ADDITION INTO THE FUEL MIXTURE OF NUCLEAR FUEL FOR NUCLEAR REACTORS

Information

  • Patent Application
  • 20210304906
  • Publication Number
    20210304906
  • Date Filed
    December 03, 2018
    6 years ago
  • Date Published
    September 30, 2021
    3 years ago
  • Inventors
    • Rafay; Peter
  • Original Assignees
    • West Reality, S.R.O.
Abstract
In one form, during the production of electrical energy from a stable uranium isotope by means of a fission chain reaction, extra neutrons are formed that can be used, in addition to electricity production, to also convert certain elements to other elements, specifically of some selected stable isotopes of particular elements to stable isotopes of other elements.
Description
FIELD

The invention is concerned with the admixture for the mixture of nuclear fuel assigned for nuclear reactors using stable isotopes of cadmium and a stable isotope of mercury, followed by a nuclear transformation of these stable natural isotopes by neutrons generated during the fission chain reaction of the original component of the fuel mixture of nuclear uranium fuel used in a nuclear reactor.


BACKGROUND

In case of the nuclear uranium type reactors the fuel mixture of the nuclear fuel used until now consists of the uranium element, from two naturally occurring stable isotopes of uranium which is mined in sites containing uranium deposits:






92
235U+92238U


An isotope is an element with the same proton number=the same number of protons in the nucleus of the element (in the case of uranium this number is 92 protons in the nucleus) and different number of neutrons in the nucleus (for 92235U isotope the number of neutrons in the nucleus equals to 143 and for the 92238U isotope the number of neutrons in the nucleus is the 146). The sum of protons and neutrons in the nucleus gives the number of nucleons in the nucleus (for the 92235U isotope is their number 235 and for the 92238U isotope is their number 238). Under natural conditions, uranium isotopes are present as follows: 92235U—0.72% and 92238U—99.274% of total natural uranium. After neutron irradiation these two isotopes will undergo two completely different types of reactions in the nuclear reactor.

    • 1) A fission chain reaction caused by a so-called fissionable uranium isotope specifically by 92235U which will cause the fission chain reaction after the neutron irradiation under equation [1]:






92
235U+01n→3693Kr+56140Ba+301n+160.5 MeV (kinetic energy of the reaction fragments)  Equation [1]:


This means that this isotope mixture enriched to 2.5-3% and sometimes up to 5%, is exposed to the influence of neutrons at the beginning of the process, which will start the fission chain reaction and cause the splitting of the nucleus of this isotope into two approximately equal-sized nuclei while two elements originate (in this case two isotopes of krypton and barium that are unstable and they decay further according to known equations and we call them radioactive waste).


In this decay 3 neutrons are generated on average and heat of 160.5 MeV is released, which will be used to heat water in the primary circuit of the nuclear reactor, through the heat exchanger it will further heat the water in the secondary circuit of the nuclear reactor and transform it into steam which rotates the turbine of the steam generator and subsequently generates electricity. From the three neutrons generated, one will be used to repeat the fission chain reaction, and that is why we call it a chain reaction, as this one neutron reacts with the fissionable isotope 92235U and it splits further and the other two neutrons have to be contained in order for the reaction to remain controlled. These two neutrons are captured by another uranium isotope (specifically by 92238U isotope that is not fissionable, causing a moderating reaction (which can also be called a multiplier or breeder reaction, as there are additional isotopes multiplied and bred in it, and new fissionable isotopes formed).

    • 2) The moderating (multiplying or breeder) nuclear reaction is such that the remaining two neutrons originating from the fission reaction are captured by an isotope of uranium, specifically 92238U, which absorbs these neutrons into its nucleus according to the reaction described in the equation [2]. It does not cause a fission chain reaction anymore, however it is changed into a new uranium isotope 92239U which is unstable and will emit an electron (beta minus radiation) and will be converted to a neptunium isotope, specifically 93239Np which is also unstable and it will emit an additional electron (beta minus radiation), which will convert to a fairly stable plutonium isotope, specifically 94239Pu, which is also fissionable and it is also used to generate electricity (as it is also a source of neutrons) and for military use, specifically for the manufacturing of a nuclear plutonium bomb. Plutonium is also very toxic and it is not for sale.






92
238U+01n→92239U→93239Np+−10e→94239Pu+−10e  The equation [2]:


Deficiencies of the prior technique:

    • 1) Possibility of misuse of plutonium for military purposes
    • 2) High toxicity of the created plutonium
    • 3) Impossibility of commercial use of plutonium
    • 4) Insufficient evaluation of generated neutrons, which is mostly considered to be waste


5) Reduced economic efficiency of electricity generation







DETAILED DESCRIPTION

The deficiencies and disadvantages mentioned above are essentially eliminated through the proposed addition into the fuel mixture of the nuclear fuel into nuclear reactors according to the invention, the essence of which is that the admixture is added into or the nuclear fuel and consists of stable cadmium isotopes, specifically of 48106Cd, 48108Cd isotopes, where transformation of these natural stable isotopes of cadmium into stable silver isotopes occurs, specifically 47107Ag, 47109Ag by neutrons resulting from the fission chain reaction of the original nuclear uranium fuel component consisting of the uranium isotope 92235U and they partially replace the creation of plutonium for military use, specifically of the 94239Pu isotope, while the created stable silver isotopes can be commercially used.


And/Or

The admixture into the fuel mixture of the nuclear fuel for nuclear reactors, consisting of a stable isotope of mercury, specifically of the stable natural 80196Hg isotope, where there is a nuclear transformation to a stable gold isotope, specifically 79197Au, by neutrons originating during the fission chain reaction of the original component of the nuclear uranium fuel from the uranium isotope 92235U and they partially replace the formation of plutonium for military use, particularly 94239Pu isotope, whereby the stable gold isotope produced can be commercially used.


At present, most neutrons are captured in the reactor control rods, where they are absorbed, alternatively a fraction f the neutrons is used to produce the plutonium isotope, 94239Pu isotope, which can be used again to produce electricity, similar to the uranium isotope 92235U, and also for the production of an atomic bomb, and this is a process undesirable in the peaceful use of nuclear power. We can say that in addition to producing the plutonium isotope, most neutrons are not used and are without economic effect, and the sale of plutonium is not possible due to possible military use.


The advantage of the invention consists in the fact that the neutrons generated during the fission nuclear reaction from the uranium isotope 92235U will be utilized more efficiently from both a technical and economic standpoint (according equation [1]).


Proposal of the Fuel Mixture for Use in a Nuclear Fission Reactor

According to the technical features of the invention the admixture added into the fuel mixture of the uranium nuclear fuel used at present, which consists of uranium isotopes, particularly 92235U+92238U, found in a naturally harvested uranium ore, with the natural occurrence of isotopes being 92235U—0.72% and 92238U—99.274% from the total natural uranium, with this ore being enriched to a higher concentration of the fissile isotope of uranium 92235U to a percentage value of 2.5% to 3%, and sometimes even to 5% of the total uranium mixture.


The advantage of the invention is that the neutrons generated during the fission nuclear reaction from the uranium isotope 92235U (under the equation [1]) are better utilized technically and economically.


Here the possibility of usage is caused by the fact that neutron sources generated during the production of electricity in a nuclear reactor are not being used sufficiently (except for the production of fissionable 94239Pu for military use).


The invention offers a new composition of the mixture of nuclear fuel:


The current mixture of nuclear fuel+admixture consisting of:

    • Two natural cadmium isotopes, specifically: 48106Cd and 48108Cd that are converted after the addition of one neutron into unstable cadmium isotopes: 48107Cd and 48109Cd. These two unstable isotopes are changed in a nuclear transformation after an electron gets emitted (beta minus radiations) into two stable isotopes of silver 47107Ag and 47109Ag under the equation [3]:






48
106Cd+01n→48107Cd






48
108Cd++01n→48109Cd






48
107Cd→47107Ag +−10e with a half-life of 6.5 hours






48
109Cd→47109Ag +−10e with a half-life of 461 days  The Equation [3]:

    • From a stable natural mercury isotope, specifically 80196Hg, which gets converted after the addition of one neutron into an unstable mercury isotope 80197Hg, which then gets converted in a nuclear transformation after the irradiation of an electron (beta minus radiation) into a stable gold isotope 79197Au. These reactions are carried out according to the equation [4]:






80
196Hg+01n→80197Hg






80
197Hg→79197Ag+β  The Equation [4]:


DESCRIPTION OF MINIMUM ONE EXAMPLE OF A PRACTICAL IMPLICATION OF THE INVENTION
Example No. 1

Cadmium isotopes are added to the currently used mixture of the uranium nuclear fuel used in nuclear reactors, specifically 48106Cd and 48108Cd, which are converted to two unstable cadmium isotopes 48107Cd and 48109Cd after the addition of two neutrons which are generated as a surplus during the fission reaction under the equation [1]. These two unstable cadmium isotopes are transformed into two stable silver isotopes 47107Ag and 47109Ag during the nuclear transformation, after electron irradiation (beta minus radiation) as described by the equation [3]:






48
106Cd+01n→48107Cd






48
108Cd++01n→48109Cd






48
107Cd→47107Ag +−10e with a half-life of 6.5 hours






48
109Cd→47109Ag +−10e with a half-life of 461 days  The Equation [3]:


Thus, the stable isotopes of silver, that are economically more valuable than the original cadmium isotopes, are generated in the nuclear reactor.


Example No. 2

Similarly to the currently used mixture of nuclear uranium fuel for nuclear reactors a mercury isotope is added, specifically 80196Hg, which is converted into an unstable mercury isotope 80197Hg after the addition of one neutron, and during the nuclear transformation this unstable mercury isotope will be transformed into an stable gold isotope 79197Au, after an electron has been emitted (beta minus radiation). These reactions are carried out according to equation [4 ]:






80
196Hg+01n→80197Hg






80
197Hg→79197Ag+β  The Equation [4]:


This way a stable gold isotope is generated in the nuclear reactor, and it is economically more valuable than the original mercury isotope.


Practically, this invention can be used in all active atomic reactors, the installed performance of which represents an equivalent of 370 units of 1 GW reactors. By this invention it would be possible to produce an additional 1480 t of gold annually, which is only by the annual mining of natural mercury in amount of 3600 tons, from which 5 tonnes of 80196Hg isotope can be obtained. From this isotope, through the action of neutrons, it is able to produce approximately the same amount of the stable gold isotope 79197Au.

Claims
  • 1-10. (canceled)
  • 11. A uranium nuclear fuel mixture, comprising an admixture including one or more of cadmium isotopes 48106Cd and 48108Cd and mercury isotope 80196Hg.
  • 12. A method, comprising adding cadmium isotopes 48106Cd and 48108Cd as an admixture to a uranium nuclear fuel mixture in one or more nuclear reactors to obtain silver isotopes 47107Ag and 79109Ag.
  • 13. The method of claim 12, wherein the one or more nuclear reactors have a power of 1 GW.
  • 14. A method, comprising adding a mercury isotope 80196Hg as an admixture to a uranium nuclear fuel mixture in one or more nuclear reactors to obtain a gold isotope 79197Au.
  • 15. The method of claim 14, wherein the one or more nuclear reactors have a power of 1 GW.
Priority Claims (1)
Number Date Country Kind
PP67-2018 Jul 2018 SK national
PCT Information
Filing Document Filing Date Country Kind
PCT/SK2018/000010 12/3/2018 WO 00