In industrial applications the production of a component often includes considering the manufacturing process at the design stage. In such cases, the design and the manufacturing processes are closely related, meaning that design decisions may be influenced by manufacturing constraints or that manufacturing choices may result directly from aspects of the design. Moreover, operational characteristics may be influenced by the manufacturing process' capabilities. For instance, in typical industrial manufacturing processes, parts are produced according to predetermined tolerances because the as-manufactured parts that are deployed in the field may differ from their design specifications (i.e., from the as-designed parts) due to variations inherent to the manufacturing processes.
With the advent of additive manufacturing technology, another layer of complexity is introduced in the above-noted manufacturing/design/operation ecosystem because of the inherent aspects of additive processes. For example, the additive process may use layers of materials by addition to form the component and pre/post treatment steps such as heating and curing of the layers. Optimizing and validating the additive process requires quantifying and validating the variances in the manufactured components by destructive testing that produces significant quantities of scrap material dependent of the number of tolerances tested.
Destructive testing alone may validate that a manufactured component meets a specific design tolerance but not consider how the influences of multiple within tolerance variances aggregately affect performance of the component in operation or replicate the range of operating regime that components are exposed to in operation and therefore quantify the fitness of components manufactured by a process for operation. A further risk is that manufactured components with a useful and serviceable life are scrapped as the influence of variances occurring during the manufacturing cycle and the fitness of a component for operation is not quantifiable.
The embodiments featured herein help solve or mitigate the above-noted issues as well as other issues known in the art. The embodiments featured herein integrate operational characteristics, as they are measured and analyzed during a component's life cycle, with design and manufacturing, including specific aspects of additive manufacturing processes, to create models capable of mitigating performance and manufacturing variances.
For example, the embodiments provide the ability to link as-built, as-manufactured/assembled, as-designed and as-simulated, as-tested, as-operated and as-serviced components directly through a unique digital integrated process. This digital integrated process includes specific aspects of additive manufacturing processes used at any point during a component's life cycle. In the embodiments featured herein, any hardware component has the capability to reference to its design goal and derive multiple analysis outcomes based on its hardware specifications and operational data. The novel process also provides abstraction of data types from multiple analyses to form an integrated digital twin of hardware components. Furthermore, the novel process provides a framework to increase fidelity and accuracy of a system level digital twin by aggregating sub-system component level digital twin predictions.
The embodiments featured herein provide a technological infrastructure that yield automated, quantitative, and qualitative assessments of the variability in additive manufacturing processes during the useful life of a part. Thus, in their implementation, the embodiments purposefully and effectively allow the optimization of a manufacture or repair process to make or repair components to a useful lifetime specified by the application's constraints while optimizing the quantity of material needed and destructive testing required for producing or repairing the part using one or more additive manufacturing processes. For example, and not by limitation, in the case of a component requiring a coating, an embodiment as set forth herein can provide a quantitative assessment of the amount of coating material needed to be added onto the component in order to match the performance of the component during repair or manufacturing; the amount of material identified can be optimized against cost constraints.
Additional features, modes of operations, advantages, and other aspects of various embodiments are described below with reference to the accompanying drawings. It is noted that the present disclosure is not limited to the specific embodiments described herein. These embodiments are presented for illustrative purposes only. Additional embodiments, or modifications of the embodiments disclosed, will be readily apparent to persons skilled in the relevant art(s) based on the teachings provided.
Illustrative embodiments may take form in various components and arrangements of components. Illustrative embodiments are shown in the accompanying drawings, throughout which like reference numerals may indicate corresponding or similar parts in the various drawings. The drawings are only for purposes of illustrating the embodiments and are not to be construed as limiting the disclosure. Given the following enabling description of the drawings, the novel aspects of the present disclosure should become evident to a person of ordinary skill in the relevant art(s).
While the illustrative embodiments are described herein for particular applications, it should be understood that the present disclosure is not limited thereto. Those skilled in the art and with access to the teachings provided herein will recognize additional applications, modifications, and embodiments within the scope thereof and additional fields in which the present disclosure would be of significant utility.
The embodiments featured herein have several advantages. For example, they can allow one to make accurate assessments on the quality of new make parts relative to their design intent. They provide the ability to mix and match different manufactured components in an engine assembly to achieve a desired integrated engine performance. Furthermore, they improve time-on-wing assessments of every part and sub-assembly based on manufacturing variations, operational conditions, and as-serviced conditions. The embodiments help leverage the sub-system assembly performance using high fidelity design knowledge, and they improve prediction accuracy as required. Furthermore, they enable feedback loops that help improve subsequent designs.
For example, the module 102 may include information about the reliability or failure of a plurality of turbine blades as they are commissioned in a fleet of engines (i.e., in two or more engines). The module 102 may be configured to organize, or present upon request from a device communicatively coupled thereto, a product environment spectrum which sorts all of the products of interest in a predetermined order.
For example, the products may be sorted based on their robustness. In one use case, the products may be sorted from more robust (102a) to least robust (102n). Generally, one or more performance criteria may be used to sort these products according to the aforementioned spectrum. In the case of a turbine blade, the products may be sorted according to their thermal robustness performance, which may be measured using one or more field inspection methods.
The product environment spectrum may be driven by constraints from customers, which may be collected and functionalized (i.e., put in the form of computer instructions) in the module 104. In other words, the robustness criteria may be dictated by application-specific parameters derived from customers. Similarly, the product environment spectrum may be driven by commercial constraints, which may be functionalized in the module 106. These constraints (for both the modules 104 and 106) may be updated as the manufacturing process is updated in view of the various sources of information, as shall be further described below.
The customer constraints of the module 104 may also drive the manufacturing functions of the module 108, which in turn drive the engineering decisions, as functionalized in the module 112. Once the engineering decisions are functionalized, they may be used to establish a digital thread that is configured for design. The digital design thread may also be updated from the constraints of the customers (module 104). This thread thus forms a digital twin which can be formed from multiple data sources representing multiple use case. In other words, the digital twin integrates multiple use cases to ensure that manufactured parts are produced according to specific performance data rather than merely producing parts according to predetermined dimensional constraints, as is done in typical manufacturing processes.
Therefore, the digital twin allows for engineering re-design based on fielded part performance. As such, the digital twin allows the optimization of a given manufacturing process in order to differentiate quality of as-manufactured parts to drive targeted performance and business outcomes.
Generally, the digital design twin may be constructed from a plurality of sources that include new make manufacturing data from the engineering model, a network and an already existing manufacturing model of the part (module 108). Data streams from the network, may include, for example and not by limitation, borescope inspection data from field inspections (either partial or full, or in some implementations, functional or dimensional inspections), on-wing probes that measure data from an engine during flight. Furthermore, generally, the digital twin of a component may include at least one of as-manufactured data, as-tested data, as-designed and as-simulated, as-operated data, and as-serviced data of the component. Furthermore, the digital twin of the component may be based on operational data or nominal operating conditions of the component.
The process 100 allows data to be collected continuously. Specifically, the digital design thread is continuously updated to provide a model reflecting actual conditions. This is done with the explicit feedback loops of the process 100, which ensure that new designs can be manufactured based the wide variety of sources of information mentioned above. As such, the process 100 provides the ability to better predict the durability of a part, as any manufactured part would have been manufactured based on conditions reflecting design, usage, servicing, etc.
In sum, the process 100 integrates and automates the various aspect of the lifecycle of the part to provide an optimized manufacturing process at an enterprise level. The process 100 further includes a score inspection module, which may be updated with field inspection analytics, in order to further augment the engineering model. The process 100 can be further understood in the context of
The process performance is a spectrum from ‘As process designed’ performance and tolerance to out of tolerance. Thus, outside of the ‘as process designed’ performance may imply more or less processing or material applied to a component, e.g. flow rate and nozzle indicating minimum thickness of coating applied to component. In the embodiment, of
The exemplary system may then suggest a suitable operating regime for that component, X1,2,3 to achieve best in production performance; this reduces scrappage and warranty claim as we do not base scrappage on meeting an ‘as designed’ or ‘as process designed’ specification and warranty or price the component as per it's expected useful life or for a particular operating regime. The in-service performance and operational regime, X, may be determined by operational experience of components in production and/or simulation e.g. using computational fluid dynamics.
The exemplary system can then kit a manufactured component with parts that are predicted to achieve a similar in-service performance and remaining useful life within a similar operating regime. As such, the exemplary system can provide a multi-variant model of performance that is based on additive manufacturing variance. As shown in
The exemplary system can then match components manufactured with a similar shift in ‘Process X’, that will have a similar performance to S/N 0000001, X when operated within the operating regime X1. As such, as shown in
The system can infer that as performance of S/N 1 . . . 99, e.g. thermal performance, where same/similar to S/N 100 . . . 299 for the same/similar operating regime that the shift in ‘Process X’ did not influence the performance of S/N 1 . . . 99 within that operating regime and optimize the normal ‘as process designed’ range to be closer to the shift in ‘Process X’, e.g. reduce normal range of flow rate at nozzle, with the benefit of reducing manufacturing process or material and improving in service efficiency, e.g. reducing weight.
The exemplary system can then predict the range of useful life, based on predicted in production performance, of components being manufactured by a particular process as the process shift in ‘Process X’ occurs and use remaining useful life as a quantification of the manufacturing process performance in real time. The in-service performance and operational regime, X, may be determined by operational experience of components in production and/or simulation, e.g. using computational fluid dynamics. This prevents manufacturing stoppage as the system can decide if acceptable production performance or remaining useful life of components are achieved rather than making a decision on meeting ‘as process designed’ performance.
Parts that don't meet ‘as designed’ or ‘as process designed’ performance’ may be applied to specific operating regimes or kitted with components that have a similar remaining useful life or applied to an asset that has a similar remaining operational life to scrappage.
The exemplary system can infer an in-production performance, e.g. thermal performance, in the range of X. A shift in ‘Process Y’, e.g. a post treatment step such as heat treatment of the thermal barrier, may also result independently in a performance, Y, within acceptable range. However, the combined influence of X+Y may be greater than the influence of X and Y independently where the resulting performance of X+Y=Z in the range of X1Y1, X2Y2, X3Y3.
Creating a model of a manufactured part that quantifies quality as a factor of predicted in production performance, e.g. thermal performance, has the advantage of allowing the prediction of the impact of multiple process influencers, X & Y, on end component performance.
The in-service performance and operational regime, X & Y, may be determined by operational experience of components in production and/or simulation e.g. using computational fluid dynamics. This has an advantage over destructive testing methods where destructive tests do not independently correlate the aggregate influence of multiple process influencers and cannot reasonably replicate the range of operating regime as can be observed in service and/or simulated. Providing an alternative or parallel qualification process to destructive testing has the benefits of improving safety, reducing warranty claim and reducing scrappage.
The system 1000 can be a stand-alone programmable system, or it can be a programmable module located in a much larger system. For example, the system 1000 be part of a distributed system configured to handle the various modules of the process 100 described above. The processor 1014 may include one or more hardware and/or software components configured to fetch, decode, execute, store, analyze, distribute, evaluate, and/or categorize information.
The processor 1014 can include an input/output module (I/O module 1012) that can be configured to ingest data pertaining to single assets or fleets of assets. The processor 1014 may include one or more processing devices or cores (not shown). In some embodiments, the processor 1014 may be a plurality of processors, each having either one or more cores. The processor 1014 can be configured to execute instructions fetched from the memory 1002, i.e. from one of memory block 1004, memory block 1006, memory block 1008, and memory block 1010.
Furthermore, without loss of generality, the storage 1020 and/or the memory 1002 may include a volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable, read-only, random-access, or any type of non-transitory computer-readable computer medium. The storage 1020 may be configured to log data processed, recorded, or collected during the operation of the processor 1014. The data may be time-stamped, location-stamped, cataloged, indexed, or organized in a variety of ways consistent with data storage practice. The storage 1020 and/or the memory 1002 may include programs and/or other information that may be used by the processor 1014 to perform tasks consistent with those described herein.
For example, the processor 1014 may be configured by instructions from the memory block 1006, the memory block 1008, and the memory block 1010, to perform real-time updates of a model for a part based on a variety of input sources (e.g. a network and/or a field data module 108). The processor 1014 may execute the aforementioned instructions from memory blocks, 1006, 1008, and 1010, and output a twin digital model that is based on data from the wide variety of sources described above. Stated generally, from the continuous updates, the processor 1014 may continuously alter the strategy deployment module 110 that includes the model for the part based on the prognostic deployment or degradation models described in the context of
The embodiments provide the capability to improve time on wing assessments of every part and its sub-assembly based on manufacturing variations, operational conditions and as-serviced data. Furthermore, the embodiments help leverage the sub-system assembly performance using high fidelity design knowledge and improve prediction accuracy as required, and they enable feedback loop that help improve subsequent designs.
Those skilled in the relevant art(s) will appreciate that various adaptations and modifications of the embodiments described above can be configured without departing from the scope and spirit of the disclosure. Therefore, it is to be understood that, within the scope of the appended claims, the disclosure may be practiced other than as specifically described herein.
This application claims benefit to U.S. Provisional Patent Application Nos. 62/862,014 and 62/862,016 filed on Jun. 14, 2019. The disclosures of both prior applications are incorporated herein in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
6067486 | Aragones | May 2000 | A |
6394646 | Ringermacher | May 2002 | B1 |
6745153 | White | Jun 2004 | B2 |
6775647 | Evans | Aug 2004 | B1 |
7242994 | Ishibashi | Jul 2007 | B2 |
7457762 | Wetzer | Nov 2008 | B2 |
7504838 | Zhao | Mar 2009 | B1 |
7549789 | Tralshawala | Jun 2009 | B2 |
7761200 | Avery | Jul 2010 | B2 |
7966883 | Lorraine | Jun 2011 | B2 |
8209839 | Brostmeyer | Jul 2012 | B1 |
8266066 | Wezter | Sep 2012 | B1 |
8423430 | Avery | Apr 2013 | B2 |
8692887 | Ringermacher | Apr 2014 | B2 |
8694196 | Doulatshahi | Apr 2014 | B1 |
9092592 | Perasso | Jul 2015 | B2 |
9146652 | Danielsson | Sep 2015 | B1 |
9817452 | Evens | Nov 2017 | B2 |
10466681 | Jones | Nov 2019 | B1 |
10860013 | Dagnino | Dec 2020 | B2 |
10928809 | Salapakkam | Feb 2021 | B2 |
10935964 | Ruggiero | Mar 2021 | B2 |
11209345 | Madsen | Dec 2021 | B1 |
11280751 | Ruggiero | Mar 2022 | B2 |
20030115037 | Sumida | Jun 2003 | A1 |
20050102050 | Richey | May 2005 | A1 |
20060129301 | Ashby | Jun 2006 | A1 |
20060142886 | Ishibashi | Jun 2006 | A1 |
20070073429 | Rees | Mar 2007 | A1 |
20080103788 | Morris | May 2008 | A1 |
20090013025 | Soejima | Jan 2009 | A1 |
20090030752 | Senturk-Doganaksoy | Jan 2009 | A1 |
20090297336 | Allen | Dec 2009 | A1 |
20110137575 | Koul | Jun 2011 | A1 |
20110153295 | Yerramalla | Jun 2011 | A1 |
20110191091 | Joshi | Aug 2011 | A1 |
20110202297 | Kim | Aug 2011 | A1 |
20110295563 | Mcdaniel | Dec 2011 | A1 |
20120078599 | Tryon, III | Mar 2012 | A1 |
20140130459 | Lundy | May 2014 | A1 |
20150169821 | Peters | Jun 2015 | A1 |
20170102287 | Okerson | Apr 2017 | A1 |
20170124448 | Engel | May 2017 | A1 |
20170129254 | Nardiello | May 2017 | A1 |
20170176978 | Yagita | Jun 2017 | A1 |
20170286572 | Hershey | Oct 2017 | A1 |
20170323231 | Johnson | Nov 2017 | A1 |
20170323239 | Johnson | Nov 2017 | A1 |
20170323240 | Johnson | Nov 2017 | A1 |
20170323274 | Johnson | Nov 2017 | A1 |
20170323403 | Johnson | Nov 2017 | A1 |
20170329295 | Zahorcak | Nov 2017 | A1 |
20170329297 | Gilman | Nov 2017 | A1 |
20170343984 | Czinger | Nov 2017 | A1 |
20180005368 | Nalladega | Jan 2018 | A1 |
20180027190 | Srinivasan | Jan 2018 | A1 |
20180054376 | Hershey | Feb 2018 | A1 |
20180088559 | Salem | Mar 2018 | A1 |
20180102000 | Vala | Apr 2018 | A1 |
20180137219 | Goldfarb | May 2018 | A1 |
20180144277 | Srivastava | May 2018 | A1 |
20180292815 | Byers | Oct 2018 | A1 |
20180304370 | Myerberg | Oct 2018 | A1 |
20180304540 | Tobia | Oct 2018 | A1 |
20190001655 | Blom | Jan 2019 | A1 |
20190004079 | Blom | Jan 2019 | A1 |
20190049929 | Good | Feb 2019 | A1 |
20190094108 | Liao | Mar 2019 | A1 |
20190187679 | Strudwicke | Jun 2019 | A1 |
20190196449 | Zhang | Jun 2019 | A1 |
20190244309 | Ottnad | Aug 2019 | A1 |
20200031055 | Schumann | Jan 2020 | A1 |
20200042659 | Tallman | Feb 2020 | A1 |
20200162724 | Neser | May 2020 | A1 |
20200173943 | Ruggiero | Jun 2020 | A1 |
20200174456 | Ruggiero | Jun 2020 | A1 |
20200174457 | Salapakkam | Jun 2020 | A1 |
20200175438 | Ruggiero | Jun 2020 | A1 |
20200376767 | Huang | Dec 2020 | A1 |
20200391446 | Davis | Dec 2020 | A1 |
20200391447 | Davis | Dec 2020 | A1 |
20200393822 | Davis | Dec 2020 | A1 |
20200394351 | Roemerman | Dec 2020 | A1 |
20200394618 | Davis | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
3166052 | May 2017 | EP |
3210697 | Aug 2017 | EP |
3244353 | Nov 2017 | EP |
2016179455 | Nov 2016 | WO |
WO2017152142 | Sep 2017 | WO |
2018073422 | Apr 2018 | WO |
2018183275 | Oct 2018 | WO |
2019055538 | Mar 2019 | WO |
2019055576 | Mar 2019 | WO |
2019070644 | Apr 2019 | WO |
2019080644 | May 2019 | WO |
Entry |
---|
USPTO; Non-Final Office Action issued in U.S. Appl. No. 16/901,168 dated Feb. 8, 2022. |
Benjamin Schleich et al., “Shaping the Digital Twin for Design and Production Engineering,” CIRP Annals, Elsevier BV, NL, CH, FR, vol. 66, No. 1, Apr. 21, 2017, pp. 141-144. |
Dennis J. Siedlak et al., “A Digital Thread Approach to Support Manufacturing-Influenced Conceptual Aircraft Design,” Research in Engineering Design, Springer Verlag, London, GB, vol. 29, No. 2, Sep. 13, 2017, pp. 285-308, 24 pp. |
Doom, Travis R., “Aeroderivative Gas Turbines”, Aug. 31, 2013, American Energy Innovation Council, RL: http://americanenergyinnovation.org/wp-content/uploads/2013/08/Case-Gas-Turbines.pdf, 12 pages. |
Horlock J. H. et al: “Turbine Blade Cooling: The Blade Temperature Distribution”, Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, vol. 220, No. 4, Jun. 1, 2006 (Jun. 1, 2006), pp. 343-353, XP055872533, GB ISSN: 0957-6509, DOI: 10.1243/09576509JPE177 Retrieved from the Internet: URL:http://journals.sagepub.com/doi/pdf/10.1243/09576509JPE177. |
USPTO; U.S. Appl. No. 16/901,168; Non-Final Rejection dated Jul. 11, 2022; (pp. 1-61). |
U.S. Patent and Trademark Office, Office Action, U.S. Appl. No. 16/209,884, filed Jan. 1, 2021, 19 pp. |
U.S. Patent and Trademark Office, Final Office Action, U.S. Appl. No. 16/209,884, filed Jun. 17, 2021, 22 pp. |
U.S. Patent and Trademark Office, Notice of Allowance and Fees Due, U.S. Appl. No. 16/209,884, filed Nov. 16, 2021, 10 pp. |
U.S. Patent and Trademark Office, Notice of Allowance, U.S. Appl. No. 16/209,905, filed Oct. 27, 2020, 8 pp. |
U.S. Patent and Trademark Office, Office Action, U.S. Appl. No. 16/209,918, filed Dec. 24, 2020, 17 pp. |
U.S. Patent and Trademark Office, Final Office Action, U.S. Appl. No. 16/209,918, filed Jun. 24, 2021, 15 pp. |
U.S. Patent and Trademark Office, Office Action, U.S. Appl. No. 16/209,918, filed Nov. 9, 2021, 16 pp. |
Number | Date | Country | |
---|---|---|---|
20200393822 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62862016 | Jun 2019 | US | |
62862014 | Jun 2019 | US |