitudinal translation of a respective one of the linear drivers 65a-d. The linear drive arms 67 extend distally from the proximal portion 66a of each of the linear drivers 65a-d along the outer surface of the lead screw 55 (FIG. 6). The engagement hook 68 of each of the linear drivers 65a-d is positioned and configured to engage a drive rod of a loading unit (e.g., a drive rod 48 (FIG. 17) of the stitching loading unit 40) as detailed below.


Referring also to FIG. 7, the cam drum 62 is supported about the lead screw 55 for rotation and longitudinal translation. More specifically, the lead screw 55 is disposed within the lead screw passage 62b of the cam drum 62. As the lead screw 55 is rotated, the cam drum 62 longitudinally translates between a fully retracted position (FIG. 6) and a fully extended position (FIG. 7). In addition, the cam drum 62 is rotatable via rotation of the cam drum gear 61 to effect longitudinal translation of the linear drivers 65a-d in relation to cam drum 62.


The middle gear 69 of the cam drum assembly 60 includes teeth 69a that extends along a length thereof. As the cam drum 62 translates between the fully retracted and extended positions, the middle gear 69 remains in continuous engagement with the cam drum gear 61 such that the cam drum input shaft 52 can effect rotation of the cam drum 62 to effect longitudinal translation of the linear drivers 65a-d at all the longitudinal positions of the cam drum 62.


With additional reference to FIG. 8, the cam drum assembly 60 is disposed within the outer casing 31 of the adaptor 30 and the linear drivers 65a-d of the cam drum assembly 60 are rotatably fixed relative to the outer casing 31. The inner surface of the outer casing 31 defines longitudinal alignment grooves 31a that receive the mating flanges 66b of the linear drivers 65a-d to rotatably fix the linear drivers 65 within the outer casing 31. The mating flanges 66b slide within the longitudinal alignment grooves 31a as the cam drum 62 translates between the fully retracted and fully extended positions and as the linear drivers 65a-d are advanced distally in response to rotation of the cam drum 62. When in the fully extended position, the linear drive arms 67 and the engagement hooks 68 extend from the distal end portion 38 of the outer casing 31.


Referring now to FIGS. 8-13, the adaptor 30 converts the rotation of the input shafts 52, 54, 56 (FIG. 9) into longitudinal translation of the linear drivers 65a-d, the cam drum 62, and/or the articulation arm 78. The lead screw input shaft 54 engages the lead screw 55 to effect longitudinal translation of the cam drum 62 within the outer casing 31 as detailed above. In embodiments, the lead screw input shaft 54 and the lead screw 55 are integrally formed. When the cam drum 62 longitudinally translates, the mating flanges 66b of the linear drivers 65a-d are disposed within the longitudinal alignment grooves 31a of the outer casing 31 to rotatably fix the linear drivers 65a-d. As detailed above, the cam followers 66c of the linear drivers 65a-d are received within the cam grooves 63, 64 of the cam drum 62 such that upon rotation of the cam drum 62 the linear drivers 65a-d translate longitudinally relative to the cam drum 62 as detailed below.


As illustrated, the linear driver 65a and 65b define a first pair of linear drivers and the linear drivers 65c and 65d define a second pair of linear drivers. In this embodiment, the linear drivers of the first pair of linear drivers 65a, 65b are positioned adjacent to one another; however, it is also within the scope of this disclosure for the linear drivers of the first and second pair of linear drivers to oppose one another. The first pair of linear drivers 65a, 65b is associated with components of the first jaw member 43a (FIG. 1) and the second pair of linear driver 65c, 65d is associated with components of the second jaw member 43b (FIG. 1). The cam follower 66c of one of the linear drivers of each pair of linear drivers (e.g., 65a, 65c) is disposed within the distal cam groove 64 and the cam follower 66c of the other one of the linear drivers of each pair of linear drivers (e.g., 65b, 65d) is disposed within the proximal cam groove 63.


As the cam drum 62 rotates, the cam follower 66c moves within a respective cam groove 63, 64 to effect longitudinal advancement and retraction of the linear drivers 65a-d relative to the outer casing 31. The pitch of each of the cam grooves 63, 64 is configured to cycle (i.e., advance and retract) the linear drivers 65a-d to manipulate drive rods of a loading unit (e.g., a drive rods 48 (FIG. 17) of the stitching loading unit 40) to manipulate components within the jaw assembly 41 of the loading unit 40 (FIG. 1). A full rotation of the cam drum 62 may effect one longitudinal advancement and refraction of each of the linear drivers 65a-d or may effect multiple longitudinal advancements and retractions of each of the linear drivers 65a-d.


A full cycle of each of the first and second pairs of linear drivers 65a, 65b and 65c, 65d includes four phases of movement. In a first phase of movement, both of the linear drivers of the pair of linear drivers (e.g., the linear drivers 65a, 65b) are advanced together in substantial alignment with one another. In a second phase of movement, a first driver of the pair of linear drivers (e.g., the linear driver 65a) is longitudinally fixed relative to the outer casing 31 and a second driver of the pair of linear drivers (e.g., the linear driver 65b) is longitudinally advanced relative to the outer casing 31. In a third phase of movement, the first driver of the pair of linear drivers (e.g., the linear driver 65a) remains longitudinally fixed within the outer casing 31 and the second linear driver of the pair of linear drivers (e.g., the linear driver 65b) is retracted within the outer casing 31 to move the second linear driver into substantial alignment with the first linear driver. In a fourth phase, both of the linear drivers of the pair of linear drivers (e.g., the linear driver 65a, 65b) are longitudinally fixed relative to the outer casing 31. It will be understood, that a full cycle of the second pair of linear drivers 65c, 65d is as detailed above with regard to the linear drivers 65a, 65b.


In embodiments, when the first pair of linear drivers 65a, 65b is in the first phase of movement, the second pair of linear drivers 65c, 65d are in the fourth phase of movement. The first, second, and third phases of movement may be substantially equal in duration and the fourth phase of movement may account for a duration equal to the sum of the duration of the first three phases of movement. As one of the pairs of linear drivers cycles through the first three phases of movement, the other one of the pairs of linear drivers is in the fourth phase of movement. In some embodiments, as the first pair of linear drivers 65a, 65b begins the third phase of movement the second pair of linear drivers 65c, 65d begins the first phase of movement. In such embodiments, each of the four phases of movement may be substantially equal in duration.


The pitch of each of the cam grooves 63, 64 may be configured to cycle the linear drivers 65a-d as the lead screw 55 effects constant advancement of the cam drum 62. It is also contemplated that the lead screw 55 may be intermittently rotated to intermittently advance the cam drum 62 (i.e., in a stepwise manner) and the pitch of the cam grooves 63, 64 may be configured cycle the linear drivers 65a-d as the lead screw 55 effects intermittent advancement of the cam drum 62.


The cam drum input shaft 52 (FIG. 9) has a distal end supporting a drive gear 52a. As best shown in FIG. 10, the drive gear 52a engages the teeth 69a of a middle gear 69 such that the middle gear 69 rotates in response to rotation of the input shaft 52. The teeth 69a of the middle gear 69 engage the cam drum gear 61 such that the cam drum gear 61 rotates in response to rotation of the cam drum input shaft 52 as shown in FIG. 11. It will be appreciated that the cam drum 62 rotates in the same radial direction as the cam drum input shaft 52 and the middle gear 69 rotates in the opposite radial direction.


The articulation input shaft 56 (FIG. 9) has a distal end supporting a drive gear 56a. The articulation shaft 76 (FIG. 9) has a proximal end supporting a proximal gear 76a. With reference to FIGS. 10 and 11, the drive gear 56a of the articulation input shaft 56 engages the proximal gear 76a of the articulation shaft 76 to effect rotation of the articulation shaft 76 in response to rotation of the articulation input shaft 56.


As shown in FIG. 13, the articulation shaft 76 has a distal end supporting a distal gear 76b. The distal gear 76 engages teeth on the outer surface of the articulation drum 72 to rotate the articulation drum 72 in response to the rotation of the articulation input shaft 56. It will be appreciated that the articulation drum 72 rotates in the same radial direction as the articulation input shaft 56 and the articulation shaft 76 rotates in the opposite radial direction to that of the input shaft 56. It is further appreciated, that a portion of the articulation shaft 76 positioned between the proximal and distal gears 76a, 76b is dimensioned to prevent the articulation shaft 76 from interfering with the cam drum gear 61 as the cam drum 62 is translated within the outer casing 31 as shown in FIGS. 11 and 12.


With reference to FIGS. 13-15, the articulation assembly 70 includes the articulation drum 72, the articulation cam 74, and an articulation drive bar 78. The articulation drive bar 78 includes an articulation hook 78a configured to engage an articulation rod 48 of the stitching loading unit 40 (FIG. 17) as detailed below. The articulation drum 72 and the articulation cam 74 are substantially cylindrical. The articulation cam 74 is disposed within the articulation drum 72 and includes a proximal flange 74a. The proximal flange 74a engages a surface of the articulation drum 72 to longitudinally fix the articulation cam 74 relative to the articulation drum 72. The articulation cam 74 includes a proximal camming surface 75 and an articulation key 75a. The articulation key 75a extends from the proximal camming surface 75 and is received within an articulation keyway 73a defined in an inner surface of the articulation drum 72. The cooperation of the articulation key 75a and the articulation keyway 73a rotationally fixes the articulation cam 74 to the articulation drum 72 such that rotation of the articulation cam 74 is effected by rotation of the articulation drum 72.


The proximal camming surface 75 of the articulation cam 74 is a helical surface configured to slidably engage an articulation cam follower 79 of the articulation drive bar 78 such that rotational movement of the articulation cam 74 effects advancement of the articulation drive bar 78. The articulation drum 72 includes a helical distal camming surface 73 that is configured to slidably engage the articulation cam follower 79 such that rotational movement of the articulation drum 72 effects rotation of the articulation drive bar 78. The camming surfaces 73, 75 have a substantially similar profile such that the articulation cam follower 79 is retained between the camming surfaces 73, 75. As the as the articulation drum 72 rotates in a first direction (e.g., counter-clockwise when viewed from the proximal end), the cam follower 79 is advanced and as the articulation drum 72 is rotated in a second opposite direction (e.g., clockwise when viewed from the proximal end), the articulation cam follower 79 is retracted. The articulation assembly 70 includes a plurality of articulated positions between a first articulated position and a second articulated position. The articulation assembly 70 also includes a straight position substantially halfway between the first and second articulated positions.


Referring to FIGS. 16-28, the adaptor 30 is secured to a connector of a loading unit (e.g., the connector 44 of the stitching loading unit 40) by a locking mechanism 80 of the adapter 30.


With particular reference to FIGS. 17 and 18, a proximal portion of the stitching loading unit 40 includes a connector 44. The connector 44 includes guide lugs 47, drive rods 48, and an articulation rod 49.


Referring also to FIG. 19, the locking mechanism 80 is disposed substantially within the distal cover 36 of the adaptor 30 and includes a release switch 81 (FIG. 18) disposed on an outer surface of the outer casing 31. A distal end portion 38 of the outer casing 31 defines a locking opening 82 and locking grooves 83. The release switch 81 includes a lock arm 85 extending distally therefrom. A switch-biasing member 81a is operatively associated with the release switch 81 to urge the release switch 81 distally. A lock bar 84 is operatively associated with the release switch 81 such that longitudinal advancement or retraction of the release switch 81 effects longitudinal advancement or retraction of the lock bar 84 and longitudinal advancement or retraction of the lock bar 84 effects longitudinal advancement or retraction of the release switch 81 as detailed below. The lock bar 84 is disposed in one of the locking grooves 83. The articulation drum 72 defines an articulation interlock groove 86 that is aligned with the lock arm 85 when the articulation assembly 70 is in the straight configuration as shown in FIG. 20. A portion of the lock arm 85 may be in contact with the outer surface of the articulation cam 74 as shown in FIG. 21.


With particular reference to FIGS. 22-24, the distal end portion 38 of the outer casing 31 defines a lug lock 87 in communication with the locking groove 83. The lock arm 85 is disposed within the locking groove 83. The locking mechanism 80 has a locked configuration (FIG. 22) and an open configuration (FIG. 23). In the locked configuration, the lock bar 84 extends within the locking groove 83 past the lug lock 87. The switch biasing member 81a (FIG. 19) biases the locking mechanism 80 towards the locked configuration. The release switch 81 may be engaged by a clinician to move the release switch 81 proximally against the switch-biasing member 81a as shown in FIG. 23 or one of the guide lugs 47 may engage the lock bar 84 to move the lock bar 84 proximally to the unlocked configuration. It will be appreciated that the lock arm 85 must be aligned with the articulation lock groove 86 (FIG. 20) for the locking mechanism 80 to transition to the unlocked configuration (i.e., the articulation assembly must be in the straight configuration). For example, if the articulation assembly 70 is in the first or second articulated configurations, the articulation drum 72 will be positioned such that the articulation lock groove 86 will not be aligned with the lock arm 85 to prevent the locking mechanism 80 from transitioning to the unlocked configuration. Moreover, when the locking mechanism 80 is in the unlocked configuration, the lock arm 85 will prevent the articulation drum 72 from rotating and will prevent the articulation assembly 70 from transitioning to the straight configuration.


When the connector 44 of the stitching loading unit 40 engages the adaptor 30, the guide lugs 47 are aligned with the locking grooves 83. As shown in FIG. 24, when the guide lugs 47 slide proximally within the locking grooves 83, one of the guide lugs 47 may engage the lock bar 84 to urge the locking mechanism 80 to the unlocked configuration. When the guide lugs 47 abut the lock bar 84 in the unlocked configuration, the stitching loading unit 40 is rotated relative to the adaptor 30 to rotate the guiding lug 47 into the lug lock 87 as shown in FIG. 25. The locking mechanism 80 then returns to the locked configuration such that the lock bar 84 extends within the locking groove 83 to capture the guiding lug 47 within the lug lock 87 as shown in FIG. 26.


With reference to FIGS. 27 and 28, when the stitching loading unit 40 is inserted into the adaptor 30, the drive rods 48 and the articulation rod 49 are captured by the engagement hooks 68 of the linear drive arms 67 and the articulation hook 78a of the articulation drive arm 78 respectively. When the guide lugs 47 are aligned in the locking grooves 83, the drive rods 48 are offset from the engagement hooks 68 and the articulation rod 49 is offset from the articulation hook 78a as shown in FIG. 27. When the stitching loading unit 40 is rotated to secure the guiding lug 47 within the lug lock 87 as shown in FIG. 25, the drive rods 48 are captured in the engagement hooks 68 and the articulation rod 49 is captured in the articulation hook 78a as shown in FIG. 28. When the rods 48, 49 are captured within the hooks 68, 78a, longitudinal translation of the hooks 68, 78a effects longitudinal translation of the rods 48, 49 as detailed above to manipulate components of the stitching loading unit 40.


The stitching loading unit 40 can be released from the adaptor 30 by retracting the release switch 81 against the switch-biasing member 81a as shown in FIG. 23. With the release switch 81 retracted, the stitching loading unit 40 is rotated to move the guide lug 47 out of the lug lock 87. With the guide lug 47 out of the lug lock 87, the stitching loading unit 40 is free to be removed from the adaptor 30. The switch 81 may be released when the guide lug 47 is within the locking groove 83 such that the lock bar 84 is advanced by the switch-biasing member 81a to disengage the stitching loading unit 40 from the adaptor 30. Another loading unit may then be secured to the adaptor 30.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Any combination of the above embodiments is also envisioned and is within the scope of the appended claims. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An adaptor for a powered surgical instrument, the adaptor comprising: a casing; a cam drum disposed within the casing and defining a longitudinal axis, the cam drum being translatable along the longitudinal axis between a retracted position and an advanced position in relation to the casing, the cam drum being supported for rotation about the longitudinal axis and defining first and second radial cam grooves about an outer surface thereof, the first cam groove defining a first profile and the second cam groove defining a second profile; a first linear driver including a first cam follower disposed in the first cam groove, the first linear driver being supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis; and a second linear driver including a second cam follower disposed in the second cam groove, the second linear driver being supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis.
  • 2. The adaptor of claim 1, further comprising a lead screw rotatable about the longitudinal axis, the lead screw being received within a lead screw passage defined by the cam drum, wherein rotation of the lead screw effects longitudinal translation of the cam drum and the first and second linear drivers along the longitudinal axis.
  • 3. The adaptor of claim 1, wherein the second cam groove is positioned distal to the first cam groove.
  • 4. The adaptor of claim 1, further comprising an articulation assembly including an articulation shaft, an articulation drum, an articulation cam, and an articulation arm, the articulation shaft extending along an axis parallel to the longitudinal axis and being engaged with the articulation drum to effect rotation of the articulation drum when the articulation shaft is rotated, the articulation cam being disposed within the articulation drum, the articulation cam and the articulation drum being radially fixed relative to one another, the articulation cam defining a proximal camming surface and the articulation drum defining a distal camming surface, the articulation arm including an articulation cam follower disposed between the proximal and distal camming surfaces such that as the articulation drum and the articulation cam are rotated about the longitudinal axis, the articulation arm is longitudinally translated between a first articulated position, a straight position, and a second articulated position.
  • 5. The adaptor of claim 4, wherein in the straight configuration of the articulation arm is about halfway between the first and second articulated positions of the articulation arm.
  • 6. The adaptor of claim 1, wherein the first and second linear drivers define a first pair of linear drivers and as the cam drum is rotated the first and second profiles of the first and second cam grooves translate the first pair of linear drivers through a cycle, the cycle having a first phase of movement, wherein the first and second linear drivers are longitudinally advanced in relation to the casing, a second phase of movement, wherein the first linear driver is longitudinally fixed in relation to the casing and the second linear driver is longitudinally advanced in relation to the casing, a third phase of movement, wherein the first linear driver is longitudinally fixed and the second linear driver is longitudinally retracted in relation to the casing, and a fourth phase of movement, wherein the first and second linear drivers are both longitudinally fixed in relation to the casing.
  • 7. The adaptor of claim 6, further comprising a second pair of linear drivers including: a third linear driver including a third cam follower disposed in the first cam groove, the third linear driver being supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis; anda fourth linear driver including a fourth cam follower disposed in the second cam groove, the fourth linear driver being supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis, wherein as the cam drum is rotated the first and second profiles of the first and second cam grooves translate the second pair of linear drivers through the cycle.
  • 8. The adaptor of claim 7, wherein the third linear driver is positioned about the cam drum in opposed relation to the first linear driver and the fourth linear driver is positioned about the cam drum in opposed relation to the second linear driver.
  • 9. The adaptor of claim 8, wherein the first, second, third, and fourth cam followers are positioned in the first or second cam grooves such that when the first pair of linear drivers begins the first phase of movement, the second pair of linear drivers is in the fourth phase of movement.
  • 10. The adaptor of claim 8, wherein the first, second, third, and fourth cam followers are positioned in the first or second cam grooves such that when the first pair of linear drivers begins the third phase of movement, the second pair of linear drivers begins the first phase of movement.
  • 11. An adaptor for a powered surgical instrument, the adaptor comprising: a casing;a cam drum defining a longitudinal axis, the cam drum being translatable along the longitudinal axis between a retracted position and an advanced position in relation to the casing, the cam drum being supported for rotation about the longitudinal axis and defining first and second radial cam grooves about an outer surface thereof, the first cam groove defining a first profile and the second cam groove defining a second profile;a first linear driver including a first cam follower disposed in the first cam groove, the first linear driver being supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis;a second linear driver including a second cam follower disposed in the second cam groove, the second linear driver being supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis; anda cam drum gear coupled to the cam drum such that rotation of the cam drum gear effects rotation of the cam drum.
  • 12. The adaptor of claim 11, further comprising a middle gear and a cam drum input shaft, the middle gear and the cam drum input shaft being rotatably disposed about axes which are parallel to the longitudinal axis, the cam drum input shaft being engaged with the middle gear and the middle gear being engaged with the cam drum gear such that rotation of the cam drum input shaft effects rotation of the cam drum.
  • 13. The adaptor of claim 12, wherein the middle gear is in continuous engagement with the cam drum input shaft and the cam drum gear as the cam drum is longitudinally translated between the retracted and the advanced positions.
  • 14. A powered surgical instrument comprising: a handle including a receiver;an adaptor defining a longitudinal axis and including: a casing having proximal and distal end portions;a handle interface disposed in the proximal end portion, the handle interface releasably coupled to the receiver of the handle;a cam drum being translatable along the longitudinal axis between a retracted position and an advanced position in relation to the casing, the cam drum being supported for rotation about the longitudinal axis and defining first and second radial cam grooves about an outer surface thereof, the first cam groove defining a first profile and the second cam groove defining a second profile;a first pair of linear drivers including: a first linear driver including a first cam follower disposed in the first cam groove, the first linear driver being supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis; anda second linear driver including a second cam follower disposed in the second cam groove, the second linear driver being supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis;a second pair of linear drivers including: a third linear driver including a third cam follower disposed in the first cam groove, the third linear driver being supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis; anda fourth linear driver including a fourth cam follower disposed in the second cam groove, the fourth linear driver being supported for movement between advanced and retracted positions in relation to the cam drum along an axis parallel to the longitudinal axis in response to rotation of the cam drum about the longitudinal axis; anda locking mechanism positioned adjacent the distal end portion of the casing, the locking mechanism having a release switch and a lock bar operatively associated one another, the locking mechanism having a locked configuration and an unlocked configuration; anda loading unit including a connector releasably secured within the locking mechanism of the adaptor, wherein in the locked configuration the locking mechanism prevents separation of the adaptor and the loading unit.
  • 15. The instrument of claim 14, wherein the handle interface includes a cam drum input shaft operatively associated with the cam drum to rotate the cam drum about the longitudinal axis.
  • 16. The instrument of claim 14, wherein the adaptor includes a distal cover and an articulation assembly disposed substantially within the distal cover, the distal cover disposed over the distal end portion, the articulation assembly including an articulation shaft, an articulation drum, an articulation cam, and an articulation arm, the articulation shaft extending along an axis parallel to the longitudinal axis and being engaged with the articulation drum to effect rotation of the articulation drum when the articulation shaft is rotated, the articulation cam disposed within the articulation drum, the articulation cam and the articulation drum being radially fixed relative to one another, the articulation cam defining a proximal camming surface and the articulation drum defining a distal camming surface, the articulation arm including an articulation cam follower disposed between the proximal and distal camming surfaces such that as the articulation drum and the articulation cam are rotated about the longitudinal axis, the articulation arm longitudinally translates between a first articulated position, a straight position, and a second articulated position.
  • 17. The instrument of claim 16, wherein the locking mechanism includes a lock arm operatively associated with the lock bar and the articulation drum defines an articulation interlock groove, the articulation interlock groove being aligned with the lock arm to receive the lock arm when the articulation assembly is in the straight position, the articulation interlock groove being offset from the lock arm when the articulation assembly is in an articulated position to prevent the locking mechanism from transitioning to the unlocked configuration.
  • 18. The instrument of claim 14, wherein the distal end portion of the casing defines a locking opening and a locking groove and the loading unit includes a guide lug, the locking groove receiving the guide lug to align the loading unit with the adaptor.
  • 19. The instrument of claim 18, wherein the distal end portion of the casing defines a lug lock which is in communication with the locking groove and is radially offset from the locking groove, the loading unit being secured to the adaptor when the guide lug is captured in the lug lock.
  • 20. The instrument of claim 19, wherein the lock bar is disposed within the locking groove, in the locked configuration of the locking mechanism, the lock bar extends past the lug lock to capture the guide lug in the lug lock and in the unlocked configuration of the locking mechanism the lock bar is retracted proximal to the lug lock allowing the guide lug to rotate out of the lug lock.
US Referenced Citations (317)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5374275 Bradley et al. Dec 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5413267 Solyntjes et al. May 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5779130 Alesi et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5797536 Smith et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6017354 Culp et al. Jan 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6792390 Burnside et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6899538 Matoba May 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7246734 Shelton, IV Jul 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8241322 Whitman et al. Aug 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8303581 Arts et al. Nov 2012 B2
8348855 Hillely et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8752749 Moore et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9064653 Prest et al. Jun 2015 B2
9113875 Viola et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
20010031975 Whitman et al. Oct 2001 A1
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030165794 Matoba Sep 2003 A1
20040111012 Whitman Jun 2004 A1
20040193146 Lee et al. Sep 2004 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060282091 Shelton et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110015645 Liu Jan 2011 A1
20110017801 Zemlok et al. Jan 2011 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098968 Aranyi et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130240596 Whitman Sep 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130317525 Wingardner, III Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
Foreign Referenced Citations (58)
Number Date Country
2451558 Jan 2003 CA
101856251 Oct 2010 CN
102247182 Nov 2011 CN
102008053842 May 2010 DE
0634144 Jan 1995 EP
0648476 Apr 1995 EP
0686374 Dec 1995 EP
1690502 Aug 2006 EP
1736112 Dec 2006 EP
1759652 Mar 2007 EP
1769754 Apr 2007 EP
1 813 203 Aug 2007 EP
1813199 Aug 2007 EP
1813211 Aug 2007 EP
1908412 Apr 2008 EP
1917929 May 2008 EP
1943958 Jul 2008 EP
1943976 Jul 2008 EP
1952769 Aug 2008 EP
2005898 Dec 2008 EP
2027819 Feb 2009 EP
2055243 May 2009 EP
2090247 Aug 2009 EP
2098170 Sep 2009 EP
2100561 Sep 2009 EP
2133028 Dec 2009 EP
2165664 Mar 2010 EP
2236098 Oct 2010 EP
2245994 Nov 2010 EP
2263568 Dec 2010 EP
2329773 Jun 2011 EP
2333509 Jun 2011 EP
2377472 Oct 2011 EP
2462880 Jun 2012 EP
2491872 Aug 2012 EP
2586382 May 2013 EP
2606834 Jun 2013 EP
2668910 Dec 2013 EP
2676615 Dec 2013 EP
2815705 Dec 2014 EP
2861574 May 2005 FR
20120022521 Mar 2012 KR
8705122 Aug 1987 WO
9727807 Aug 1997 WO
0072760 Dec 2000 WO
0072765 Dec 2000 WO
03000138 Jan 2003 WO
03026511 Apr 2003 WO
03077769 Sep 2003 WO
2004107989 Dec 2004 WO
2006042210 Apr 2006 WO
2007026354 Mar 2007 WO
2008131362 Oct 2008 WO
2008133956 Nov 2008 WO
2009039506 Mar 2009 WO
2007014355 Apr 2009 WO
2009132359 Oct 2009 WO
2011108840 Sep 2011 WO
Non-Patent Literature Citations (59)
Entry
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, mailed Dec. 21, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action con-esponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
International Search Report corresponding to PCT/US2005/027266, completed May 30, 2008 and mailed Jun. 18, 2008; (2 pp.).
Extended European Search Report corresponding to EP 08 25 2703.7, completed Oct. 23, 2008 and mailed Oct. 31, 2008; (7 pp.).
Extended European Search Report corresponding to EP 08 25 3184.9, completed Feb. 12, 2009 and mailed Feb. 27, 2009; (3 pp.).
Extended European Search Report corresponding to EP 10 25 0228.3, completed May 20, 2010 and mailed Jun. 1, 2010; (6 pp.).
Extended European Search Report corresponding to EP 10 25 2037.6, completed Mar. 1, 2011 and mailed Mar. 9, 2011; (3 pp.).
Extended European Search Report corresponding to EP 10 25 1968.3, completed on Jul. 4, 2011 and mailed Jul. 14, 2011; (12 pp.).
Extended European Search Report corresponding to EP 11 15 2266.0, completed Jul. 15, 2011 and mailed Jul. 28, 2011; (3 pp.).
Extended European Search Report corresponding to EP 11 25 0462.6, completed Jul. 20, 2011 and mailed Jul. 28, 2011; (6 pp.).
Extended European Search Report corresponding to EP 11 25 0771.0, completed Feb. 7, 2012 and mailed Feb. 17, 2012; (3 pp.).
Extended European Search Report corresponding to EP 06 78 8914.7, completed May 3, 2012 and mailed May 11, 2012; (8 pp.).
Partial European Search Report corresponding to EP 12 18 6177.7, completed Jan. 30, 2013 and mailed Feb. 12, 2013; (6 pp.).
Extended European Search Report corresponding to EP No. 11 17 8021.9, mailed Jun. 4, 2013; (3 pp).
Extended European Search Report corresponding to EP No. 13 16 3033.7, completed Jun. 27, 2013 and mailed Jul. 15, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 12 18 6177.7, completed Aug. 14, 2013 and mailed Aug. 23, 2013; (8 pp).
Partial European Search Report corresponding to EP No. 13 17 1742.3, completed Sep. 17, 2013 and mailed Sep. 25, 2013; (8 pp).
Partial European Search Report corresponding to EP No. 13 17 2400.7, completed Sep. 18, 2013 and mailed Oct. 1, 2013; (7 pp).
Extended European Search Report corresponding to EP No. 13 17 5475.6, completed Sep. 23, 2013 and mailed Oct. 1, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 13 17 5478.0, completed Sep. 24, 2013 and mailed Oct. 2, 2013; (6 pp).
Extended European Search Report corresponding to EP No. 13 17 5479.8, completed Sep. 27, 2013 and mailed Oct. 10, 2013; (7 pp).
Partial Extended European Search Report corresponding to EP 13 17 5477.2, completed Oct. 7, 2013 and mailed Oct. 15, 2013; (7 pp).
Extended European Search Report corresponding to EP No. 08 25 2703.7, completed Oct. 23, 2008 and mailed Oct. 31, 2008; (7 pp).
European search Report from Appl. No. 13177163.6 dated Nov. 15, 2013. (8 pp).
Extended European Search Report from EP Application No. 13172400.7 dated Jan. 21, 2014.
Extended European Search Report from EP Application No. 13189026.1 dated Jan. 31, 2014.
The extended European Search Report from Application No. EP 13177163.6 dated Feb. 6, 2014.
Extended European Search Report from Application No. EP 13175477.2 dated Feb. 6, 2014.
Extended European Search Report from Application No. EP 13169998.5 dated Feb. 24, 2014.
Extended European Search Report corresponding to EP 13176805.3, dated Nov. 4, 2013.
Extended European Search Report from Application No. EP 13171742.3 dated Jan. 3, 2014.
Extended European Search Report corresponding to Application No. EP 14152236.7 mailed May 12, 2014.
Partial European Search Report from Application No. EP 14159056.2 dated Jun. 18, 2014 (8 pp).
European Search Report dated Sep. 3, 2015, issued in European Application No. 15170195.
European Search Report dated Oct. 7, 2015, issued in European Application No. 15167797.
“Universal S 3B Stand”, Sep. 13, 2006, XP05521369, http://www.ophthalworld.de/cosmoshop/pix/a/media/28072015/Zeiss S3 Floor Stand User Manual.pdf.
Related Publications (1)
Number Date Country
20150327850 A1 Nov 2015 US