Additive friction stir methods of repairing substrates

Information

  • Patent Grant
  • 9862054
  • Patent Number
    9,862,054
  • Date Filed
    Monday, November 30, 2015
    9 years ago
  • Date Issued
    Tuesday, January 9, 2018
    7 years ago
Abstract
Additive friction stir methods for repairing substrates, coating substrates, fabricating/adding/attaching ribs, joining substrates, stiffening and enhancing structures, surface modification, enhancing surface properties, welding, coating, and extrusion are described. An additive friction stir fabrication method and system is described which may be used to fabricate and join a rib to a substrate or to repair a defect in a substrate through extrusion. The method may be carried out with or without the addition of preformed ribs. One such method involves feeding a friction-stir tool with a consumable filler material such that interaction of the friction-stir tool with the substrate generates plastic deformation at an interface between the friction-stir tool and a substrate to bond the plasticized filler and substrate together and extrude this material through a forming cavity to form a rib joined to the substrate. Further described is a system for fabricating a rib joined to a substrate through extrusion.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention is in the field of additive manufacturing, more specifically in the field of solid state additive manufacturing. In particular, the invention is in the field of additive friction-stir fabrication of metallic substrates for addition of stiffening ribs and/or repair of defects.


Description of Related Art


Friction-stir welding is a process for solid state joining of pieces of metal at a joint region through the generation of frictional heat at the joint and opposed portions of the metal pieces by cyclical movements of a tool piece that is harder than the metal pieces (e.g., non-consumable tool). An example of this is provided by International Application Publication No. PCT/GB1992/002203. Frictional heat produced between the substrate and the tool during the process causes the opposed portions to soften, and mechanical intermixing and pressure cause the two materials to join. Typically, two materials are placed side-by-side and are friction-stir welded together at the seam between the two materials. In the metalworking arts, a number of attempts have been made to fabricate complex structures including metal sheets that are joined to one or more ribs, or similar structures. Many of these efforts have used variations of friction stir welding and linear friction welding processes to join a preformed rib to another piece of metal. As used in the context of this specification, the term preformed means any substrate (e.g., a rib) manufactured to have a predetermined thickness, shape, and size. Various methods for creating complex metal structures are described in U.S. Patent Application Publication Nos. 2009/0236403A1 and 2012/0325894A1, and U.S. Pat. Nos. 6,193,137; 6,276,591; 6,290,117; 6,413,610; 6,582,832; 6,599,641; 7,240,821; and 8,061,579.


In contrast, friction-stir fabrication, invented by the present inventors (see U.S. Pat. Nos. 8,636,194; 8,632,850; 8,875,976; and 8,397,974, the contents of which are hereby incorporated by reference in their entireties), is an additive process for joining materials along a continuous plane rather than along a seam. Additive friction-stir fabrication (FSF) processes use shear-induced interfacial heating and plastic deformation to deposit metallic coatings onto metal substrates. FSF coatings have bond strengths superior to those of thermally sprayed coatings, and have the potential to enhance corrosion resistance, enhance wear resistance, repair damaged or worn surfaces, and act as an interfacial layer for bonding metal matrix composites. In this process, the coating material, such as a metal alloy, is forced through a rotating spindle to the substrate surface. Frictional heating occurs at the filler/substrate interface due to the rotational motion of the filler material, such as a rod, and the downward force applied. The mechanical shearing that occurs at the interface acts to disperse any oxides or boundary layers, resulting in a metallurgical bond between the substrate and coating. As the substrate moves relative to the tool, the coating is extruded under the rotating shoulder of the stirring tool.


Conventional additive manufacturing techniques for manufacturing complex structures include three-dimensional printing capable of adding ribs above the surface plane. However, these conventional additive manufacturing techniques are based on melting and deposition. The solid state processes for fabricating ribs do not have finer resolution, making these processes unsuitable for efficiently manufacturing very thin ribs, with or without lower through thickness properties. Thus, there is a need in the art for new additive manufacturing techniques for manufacturing complex structures.


SUMMARY OF THE INVENTION

The present invention provides a method for fabricating stiffening ribs on metallic substrates using local seam extrusion. The method can be used with or without the addition of preformed ribs. Localized seam extrusion is accomplished using an additive friction stir process and forming die. The additive friction stir technology of the present invention provides for the production of ribs of various geometry with excellent through thickness properties, as the ribs formed by this invention are an integral part of the sheet substrate. Such methods can also be used for repairing worn surfaces or interior surfaces which are not readily accessible. The present invention also provides a system for fabricating a rib joined to a metallic/nonmetallic substrate using localized extrusion and metallurgical bonding/mechanical interlocking.


It is an object of the invention to provide for an additive friction stir method for fabricating a rib joined to a metallic substrate through extrusion, comprising providing a metallic substrate and a die assembly, optionally wherein the metallic substrate is disposed on top of the die assembly, and/or the die assembly comprises a forming cavity disposed within the die assembly; translating a rotating friction-stir tool (such as a non-consumable tool that is made of a harder material than the filler material) along the surface of the metallic substrate and/or along a vector that overlies the forming cavity; and feeding the rotating friction-stir tool with a consumable filler material such that interaction of the rotating friction-stir tool with the substrate generates a plastic deformation at an interface between the rotating friction-stir tool and the metallic substrate such that the consumable filler and metallic substrate are preferably bonded together and extruded through the forming cavity to form a rib joined to the metallic substrate. As used herein, the term “non-consumable” can mean a material which resists consumption and/or deformation when the material is exposed to particular conditions (e.g., heat and pressure, etc.) and typically refers to the stirring tool made of a material that is harder than the filler material that the tool is working with. The term “consumable” can mean a material that will deform, melt, and/or plasticize when the material is exposed to particular conditions (e.g., heat and pressure, etc.) or is worked by a tool made of a harder material than the consumable/filler/feed material. In particular embodiments, the consumable material is a filler material that can be delivered through a non-consumable tool, and plasticized and deposited at a target location when the consumable material is exposed to particular conditions.


In particular embodiments, the metallic substrate can comprise any material, such as a metal comprising any one or more of Al, Ni, Cu, Mg, Ti, or Fe, or an alloy comprising one or more of these metals. In a more particular embodiment, the metallic substrate is a sheet metal or metal plate.


In another particular embodiment, the consumable filler material takes the form of a powder, pellet, rod, or powdered-filled cylinder and can be of any material, such as a metal, an alloy, or a composite and can comprise any one or more of Al, Ni, Cu, Mg, Ti, or Fe.


In yet another embodiment, the forming cavity comprises an open end at the bottom of the die assembly such that the rib is extruded through the die assembly. In a more particular embodiment, the forming cavity comprises a closed end at the bottom of the die assembly such that extrusion of the rib terminates at the closed end.


In another embodiment a performed rib may be provided optionally within the forming cavity of the die assembly. In particular embodiments, the preformed rib may be I-shaped, L-shaped, Y-shaped, or T-shaped. In still yet another embodiment, ribs which are formed through extrusion are joined to the preformed rib.


In another embodiment, multiple metallic substrates are provided and are optionally disposed on top of the die assembly such that one or more rotating non-consumable friction-stir tools are translated over multiple substrates.


In still yet another embodiment, according to the method, multiple die assemblies comprising forming cavities are provided such that one or more rotating non-consumable friction-stir tools are translated along a substrate disposed in communication with a die assembly and optionally along a vector overlying one or more of the forming cavities. In particular embodiments, multiple die assembles are provided with preformed ribs disposed within one or more of the forming cavities and optionally the metallic substrate is disposed on top of the die assembles to provide for the joining of the ribs that are formed through extrusion with the preformed ribs. In still yet another embodiment, one or more, or multiple die assemblies are provided and are optionally arranged to provide a grid pattern for formation of the ribs.


It is another object of the invention to provide for an additive friction stir fabrication method for repairing a metallic structure, comprising providing a hollow metallic structure wherein the structure comprises a metallic substrate with an inner surface and an outer surface and a portion of the inner surface comprises a cavity; translating a rotating non-consumable friction-stir tool along the outer surface in a position overlying the cavity; and feeding the rotating non-consumable friction-stir tool with a consumable filler material such that interaction of the rotating non-consumable friction-stir tool with the outer surface generates plastic deformation at an interface between the rotating non-consumable friction-stir tool and the outer surface such that the consumable filler and metallic substrate are extruded into the cavity as a filler and optionally bonded together. In particular embodiments, the hollow metallic structure comprises a square channel, a rectangular channel, a trapezoidal channel, a circular channel, or a triangular channel. In a more particular embodiment, a backing anvil may be disposed over the portion of the inner surface comprising a cavity, wherein extrusion of the filler terminates upon reaching the backing anvil.


It is still a further object of the invention to provide a system for fabricating a rib joined to a metallic substrate through extrusion, comprising a consumable filler material, a non-consumable friction stir tool; a metallic substrate; and a die assembly comprising a forming cavity; wherein the non-consumable friction stir tool is optionally disposed above the metallic substrate, and the metallic substrate is optionally disposed above the die assembly; and wherein the non-consumable friction stir tool is configured such that it may be rotated and translated along a vector that overlies the forming cavity of the die assembly and such that the consumable filler material may be fed through the non-consumable friction stir tool. In a particular embodiment, the cavity comprises a preformed rib. In a more particular aspect, the preformed rib is I-shaped, L-shaped, Y-shaped, or T-shaped. In another embodiment, multiple metallic substrates may be optionally disposed above the forming die assembly. In still yet another embodiment, multiple die assemblies may be optionally disposed below the metallic substrate. In more particular embodiments, the multiple die assemblies comprises a preformed rib. In still a more particular embodiment, the at least one of the preformed ribs may be I-shaped, L-shaped, Y-shaped, or T-shaped.


In other aspects of the invention the preformed ribs comprise one or more grooves for interlocking the preformed rib to the substrate.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate certain aspects of embodiments of the present invention, and should not be used to limit or define the invention. Together with the written description the drawings serve to explain certain principles of the invention.



FIG. 1 is a schematic representation of an embodiment of monolithic rib extrusion on a metallic substrate using additive friction stir technology according to the invention. The forming die is semi-transparent for visual purpose only.



FIG. 2 is a schematic cross-sectional view of an embodiment of monolithic rib extrusion according to the invention.



FIG. 3 is a schematic representation depicting an embodiment of a process for fabricating multiple rib formations and/or various rib preforms using the joining methods according to the invention.



FIG. 4 is a schematic diagram showing various embodiments of preformed ribs according to the invention. Extrusion of ribs, attached or independent of a substrate, can be made with various geometries and sizes.



FIG. 5 is a schematic representation of a top view of an embodiment of a forming die assembly pattern for making an isometric-grid pattern stiffener according to the invention.



FIG. 6 is a schematic diagram showing an embodiment of an extended application of monolithic rib formation for repairing interior worn surfaces with or without the help of backing anvil according to the invention.



FIG. 7 is a schematic representation depicting an embodiment of a process for fabricating a rib formation by joining a preformed rib having one or more grooves for mechanical interlocking to a substrate with a joining process according to the invention.



FIG. 8 is a schematic representation depicting an embodiment of a process for fabricating a rib formation by joining a preformed rib having one or more grooves for mechanical interlocking to a substrate with a joining process according to the invention.



FIG. 9 is a photograph of a substrate with a rib.



FIG. 10A is a photograph of a substrate with intersecting ribs.



FIG. 10B is a photograph of an intersecting rib formation with a fillet.





DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS OF THE INVENTION

Reference will now be made in detail to various exemplary embodiments of the invention. It is to be understood that the following discussion of exemplary embodiments is not intended as a limitation on the invention. Rather, the following discussion is provided to give the reader a more detailed understanding of certain aspects and features of the invention.


In embodiments, the present invention provides for an additive friction stir method for fabricating a rib joined to a metallic substrate through extrusion, comprising:


providing a metallic substrate and a die assembly, wherein the metallic substrate is disposed on top of the die assembly, and the die assembly comprises a forming cavity disposed within the die assembly;


translating a rotating non-consumable friction-stir tool along the surface of the metallic substrate along a vector that overlies the forming cavity;


wherein the translating can be performed in any direction; and


feeding the rotating non-consumable friction-stir tool with a consumable filler material such that interaction of the rotating non-consumable friction-stir tool with the substrate generates plastic deformation at an interface between the rotating non-consumable friction-stir tool and the metallic substrate such that the consumable filler and metallic substrate are extruded through the forming cavity and optionally bonded together to form a rib joined to the metallic substrate.



FIG. 1 schematically shows an exemplary rib extrusion process 10. The metallic substrate 25 on which the stiffening ribs are formed is firmly held on top of a forming die assembly 30, where the forming die or die assemblies 30 are specifically designed to meet the required rib geometry. Upon interaction of the rotating additive friction stir (AFS) tool 17 with filler material 14 with the surface of the substrate 25, frictional and adiabatic heat is generated with a severe plastic deformation at the tool-substrate interface. The temperature and plastic deformation is sufficient to form a solid state bonding between the filler 14 and the substrate 25. The setup creates a localized extrusion chamber for plastically deformed material (e.g., substrate and/or filler) to enter from above. For example, in a typical set up, forming die 30 is disposed under the substrate 25 and the forming die 30 provides the walls of the extrusion chamber. Material from the substrate 25 and/or filler material from the AFS tool 17 is plastically deformed above the forming die 30 and is extruded into the forming die 30 below to take the shape of the interior of the forming die 30 defined by the forming die walls. An increase in filler feed force 12 at this condition extrudes the plasticized filler metal into the cavity 32 or groove of the forming die assembly. Upon translation 20 the rotating AFS tool 17 is moved along the top of the substrate 25 overlying the forming cavity 32 or groove so that the plastically deformed filler 14 and metallic substrate 25 feeds the localized extrusion chamber 32 resulting in continuous extrusion of the stiffening ribs 28. Depending on the rib geometry requirements, the rib extrusion can be achieved in single or multiple steps with or without the addition of preformed ribs. The method of rib fabrication on a metallic substrate without the addition of preformed ribs is referred to in this disclosure as monolithic localized rib extrusion; and the method of rib fabrication with addition of one or more preformed ribs is referred to in this disclosure as rib extrusion with joining. Multiple ribs and intersecting ribs can be formed on a single metallic substrate using single or multiple AFS tools, for example with the tools in tandem and/or in parallel with one another.


The friction-based rib fabrication process of the present invention may be used to join a rib or ribs onto various types of metallic substrates including but not limited to, metal substrates comprising Al, Ni, Cu, Mg, Ti, and Fe, as well as, alloys of two or more of these metals and the like. In further embodiments, the rib-fabrication process may also be used to join one or more ribs onto polymeric substrates and various composites thereof. Non-limiting examples of polymeric substrates include any deformable materials such as plastics and the like. Usually plastics are a homo-polymer or co-polymer of high molecular weight. Plastics useful to embodiments of the invention described herein include, but are not limited to, polyolefins, polyesters, nylons, vinyls, polyvinyls, polyethylene terephthalate (PET or PETE), high density polyethylene (HDPE), low density polyethylene (LDPE), polyvinyl chloride (PVC), polypropylene, polycarbonate, polyactide, acrylics, polyacrylics, polycarbonates, polystyrenes, polyurethanes, and the like. In still yet another embodiment, the rib-fabrication process may also be used to join one or more ribs onto a substrate that is a composite material comprising at least one metallic material and at least one polymeric material.


The substrates may take on a variety of forms, but are preferably in the form of a sheet or plate of any thickness (e.g., sheet metal) such as steel, aluminum, and the like.


In this additive friction stir rib fabrication process embodiment, the filler material (for example, solid bar or powder) can be fed through the rotating additive friction stir tool where frictional and adiabatic heating occurs at the filler/substrate interface due to the rotational motion of the filler and the downward force applied. The frictional and adiabatic heating that occurs at the interface results in a severe plastic deformation at the tool-metal interface. As the tool moves along a vector overlying the forming cavity (or with any relative motion between the substrate and tool), the rib can be extruded under the rotating shoulder of the tool.


One embodiment of the present invention provides a friction-based rib fabrication method, in which filler material is joined with a metallic substrate and subsequently bonded with the substrate using additive friction stir processing. The filler material may be of a similar or dissimilar material as that of substrate material. In a particular embodiment, the filler material is a metallic material. Non-limiting examples of metallic materials useful as a filler material include Al, Ni, Cu, Mg, Ti, and Fe, as well as alloys of two or more of these metals and the like. In another embodiment, the filler material is a polymeric material. Non-limiting examples of polymeric materials useful as a filler material include polyolefins, polyesters, nylons, vinyls, polyvinyls, acrylics, polyacrylics, polycarbonates, polystyrenes, polyurethanes, and the like, or any of the plastics listed elsewhere in this disclosure. In still yet another embodiment, the filler material is a composite material comprising at least one metallic material and at least one polymeric material. In other embodiments, multiple material combinations may be used for producing a composite at the interface. The composite material is then extruded into a forming cavity of a die assembly disposed below the substrate.


The filler materials can be in several forms, including but not limited to: 1) metal powder or rod of a single composition; 2) matrix metal and reinforcement powders can be mixed and used as feed material; or 3) a solid rod of matrix can be bored (e.g., to create a tube or other hollow cylinder type structure) and filled with reinforcement powder, or mixtures of metal matrix composite and reinforcement material. In the latter, mixing of the matrix and reinforcement can occur further during the fabrication process. In embodiments, the filler material may be a solid metal rod.


In embodiments, the filler material is joined with a substrate using frictional heating and compressive loading of the filler material against the substrate and a translation of the rotating friction tool. The filler material may be a consumable material, meaning as frictional heating and compressive loading are applied during the process, the filler material is consumed from its original form and is applied to the substrate. Such consumable materials can be in any form including powders, pellets, rods, and powdered-filled cylinders, to name a few. More particularly, as the applied load is increased, the filler material and substrate at the tool-substrate interface become malleable as a result of frictional and adiabatic heating and are caused to bond together under the compressive load. In embodiments, the deformed metal is then extruded into the groove of the die assembly below the substrate.


Such methods, for example, can include methods for friction-based rib extrusion comprising: (a) compressive loading of a filler material against a surface of a substrate using a rotating tool; (b) frictional and adiabatic heating of the filler material on the substrate surface using the rotating tool to form a composite between the filler material and substrate; (c) translation of the stirring tool relative to the substrate surface along a vector that overlies a forming cavity of a die assembly underlying the substrate; and/or (d) extrusion of the composite into the forming cavity.


In an embodiment, the cavity comprises an open end at the bottom of the die assembly such that the rib is extruded through the die assembly. In another embodiment, the cavity comprises a closed end at the bottom of the die assembly such that extrusion of the rib terminates at the closed end.


The monolithic rib extrusion process is further depicted in the embodiment shown in FIG. 2, in which there is no addition of preformed ribs (e.g., the forming cavity is empty and no material is provided in the forming cavity). In this case at least the volume of filler material 14 required to form the rib is added through the tool 17. The rib formation can be with an open die 30 or alternatively closed die assembly. The closed die assembly is used to fabricate ribs with uniform height while the open die assembly is flexible and economical.


Additional embodiments provide for a performed rib within the cavity of the die assembly, particularly where the extrusion of the rib is coupled with joining of the extruded rib to the preformed rib. FIG. 3 shows the rib extrusion process 33 with joining. In this embodiment the preformed ribs 41 are added in the forming grooves, resulting in coupling of rib extrusion with joining. The location of joining and seam extrusion is shown by element 35. Additionally, embodiments include the provision of multiple metallic substrates disposed on top of a single forming die assembly or multiple forming die assemblies provided under a single substrate. Since the extrusion and joining is integrated together the base metal substrate can be of multiple strips instead of one large sheet. Further, in other embodiments, multiple die assemblies are provided with preformed ribs and the metallic substrate is disposed on top of the die assembles to provide for the formation of multiple preformed ribs. During extrusion the metallic substrate is additionally joined with the preformed rib to form a preferred fillet at the intersection. In the context of this specification, it is not critical whether the substrate is provided above the die assembly, however, this arrangement may be preferred such that the extrusion can take advantage of gravity in delivering plastically deformed substrate and/or filler material to the forming cavity of the die assembly. A reverse orientation is also possible with the substrate disposed below the die assembly, or the processing can be performed sideways or at any angle in between as well.


The preformed ribs can be of any simple extrusion geometries in addition to the geometries shown in FIG. 4. Embodiments of preformed ribs may include I-shaped, as well as L-shaped 52, Y-shaped 54, or T-shaped 56 as shown in FIG. 4.


The forming die can be assembled to fabricate a rib pattern as shown in FIG. 5, where the forming dies 62 are assembled to make a hexagonal isometric grid pattern 60. During fabrication of the grid rib pattern, the AFS tool is traversed along the optimized path 65. Any shape forming die, including circular, square, rectangular, triangular, etc. grids can be used.


Another embodiment of the invention provides for an additive friction stir fabrication method for repairing a metallic structure, comprising:


providing metallic structure wherein the structure comprises a metallic substrate with an interior surface and an exterior surface and a portion of the interior surface comprises a cavity;


translating a rotating non-consumable friction-stir tool along the outer surface in a position overlying the cavity;


wherein the translating can be performed in any direction; and


feeding the rotating non-consumable friction-stir tool with a consumable filler material such that interaction of the rotating non-consumable friction-stir tool with the outer surface generates a plastic deformation at an interface between the rotating non-consumable friction-stir tool and the outer surface such that the consumable filler and/or metallic substrate are extruded into the cavity filling the void volume and upon cooling are bonded together.


In a related embodiment, a backing anvil is provided and disposed over the portion of the inner surface comprising the cavity, wherein extrusion of the filler terminates upon reaching the backing anvil.


In related embodiments, the hollow structure may be a square channel, a rectangular channel, a trapezoidal channel, a circular channel, or a triangular channel, for example such as a passageway, pipe, rail or any shape that has features that are not accessible from the feature surface.



FIG. 6 shows an embodiment of an additive friction stir fabrication method used to repair/refill interior worn surface 72 of a square pipe/channel before repair 70 and after repair 80, wherein the additive friction stir fabrication method provides replacement material 82. Optionally, a backing anvil 85 can be used to limit the extent of extrusion of the refilled material. Similarly various geometries and parts made of different materials can be repaired. In these embodiments, the backing anvil may optionally be used for repairing applications.



FIGS. 7 and 8 show the method of joining of preformed ribs 41 comprising one or more interlocking grooves 36 or channels. The one or more grooves 36 can have any shape or geometry so long as the grooves 36 facilitate sufficient mechanical interlocking of the preformed rib 41 to the substrate 25 during the additive friction stir process as described herein. In a particular embodiment, the one or more grooves 36 have a cross-sectional shape that is polygonal in shape, semi-circular in shape, or a combination or shapes. Preferably, the cross sectional shape is a concave polygon. As provided in FIG. 7, in a more particular aspect, the preformed ribs 41 comprise a dovetail shaped groove 36 (e.g., groove with a concave polygon cross section). In still yet another embodiment, as provided in FIG. 8, the preformed rib 41 can comprise a square or rectangular groove 36, or the groove can have a convex polygon shape.



FIG. 9 is a photograph showing a substrate with a rib manufactured according to the processes described herein. A representative set up for preparing the substrate with rib of FIG. 9 is shown in FIG. 1



FIGS. 10A and 10B are photographs showing intersecting ribs using the processes described herein. In particular, FIG. 10A provides an overall view showing intersecting ribs with a fillet at the intersection. FIG. 10B shows a view of the intersecting rib formation removed from the substrate to better show fillet formation.


According to the methods described herein, the preformed rib(s) 41 are held in place using a die assembly 30. The die assembly 30 is disposed such that the preformed rib(s) 41 are in communication with the substrate 25. Using dovetail shaped grooves 36, the substrate 25 and feed material providing by an additive friction stir tool can be plastically deformed and extruded into grooves 36. Due to the shape of the grooves (see FIG. 7 for example), mechanical interlocking of the substrate 25 and preformed ribs 41 occurs. In embodiments, the grooves 36 can be deformed during additive friction stir processing to instantaneously interlock the added rib 41 and substrate 25 using shear deformation and extrusion, where in such embodiments the shape of the grooves is not critical (see FIG. 8 for example). A sound mechanical interlocking is formed during the additive friction stir process at the mating interface between the grooves 36 of the preformed rib 41 and the substrate 25 due to the extrusion of substrate material and/or feed material from the additive friction stir tool into the self-interlocking grooves 36.


The rotating additive friction stir tool may take a variety of forms. For example, the tool can be configured as described in any of U.S. Published Application Nos. 2008/0041921, 2010/0285207, 2012/0009339, and 2012/0279441, 2012/0279442, as well as International Patent Application Publication No. WO2013/002869. Friction-based fabrication tooling for performing methods of the invention are preferably designed or configured to allow for a filler material to be fed through or otherwise disposed through an internal portion of a non-consumable member, which may be referred to as a throat, neck, center, interior, or through hole disposed through opposing ends of the tool. This region of the tool can be configured with a non-circular through-hole shape. Various interior geometries for the tooling are possible. With a non-circular geometry, the filler material is compelled or caused to rotate at the same angular velocity as the non-consumable portion of the tool due to normal forces being exerted by the tool at the surface of the tool throat against the feedstock. Such geometries may include a square through-hole and an elliptical through-hole as examples. In configurations where only tangential forces can be expected to be exerted on the surface of the filler material by the internal surface of the throat of the tool, the feed stock will not be caused to rotate at the same angular velocity as the tool. Such an embodiment may include a circular geometry for the cross-section of the tool in combination with detached or loosely attached feedstock, which would be expected to result in the filler material and tool rotating at different velocities. As used in this disclosure, the terms “additive friction-stir tool”, “friction-stir tool”, “non-consumable friction-stir tool”, and “rotating non-consumable friction-stir tool” may be used interchangeably.


In embodiments the throat of the tool may be shaped with a non-circular cross-sectional shape. Further desired are tooling wherein the throat of the tool is shaped to exert normal forces on a solid, powder, or powder-filled tube type filler material disposed therein. Embodiments may also include features to ensure the frictional heating and compressive loading are of a degree sufficient to enable mixing of dispensed filler material with material of the substrate at a filler-substrate interface.


More specifically, the magnitude of force transferred from the rotating tool to the filler material is dependent on the coefficient of friction between the two. Thus, if the coefficient of friction is significantly low and the inertial force required to induce rotation of the filler material is significantly high, then the tool can rotate without inducing rotation (or with inducing rotation at a lower speed than the tool) in the cylindrical filler material. Under some circumstances during operation, differences in rotational velocity between the tool and the filler within the tool can lead to some filler material being deposited inside the tool, an accumulation of which can be problematic. Having the specific interior tool geometries described in this disclosure can reduce this issue, such as appropriately sized square-square or elliptical-elliptical shaped filler-dispenser geometries. Another way of reducing the difference in rotational velocity between the tool and the filler material is to manufacture filler material rods to fit tightly within the throat of the tool, or to otherwise tightly pack the filler material into the throat of the tool.


Any shape of the cross section of the interior of the tool that is capable of exerting normal forces on a filler material within the tool can be used. The throat surface geometry and the filler material geometry can be configured to provide for engagement and disengagement of the tool and filler material, interlocking of the tool and feed material, attachment of the tool and feed material, whether temporary or permanent, or any configuration that allows for the filler material to dependently rotate with the tool.


The interior surface shape of the tool (the throat) and the corresponding shape of the filler material may not be critical and can be constructed in a manner suitable for a particular application. Shapes of these surfaces can include, but are by no means limited to, square, rectangular, elliptical, oval, triangular, or typically any non-circular polygon. Additional shapes may include more distinctive shapes such as a star, daisy, key and key-hole, diamond, to name a few. Indeed, the shape of the outside surface of the filler material need not be the same type of shape as the surface of the throat of the tool. For example, there may be advantages from having a filler material rod with a square cross-section for insertion into a tool throat having a rectangular cross-section, or vice-versa where a filler material rod having a rectangular cross-section could be placed within a tool throat having a square cross-section in which the corners of the filler material rod could contact the sides of the square throat instead of sides contacting sides. Particular applications may call for more or less forces to be exerted on the filler material within the throat during operation of the tool. With concentric shapes and very close tolerance between the filler material and the tool certain advantages may be realized. Additionally, different shapes may be more suitable for different applications or may be highly desired due to their ease of manufacturing both the interior of the tool and corresponding filler material rods. One of ordinary skill in the art, with the benefit of this disclosure, would know the appropriate shapes to use for a particular application.


Additional embodiments of additive friction stir tools according to the invention can include a tool with a throat, where the filler material and throat are operably configured to provide for continuous feeding of the filler material through the throat of the stirring tool. In embodiments, the filler material is a powder, the throat of the tool is a hollow cylinder, and an auger shaped member disposed within the throat of the tool is used to force powder material through the throat of the tool onto the substrate. The filler material can be delivered by pulling or pushing the filler material through the throat of the stirring tool.


Additional embodiments can comprise an additive friction stir tool comprising: a non-consumable body formed from material capable of resisting deformation when subject to frictional heating and compressive loading; a throat with an internal shape defining a passageway lengthwise through the non-consumable body; an auger disposed within the tool throat with means for rotating the auger at a different velocity than the tool and for pushing powdered filler material through the tool throat; whereby the non-consumable body is operably configured for imposing frictional and adiabatic heating and compressive loading of the filler material against a substrate resulting in plasticizing of the filler material and substrate.


In embodiments, the tool and auger preferably rotate relative to the substrate. In further embodiments, the tool and auger rotate relative to one another, i.e., there is a difference in rotational velocity between the auger and the tool body. There may be some relative rotation between the filler material and the substrate, tool, or auger. The filler material and tool are preferably not attached to one another to allow for continuous or semi-continuous feeding or deposition of the filler material through the throat of the tool.


Embodiments of the rib fabrication methods according to the invention may significantly reduce labor and time requirements for preparing substrates having a desired ribbed configuration. For example, the filler material to be joined with the substrate may be applied to the substrate surface using a “push” method, where a rotating-plunging tool, e.g., auger, pushes the filler material through the rotating tool, such as a spindle. Feed material can be introduced to the tool in various ways, including by providing an infinite amount of filler material into the tool body from a refillable container in operable communication with the tool.


In embodiments, the filler material is a powdered solid and is fed through the tool body using an auger shaped plunging tool (e.g., a threaded member). In such an embodiment, the plunging tool may or may not be designed to move or “plunge” in a direction toward the substrate. For example, the threaded configuration of the auger itself is capable of providing sufficient force on the powdered feed material to direct the filler material toward the substrate for deposition, without needing vertical movement of the auger relative to the tool.


As the spindle and plunging tool rotate, compressive loading and frictional heating of the filler material can be performed by pressing the filler material into the substrate surface with the downward force (force toward substrate) and rotating speed of the additive friction stir tool.


During the rib fabrication process, it is preferred that the spindle rotate at a slightly slower rate than the auger. Alternatively, in embodiments, the spindle can also be caused to rotate faster than the auger. What is important in embodiments is that there is relative rotation between the spindle and the auger during application of the filler material. Due to the difference in rotational velocities, the threaded portion of the auger provides means for pushing the filler material through the tool body to force the material out of the tool toward the substrate. The threads impart a force on the feedstock that pushes the feed material toward the substrate much like a linear actuator or pneumatic cylinder or other mechanical force pushing on a surface of the feedstock. Even further, it may be desired in some applications to alter the rotational velocity of the tool body and/or auger during deposition of the filler material.


Deposition rate of the filler material on the substrate can be adjusted by varying parameters such as the difference in rotational velocity between the auger screw and the spindle, or modifying the pitch of the threads on the auger. If desired, for particular applications it may be warranted to control filler material temperature inside or outside of the tool body. Such thermally induced softening of the filler material provides means to increase the rate of application of the material.


In the context of this specification, the terms “filler material,” “consumable material,” “feed material,” “feedstock” and the like may be used interchangeably to refer to the material that is applied to the substrate from the additive friction fabrication tooling. In an embodiment, a powder filler material is used in combination with an auger disposed in the tool throat for applying a constant displacement to the filler material within the throat.


The filler material (for example, powder or solid feedstock) can be fed through the rotating spindle where frictional heating occurs at the filler/substrate interface due to the rotational motion of the filler and the downward force applied. The frictional and adiabatic heating that occurs at the interface acts to plasticize the substrate and filler material at the interface resulting in a metallurgical bond between the substrate and filler. As the substrate moves along a vector overlying the forming cavity (or with any relative motion between the substrate and tool), the resulting composite can be extruded into the extrusion chamber formed in part by the forming die.


Powdered materials can be fed into the top of the spindle using a fluidized powder delivery system. Any type of powder delivery system can be used in connection with the tools and systems of the present invention. For example, a gravity-fed powder feeder system can be used, such as a hopper. One such feed system is the Palmer P-Series Volumetric Powder Feeder from Palmer Manufacturing of Springfield Ohio, which is capable of delivering feed material from 0.1-140 cu. ft. per hour, and which comprises a flexible polyurethane hopper, stainless steel massaging paddles, 304 stainless steel feed tube and auger, 90-volt DC gearhead drive motor, flexible roller chain drive system, sealed drive train and cabinet, and solid state control and pushbutton controls. The feed system preferably comprises a reservoir for holding powder filler material, a mixer for mixing powder(s) added to the reservoir, and a passageway for delivering feed material from the hopper to the throat of the tool body. As feed material is dispensed into and from the tool, more feed material is delivered into the tool from the hopper. In this manner, the feed material is continuously or semi-continuously delivered. The gravity-fed dispensing systems allow for feed material to automatically be dispensed from the hopper to the friction stir tool during use as soon as material within the tool is dispensed.


In embodiments, a mix of powder types can be added to the hopper which is operably connected with the stir tool. Alternatively, several different types of powder can be added individually to the hopper, then mixed within the hopper and dispensed as a mixture to the friction stir tool during use. For example a metal powder and ceramic powder could be fed into the spindle at the same time, from the same or separate hoppers, and upon consolidation/deposition the filler would be a metal matrix composite (MMC). As used herein, the term “metal matrix composite” means a material having a continuous metallic phase having another discontinuous phase dispersed therein. The metal matrix may comprise a pure metal, metal alloy or intermetallic. The discontinuous phase may comprise a ceramic such as a carbide, boride, nitride and/or oxide. Some examples of discontinuous ceramic phases include SiC, TiB2 and Al2O3. The discontinuous phase may also comprise an intermetallic such as various types of aluminides and the like. Titanium aluminides such as TiAl and nickel aluminides such as Ni3Al may be provided as the discontinuous phase. The metal matrix may typically comprise Al, Cu, Ni, Mg, Ti, Fe and the like.


Another embodiment of the invention provides a system for fabricating a rib joined to a metallic substrate through extrusion, comprising:


a consumable filler material;


a non-consumable friction stir tool;


a metallic substrate; and


a die assembly comprising a forming cavity;


wherein the non-consumable friction stir tool is disposed such that it may be rotated and translated along a vector that overlies the forming cavity of the die assembly and configured such that the consumable filler material may be fed through the non-consumable friction stir tool.


Such systems can comprise a cavity with a preformed rib disposed therein. Alternatively, or in addition, the system can comprise multiple die assemblies, wherein optionally one or more or each of the multiple die assemblies comprises a preformed rib. In embodiments, the rib can be one or more preformed rib and the extruded material joins the preformed rib to the metallic substrate.


For example, in systems and methods of the invention, the preformed rib can comprise one or more grooves for interlocking the rib to the metallic substrate, and the extruded material can be deposited in the grooves of the preformed rib. In embodiments, the preformed rib can comprise multiple grooves.


In embodiments, multiple metallic substrates may be disposed above the forming die assembly, or multiple die assemblies may be disposed below the metallic substrate(s). The cavity or cavities of the die assemblies may comprise a preformed rib. The preformed rib may be I-shaped, L-shaped, Y-shaped, or T-shaped.


The present invention has been described with reference to particular embodiments having various features. In light of the disclosure provided above, it will be apparent to those skilled in the art that various modifications and variations can be made in the practice of the present invention without departing from the scope or spirit of the invention. One skilled in the art will recognize that the disclosed features may be used singularly, in any combination, or omitted based on the requirements and specifications of a given application or design. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention.


It is noted in particular that where a range of values is provided in this specification, each value between the upper and lower limits of that range is also specifically disclosed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range as well. The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. It is intended that the specification and examples be considered as exemplary in nature and that variations that do not depart from the essence of the invention fall within the scope of the invention. Further, all of the references cited in this disclosure, including for example non-patent literature, published patents, published patent applications, and non-published patent applications, are each individually incorporated by reference herein in their entireties and as such are intended to provide an efficient way of supplementing the enabling disclosure of this invention as well as provide background detailing the level of ordinary skill in the art.

Claims
  • 1. An additive friction stir fabrication method for repairing a structure, comprising: providing a substrate with a first surface and a second surface, wherein the second surface comprises a cavity;translating a rotating friction-stir tool along the first surface of the substrate;feeding a filler material through an opening of the rotating friction-stir tool while maintaining the opening positioned above the second surface;depositing the filler material and/or the substrate into the cavity; andproviding a backing anvil in a position relative to the second surface such that the depositing terminates at the backing anvil.
  • 2. The method of claim 1, wherein the second surface is disposed in an interior channel of the substrate, which is a square channel, a rectangular channel, a trapezoidal channel, a circular channel, or a triangular channel.
  • 3. The method of claim 1, wherein the substrate is a pipe or a rail.
  • 4. The method of claim 1, wherein the substrate and/or the filler material are independently chosen from plastics, homo-polymers, co-polymers, polyesters, nylons, polyvinyls such as polyvinyl chloride (PVC), polyethylene terephthalate (PET or PETE), polycarbonate, polylactide, polyacrylics, polystyrenes, polyurethanes, polyolefins such as high density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene, composites, mixtures, alloys, reinforcement materials, or a metal matrix composite comprising a metal matrix and a ceramic phase, wherein the metal matrix comprises one or more of a metal, a metal alloy, or an intermetallic, and the ceramic phase comprises a ceramic, metals, metallic materials, metal matrix composites (MMCs), ceramics, ceramic materials, steel, Al, Ni, Cu, Mg, Ti, or Fe, or an alloy comprising one or more of these metals, as well as combinations of any of these materials.
  • 5. The method of claim 1, wherein the filler material takes the form of a powder, pellet, rod, solid bar, or powdered-filled cylinder.
  • 6. The method of claim 1, wherein the friction stir tool comprises a throat, and the filler material is fed through the tool by pulling or pushing the filler material through the throat of the friction stir tool.
  • 7. An additive friction stir fabrication method for repairing a structure, comprising: providing a substrate with an interior passageway, wherein the passageway has a wall defined by an outer surface of the substrate and an inner surface of the substrate and a portion of the inner surface of the substrate comprises a void;rotating and translating a friction-stir tool along the outer surface of the substrate; andfeeding the rotating and translating friction-stir tool with a filler material;wherein the translating, rotating, and feeding of the friction-stir tool causes depositing of the substrate or the filler material into the void.
  • 8. The method of claim 7, further comprising providing a backing anvil disposed in the passageway in a manner such that the depositing terminates upon reaching the backing anvil.
  • 9. The method of claim 7, wherein the passageway is a square channel, a rectangular channel, a trapezoidal channel, a circular channel, or a triangular channel.
  • 10. The method of claim 7, wherein the substrate is a pipe or a rail.
  • 11. The method of claim 7, wherein the substrate and/or the filler material are independently chosen from metals, metallic materials, metal matrix composites (MMCs), polymers, polymeric materials, ceramics, ceramic materials, steel, Al, Ni, Cu, Mg, Ti, or Fe, or an alloy comprising one or more of these metals, as well as combinations of any of these materials.
  • 12. The method of claim 7, wherein the filler material takes the form of a powder, pellet, rod, solid bar, or powdered-filled cylinder.
  • 13. The method of claim 7, wherein the filler material and/or the substrate are independently chosen from plastics, homo-polymers, co-polymers, or polymeric materials comprising polyesters, nylons, polyvinyls, such as polyvinyl chloride (PVC), polyacrylics, polyethylene terephthalate (PET or PETE), polylactide, polycarbonates, polystyrenes, polyurethanes, and/or polyolefins, such as high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene, composites, mixtures, reinforcement materials, or a metal matrix composite comprising a metal matrix and a ceramic phase, wherein the metal matrix comprises one or more of a metal, a metal alloy, or an intermetallic, and the ceramic phase comprises a ceramic, and independently chosen from metals, metallic materials, metal matrix composites (MMCs), ceramics, ceramic materials, steel, Al, Ni, Cu, Mg, Ti, or Fe, or an alloy comprising one or more of these metals, as well as combinations of any of these materials.
  • 14. The method of claim 7, wherein the friction-stir tool comprises a throat and the feeding of the filler material comprises pulling or pushing the filler material through the throat of the friction-stir tool.
  • 15. The method of claim 1, comprising forming a metallurgical, solid state, or mechanical interlocks between the deposited filler material and the substrate.
  • 16. The method of claim 7, comprising forming a metallurgical, solid state, or mechanical interlocks between the deposited filler material and the substrate.
  • 17. The method of claim 1, wherein the depositing provides for repair of the substrate in a manner that provides for enhanced corrosion resistance and/or wear resistance.
  • 18. The method of claim 7, wherein the depositing provides for repair of the substrate in a manner that provides for enhanced corrosion resistance and/or wear resistance.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to and is a Divisional Application of U.S. patent application Ser. No. 14/573,430 filed Dec. 17, 2014 (published as U.S. Application Publication No. 2015/0165546 on Jun. 18, 2015), which application claims priority to and the benefit of the filing date of U.S. Provisional Application No. 61/917,380, filed Dec. 18, 2013. The disclosures of these applications are hereby incorporated by reference herein in their entireties.

US Referenced Citations (269)
Number Name Date Kind
3217957 Jarvie et al. Nov 1965 A
3279971 Gardener Oct 1966 A
3292838 Farley Dec 1966 A
3418196 Luc Dec 1968 A
3444611 Bogart May 1969 A
3455015 Daniels et al. Jul 1969 A
3466737 Hanink Sep 1969 A
3495321 Shaff Feb 1970 A
3537172 Voznesensky et al. Nov 1970 A
3831262 Luc Aug 1974 A
3899377 Luc Aug 1975 A
3949896 Luc Apr 1976 A
4023613 Uebayasi et al. May 1977 A
4106167 Luc Aug 1978 A
4144110 Luc Mar 1979 A
4491001 Yoshida et al. Jan 1985 A
4625095 Das Nov 1986 A
4824295 Sharpless Apr 1989 A
4930675 Bedford et al. Jun 1990 A
4959241 Thomas et al. Sep 1990 A
5056971 Sartori Oct 1991 A
5249778 Steichert et al. Oct 1993 A
5262123 Thomas et al. Nov 1993 A
5330160 Eisermann et al. Jul 1994 A
5460317 Thomas et al. Oct 1995 A
5469617 Thomas et al. Nov 1995 A
5611479 Rosen Mar 1997 A
5637836 Nakagawa et al. Jun 1997 A
5697511 Bampton Dec 1997 A
5697544 Wykes Dec 1997 A
5713507 Holt et al. Feb 1998 A
5718366 Colligan Feb 1998 A
5769306 Colligan Jun 1998 A
5794835 Colligan et al. Aug 1998 A
5813592 Midling et al. Sep 1998 A
5826664 Richardson Oct 1998 A
5893507 Ding et al. Apr 1999 A
5971247 Gentry Oct 1999 A
5971252 Rosen et al. Oct 1999 A
5975406 Mahoney et al. Nov 1999 A
6021821 Wegman Feb 2000 A
6024141 Wegman Feb 2000 A
6029879 Cocks Feb 2000 A
6045027 Rosen et al. Apr 2000 A
6045028 Martin et al. Apr 2000 A
6050474 Aota et al. Apr 2000 A
6050475 Kinton et al. Apr 2000 A
6051325 Talwar et al. Apr 2000 A
6053391 Heideman et al. Apr 2000 A
6070784 Holt et al. Jun 2000 A
6119624 Morikawa et al. Sep 2000 A
6138895 Oelgoetz et al. Oct 2000 A
6168066 Arbegast Jan 2001 B1
6168067 Waldron et al. Jan 2001 B1
6173880 Ding et al. Jan 2001 B1
6193137 Ezumi et al. Feb 2001 B1
6199745 Campbell et al. Mar 2001 B1
6206268 Mahoney Mar 2001 B1
6213379 Takeshita et al. Apr 2001 B1
6227430 Rosen et al. May 2001 B1
6230957 Arbegast et al. May 2001 B1
6237829 Aota et al. May 2001 B1
6237835 Litwinski et al. May 2001 B1
6247633 White et al. Jun 2001 B1
6247634 Whitehouse Jun 2001 B1
6250037 Ezumi et al. Jun 2001 B1
6257479 Litwinski et al. Jul 2001 B1
6259052 Ding et al. Jul 2001 B1
6264088 Larsson Jul 2001 B1
6273323 Ezumi et al. Aug 2001 B1
6276591 Kawasaki et al. Aug 2001 B1
6290117 Kawasaki et al. Sep 2001 B1
6299048 Larsson Oct 2001 B1
6299050 Okamura et al. Oct 2001 B1
6302315 Thompson Oct 2001 B1
6305866 Aota et al. Oct 2001 B1
6311889 Ezumi et al. Nov 2001 B1
6315187 Satou et al. Nov 2001 B1
6321975 Kawasaki et al. Nov 2001 B1
6325273 Boon et al. Dec 2001 B1
6325274 Ezumi et al. Dec 2001 B2
6328261 Wollaston et al. Dec 2001 B1
6352193 Bellino et al. Mar 2002 B1
6354483 Ezumi et al. Mar 2002 B1
6360937 De Koning Mar 2002 B1
6364197 Oelgoetz et al. Apr 2002 B1
6367681 Waldron et al. Apr 2002 B1
6378264 Kawasaki et al. Apr 2002 B1
6378754 Aota et al. Apr 2002 B2
6382498 Aota et al. May 2002 B2
6386425 Kawasaki et al. May 2002 B2
6398883 Forrest et al. Jun 2002 B1
6413610 Nakamura et al. Jul 2002 B1
6419142 Larsson Jul 2002 B1
6419144 Aota Jul 2002 B2
6421578 Adams et al. Jul 2002 B1
6422449 Ezumi et al. Jul 2002 B1
6450394 Wollaston et al. Sep 2002 B1
6450395 Weeks et al. Sep 2002 B1
6457629 White Oct 2002 B1
6460752 Waldron et al. Oct 2002 B1
6461072 Kawasaki et al. Oct 2002 B2
6464127 Litwinski et al. Oct 2002 B2
6468067 Ikegami Oct 2002 B1
6471112 Satou et al. Oct 2002 B2
6474533 Ezumi et al. Nov 2002 B1
6484924 Forrest Nov 2002 B1
6494011 Ezumi et al. Dec 2002 B2
6497355 Ding et al. Dec 2002 B1
6499649 Sayama et al. Dec 2002 B2
6502739 Ezumi et al. Jan 2003 B2
6513698 Ezumi et al. Feb 2003 B2
6516992 Colligan Feb 2003 B1
6527470 Ezumi et al. Mar 2003 B2
6536651 Ezumi et al. Mar 2003 B2
6543671 Hatten et al. Apr 2003 B2
6572007 Stevenson et al. Jun 2003 B1
6582832 Kawasaki et al. Jun 2003 B2
6599641 Nakamura et al. Jul 2003 B1
6648206 Nelson et al. Nov 2003 B2
6669075 Colligan Dec 2003 B2
6676004 Trapp et al. Jan 2004 B1
6722556 Schilling et al. Apr 2004 B2
6732901 Nelson et al. May 2004 B2
6745929 Ezumi et al. Jun 2004 B1
6758382 Carter Jul 2004 B1
6779704 Nelson et al. Aug 2004 B2
6811632 Nelson et al. Nov 2004 B2
6866181 Aota et al. Mar 2005 B2
6908690 Waldron et al. Jun 2005 B2
6953140 Park et al. Oct 2005 B2
7036708 Park et al. May 2006 B2
7066375 Bolser Jun 2006 B2
7115324 Stol et al. Oct 2006 B1
7124929 Nelson et al. Oct 2006 B2
7152776 Nelson et al. Dec 2006 B2
7156276 Slattery Jan 2007 B2
7163136 Hempstead Jan 2007 B2
7240821 Talwar Jul 2007 B2
7597236 Tolle et al. Oct 2009 B2
7608296 Packer et al. Oct 2009 B2
7624910 Barnes et al. Dec 2009 B2
7661572 Nelson et al. Feb 2010 B2
7732033 Aken et al. Jun 2010 B2
7918379 Fujii et al. Apr 2011 B2
7971770 Nakagawa et al. Jul 2011 B2
7992759 Steel et al. Aug 2011 B2
8052034 Fleming et al. Nov 2011 B2
8061579 Feng et al. Nov 2011 B2
8100316 Goehlich et al. Jan 2012 B2
8220693 Krajewski et al. Jul 2012 B2
8397974 Schultz et al. Mar 2013 B2
8464926 Kou et al. Jun 2013 B2
8479970 Ishibashi et al. Jul 2013 B2
8632850 Schultz et al. Jan 2014 B2
8636194 Schultz et al. Jan 2014 B2
8678268 Obadtich et al. Mar 2014 B1
8714431 Roos et al. May 2014 B2
8875976 Schultz et al. Nov 2014 B2
8893954 Schultz et al. Nov 2014 B2
9205578 Schultz et al. Dec 2015 B2
9266191 Kandasamy et al. Feb 2016 B2
9511445 Kandasamy Dec 2016 B2
9511446 Kandasamy et al. Dec 2016 B2
9643279 Schulz May 2017 B2
20010011674 Ezumi et al. Aug 2001 A1
20020011509 Nelson et al. Jan 2002 A1
20020014516 Nelson et al. Feb 2002 A1
20020168466 Tapphorn et al. Nov 2002 A1
20020179682 Schilling et al. Dec 2002 A1
20030010805 Nelson et al. Jan 2003 A1
20030042292 Hatten Mar 2003 A1
20030075584 Sarik et al. Apr 2003 A1
20030098336 Yamashita May 2003 A1
20030111147 Keener et al. Jun 2003 A1
20030111514 Miyanagi et al. Jun 2003 A1
20030192941 Ishida et al. Oct 2003 A1
20030218052 Litwinski Nov 2003 A2
20040003911 Vining et al. Jan 2004 A1
20040055349 El-Soudani Mar 2004 A1
20040057782 Okamoto et al. Mar 2004 A1
20040118899 Aota et al. Jun 2004 A1
20040134972 Nelson et al. Jul 2004 A1
20040149807 Schilling et al. Aug 2004 A1
20040155093 Nelson et al. Aug 2004 A1
20040159696 Mahoney et al. Aug 2004 A1
20040195291 Andersson et al. Oct 2004 A1
20040265503 Clayton et al. Dec 2004 A1
20050006439 Packer et al. Jan 2005 A1
20050045694 Subramanian et al. Mar 2005 A1
20050045695 Subramanian et al. Mar 2005 A1
20050051599 Park et al. Mar 2005 A1
20050060888 Park et al. Mar 2005 A1
20050121497 Fuller et al. Jun 2005 A1
20050127139 Slattery et al. Jun 2005 A1
20050210820 Tanaka et al. Sep 2005 A1
20050242158 Bolser Nov 2005 A1
20050247756 Frazer et al. Nov 2005 A1
20050254955 Helder et al. Nov 2005 A1
20060016854 Slattery Jan 2006 A1
20060032891 Flak et al. Feb 2006 A1
20060043151 Stol et al. Mar 2006 A1
20060060635 Slattery et al. Mar 2006 A1
20060096740 Zheng May 2006 A1
20060208034 Packer et al. Sep 2006 A1
20060289603 Zettler et al. Dec 2006 A1
20070040006 Charles R et al. Feb 2007 A1
20070044406 Van Aken et al. Mar 2007 A1
20070075121 Slattery Apr 2007 A1
20070102492 Nelson et al. May 2007 A1
20070138236 Agarwal et al. Jun 2007 A1
20070187465 Eyre et al. Aug 2007 A1
20070215675 Barnes Sep 2007 A1
20070241164 Barnes et al. Oct 2007 A1
20070295781 Hunt et al. Dec 2007 A1
20070297935 Langan et al. Dec 2007 A1
20080006678 Packer et al. Jan 2008 A1
20080023524 Ohashi et al. Jan 2008 A1
20080041921 Creehan et al. Feb 2008 A1
20080047222 Barnes Feb 2008 A1
20080135405 Hori et al. Jun 2008 A1
20080245517 Ishikawa Oct 2008 A1
20090090700 Sato et al. Apr 2009 A1
20090152328 Okamoto et al. Jun 2009 A1
20090188101 Durandet et al. Jul 2009 A1
20090200275 Twelves et al. Aug 2009 A1
20090236028 Fukuda Sep 2009 A1
20090236403 Feng et al. Sep 2009 A1
20090258232 Brice Oct 2009 A1
20090266870 Yousefiani et al. Oct 2009 A1
20100037998 Bray et al. Feb 2010 A1
20100065611 Fukuda Mar 2010 A1
20100068550 Watson et al. Mar 2010 A1
20100089976 Szymanski et al. Apr 2010 A1
20100089977 Chen et al. Apr 2010 A1
20100101768 Seo et al. Apr 2010 A1
20100146866 Nelson et al. Jun 2010 A1
20100176182 Hanlon et al. Jul 2010 A1
20100252614 Fujii et al. Oct 2010 A1
20100258612 Kolbeck et al. Oct 2010 A1
20100282717 Ananthanarayanan Nov 2010 A1
20100284850 Hawk Nov 2010 A1
20100285207 Creehan et al. Nov 2010 A1
20100297469 Aota et al. Nov 2010 A1
20110062219 Bezaire et al. Mar 2011 A1
20110132968 Nakagawa et al. Jun 2011 A1
20110132970 Nakagawa et al. Jun 2011 A1
20110227590 Killian et al. Sep 2011 A1
20110266330 Bruck et al. Nov 2011 A1
20120009339 Creehan et al. Jan 2012 A1
20120114897 Thiagarajan et al. May 2012 A1
20120132342 Kato et al. May 2012 A1
20120202089 Hangai et al. Aug 2012 A1
20120237788 Fujii et al. Sep 2012 A1
20120273113 Hovanski et al. Nov 2012 A1
20120279043 Carter Nov 2012 A1
20120279271 Carter Nov 2012 A1
20120279441 Creehan et al. Nov 2012 A1
20120279442 Creehan et al. Nov 2012 A1
20120325894 Chun et al. Dec 2012 A1
20140061185 Schindele Mar 2014 A1
20140130736 Schultz et al. May 2014 A1
20140134325 Schultz et al. May 2014 A1
20140166731 Seo et al. Jun 2014 A1
20140174344 Schultz et al. Jun 2014 A1
20150165546 Kandasamy et al. Jun 2015 A1
20160107262 Schultz et al. Apr 2016 A1
20160175981 Kandasamy Jun 2016 A1
20160175982 Kandasamy et al. Jun 2016 A1
Foreign Referenced Citations (43)
Number Date Country
102120287 Jul 2013 CN
102120287 Jul 2013 CN
203738226 Jul 2014 CN
0453182 Oct 1991 EP
0458774 Nov 1991 EP
0458774 Nov 1991 EP
0410104 Jul 1993 EP
0597335 May 1994 EP
0597335 May 1994 EP
1206995 May 2002 EP
1543913 Aug 2007 EP
1790425 Oct 2011 EP
2783976 Oct 2014 EP
572789 Oct 1945 GB
1224891 Mar 1971 GB
2270864 Mar 1994 GB
2306366 May 1997 GB
10286682 Oct 1998 JP
11156561 Jun 1999 JP
11267857 Oct 1999 JP
2002153976 May 2002 JP
2002192358 Jul 2002 JP
2002256453 Sep 2002 JP
2002283069 Oct 2002 JP
2004025296 Jan 2004 JP
2004261859 Sep 2004 JP
2004298955 Oct 2004 JP
2007222925 Sep 2007 JP
2007283317 Nov 2007 JP
2008254047 Oct 2008 JP
2010149134 Jul 2010 JP
2010279958 Oct 2010 JP
2011056582 Mar 2011 JP
2013049091 Mar 2013 JP
101256970 Apr 2013 KR
101278097 Jun 2013 KR
1393566 May 1988 RU
266539 Nov 1976 SU
9310935 Jun 1993 WO
0174525 Oct 2001 WO
2011137300 Nov 2011 WO
2013002869 Jan 2013 WO
2013095031 Jun 2013 WO
Non-Patent Literature Citations (25)
Entry
Berbon et al., Friction stir processing: a tool to homogenize nanocomposite aluminum alloys, Scripta Materialia, vol. 44, No. 1, pp. 61-66, Jan. 5, 2001.
Co-pending U.S. Appl. No. 11/527,149, filed Sep. 26, 2006 (published as 2008/0041921 on Feb. 21, 2008), now abandoned.
Co-pending U.S. Appl. No. 12/792,655, filed Jun. 2, 2010 (published as 2010/0285207 on Nov. 11, 2010, now U.S. Pat. No. 8,636,194 issued on Jan. 28, 2014).
Co-pending U.S. Appl. No. 14/163,253, filed Jan. 24, 2014, Published as US 2014/0134325 on May 15, 2014, now U.S. Pat. No. 8,893,954 on Nov. 25, 2014.
Co-pending Application No. PCT/US12/32793 filed Apr. 9, 2012 (published as WO2013/002869 on Jan. 3, 2013).
Co-pending U.S. Appl. No. 12/987,588, filed Jan. 10, 2011 (published as 2012/0009339 on Jan. 12, 2012), now U.S. Pat. No. 8,632,850 issued on Jan. 21, 2014.
Co-Pending U.S. Appl. No. 13/442,201, filed Apr. 9, 2012, Published as US 2012/0279441 on Nov. 8, 2012, now U.S. Pat. No. 8,875,976 on Nov. 4, 2014.
Co-pending U.S. Appl. No. 13/442,285, filed Apr. 9, 2012 (published as 2012/0279442 on Nov. 8, 2012), now U.S. Pat. No. 8,397,974 issued on Mar. 19, 2013.
Co-pending U.S. Appl. No. 14/159,105, filed Jan. 20, 2014, Published as US 2014/0130736 on May 15, 2014, now U.S. Pat. No. 9,205,578 on Dec. 8, 2015.
Co-Pending U.S. Appl. No. 14/193,579, filed Feb. 28, 2014 (Published as US 2014/0174344 on Jun. 26, 2014).
Co-Pending U.S. Appl. No. 14/573,430, filed Dec. 17, 2014, Published as US 2015/0165546 on Jun. 18, 2015, now U.S. Pat. No. 9,266,191 on Feb. 23, 2016.
Co-Pending U.S. Appl. No. 14/640,077, filed Mar. 6, 2015.
Co-Pending U.S. Appl. No. 14/643,396, filed Mar. 10, 2015.
Co-Pending U.S. Appl. No. 14/926,447, filed Oct. 29, 2015, published as US2016/0107262 on Apr. 21, 2016.
Davis, JR, editor, Handbook of Thermal Spray Technology, ASM International (2004), pp. 138-139.
Friction Stir Tooling: Tool Materials and Designs, Chapter 2 in Friction Stir Welding and Processing, pp. 7-35, ASM International, Editors Rajiv S. Mishra & Murray W. Mahoney, 2007.
Geiger et al., “Friction stir knead welding of steel aluminum butt joints.” International Journal of Machine Tools & Manufacture, vol. 48, pp. 515-521, 2008.
International Preliminary Report on Patentability of International Application No. PCT/US2012/032793, dated Oct. 8, 2013, 7 pages.
International Search Report and Written Opinion of International Application No. PCT/US2012/032793, dated Dec. 18, 2012.
Kallee et al., “Friction stir welding—invention, innovations and applications.” INALCO 2001, 8th International Conference on Joints in Aluminium, Munich, Germany, 19 pages.
Metal-Matrix Composites (ASM Metals Handbook Online, ASM International, 2002), Introduction, Aluminum-Matrix Composites.
The American Welding Society. The Everyday Pocket Handbook on Welded Joint Details for Structural Applications. 2004.
Co-pending U.S. Appl. No. 15/489,389, filed Apr. 17, 2017.
Co-Pending U.S. Appl. No. 15/334,392, filed Oct. 26, 2016, published as US20170043429 on Feb. 16, 2017.
Co-Pending U.S. Appl. No. 15/347,818, filed Nov. 10, 2016, published as US 2017-0057204 on Mar. 2, 2017.
Related Publications (1)
Number Date Country
20160074958 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
61917380 Dec 2013 US
Divisions (1)
Number Date Country
Parent 14573430 Dec 2014 US
Child 14954104 US