Additive manufacturing system and method for discharging coated continuous composites

Information

  • Patent Grant
  • 10932325
  • Patent Number
    10,932,325
  • Date Filed
    Friday, February 9, 2018
    6 years ago
  • Date Issued
    Tuesday, February 23, 2021
    3 years ago
Abstract
A system is disclosed for additively manufacturing a composite structure. The system may include a print head configured to receive a continuous reinforcement, and at least one of a matrix jet and a matrix bath configured to wet the continuous reinforcement with a liquid matrix during passage through the print head. The system may also include a coating mechanism configured to dispense at least one of metallic and ceramic particles onto the wetted continuous reinforcement during passage through the print head, and at least one cure enhancer configured to at least one of cure the liquid matrix and cause the at least one of metallic and ceramic particles to coalesce around the continuous reinforcement. The system may further include a support configured to move the print head in multiple dimensions during discharging.
Description
TECHNICAL FIELD

The present disclosure relates generally to a manufacturing system and method and, more particularly, to an additive manufacturing system and method for discharging coated continuous composites.


BACKGROUND

Continuous fiber 3D printing (a.k.a., CF3D™) involves the use of continuous fibers embedded within material discharging from a moveable print head. A matrix is supplied to the print head and discharged (e.g., extruded and/or pultruded) along with one or more continuous fibers also passing through the same head at the same time. The matrix can be a traditional thermoplastic, a liquid thermoset (e.g., a UV curable and/or two-part resin), or a combination of any of these and other known matrixes. Upon exiting the print head, a cure enhancer (e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.) is activated to initiate and/or complete curing of the matrix. This curing occurs almost immediately, allowing for unsupported structures to be fabricated in free space. And when fibers, particularly continuous fibers, are embedded within the structure, a strength of the structure may be multiplied beyond the matrix-dependent strength. An example of this technology is disclosed in U.S. Pat. No. 9,511,543 that issued to Tyler on Dec. 6, 2016 (“the '543 patent”).


Although continuous fiber 3D printing provides for increased strength, compared to manufacturing processes that do not utilize continuous fiber reinforcement, applications may exist that could benefit from additional material properties not heretofore available.


The disclosed system and method are directed to addressing one or more of the problems set forth above and/or other problems of the prior art.


SUMMARY

In one aspect, the present disclosure is directed to a method of additively manufacturing a composite structure. The method may include directing into a print head a continuous reinforcement, and at least partially coating the continuous reinforcement with a liquid matrix inside the print head. The method may also include applying particles to the liquid matrix on the continuous reinforcement, and discharging from the print head a track containing the continuous reinforcement. The method may further include exposing the track to energy to cause the particles to sinter.


In another aspect, the present disclosure is directed to a print head for an additive manufacturing system. The print head may include at least one of a matrix jet and a matrix bath configured to wet a continuous reinforcement passing through the print head with a liquid matrix. The print head may also include a coating mechanism configured to dispense at least one of metallic and ceramic particles onto the wetted continuous reinforcement. The print head may further include at least one cure enhancer configured to at least one of cure the liquid matrix and cause the at least one of metallic and ceramic particles to coalesce around the continuous reinforcement during discharge from the print head.


In yet another aspect, the present disclosure is directed to a system for additively manufacturing a composite structure. The system may include a print head configured to receive a continuous reinforcement, and at least one of a matrix jet and a matrix bath configured to wet the continuous reinforcement with a liquid matrix during passage through the print head. The system may also include a coating mechanism configured to dispense at least one of metallic and ceramic particles onto the wetted continuous reinforcement during passage through the print head, and at least one cure enhancer configured to at least one of cure the liquid matrix and cause the at least one of metallic and ceramic particles to coalesce around the continuous reinforcement. The system may further include a support configured to move the print head in multiple dimensions during discharging.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic illustration of an exemplary disclosed manufacturing system; and



FIGS. 2 and 3 are enlarged diagrammatic illustrations of exemplary disclosed portions of the manufacturing system of FIG. 1.





DETAILED DESCRIPTION


FIG. 1 illustrates an exemplary system 10, which may be used to continuously manufacture a composite structure 12 having any desired cross-sectional shape (e.g., circular, polygonal, etc.). System 10 may include at least a support 14 and a head 16. Head 16 may be coupled to and moved by support 14. In the disclosed embodiment of FIG. 1, support 14 is a robotic arm capable of moving head 16 in multiple directions during fabrication of structure 12, such that a resulting longitudinal axis of structure 12 is three-dimensional. It is contemplated, however, that support 14 could alternatively be an overhead gantry or a hybrid gantry/arm also capable of moving head 16 in multiple directions during fabrication of structure 12. Although support 14 is shown as being capable of 6-axis movements, it is contemplated that any other type of support 14 capable of moving head 16 in the same or in a different manner could also be utilized, if desired. In some embodiments, a drive may mechanically couple head 16 to support 14, and may include components that cooperate to move and/or supply power or materials to head 16.


Head 16 may be configured to receive or otherwise contain a matrix. The matrix may include any type of material (e.g., a liquid resin, such as a zero volatile organic compound resin; etc.) that is curable. Exemplary resins include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, and more. In one embodiment, the matrix inside head 16 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected to head 16 via a corresponding conduit (not shown). In another embodiment, however, the pressure may be generated completely inside of head 16 by a similar type of device. In yet other embodiments, the matrix may be gravity-fed through and/or mixed within head 16. In some instances, the matrix inside head 16 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix may need to be kept warm for the same reason. In either situation, head 16 may be specially configured (e.g., insulated, chilled, and/or warmed) to provide for these needs.


The matrix may be used to coat, encase, or otherwise at least partially surround any number of continuous reinforcements (e.g., separate fibers, tows, rovings, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of composite structure 12. The reinforcements may be stored within (e.g., on separate internal spools—not shown) or otherwise passed through head 16 (e.g., fed from external spools—not shown). When multiple reinforcements are simultaneously used, the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, etc.), or of a different type with different diameters and/or cross-sectional shapes. The reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials that can be at least partially encased in the matrix discharging from head 16.


The reinforcements may be exposed to (e.g., at least partially coated with) the matrix while the reinforcements are passing through head 16. The matrix, dry reinforcements, and/or reinforcements that are already exposed to the matrix (a.k.a., wetted reinforcements) may be transported into head 16 in any manner apparent to one skilled in the art.


The matrix and reinforcement may be discharged from head 16 as a track, ribbon, or sheet of composite material via at least two different modes of operation. In a first mode of operation, the matrix and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from head 16, as head 16 is moved by support 14 to create the 3-dimensional shape of structure 12. In a second mode of operation, at least the reinforcement is pulled from head 16, such that a tensile stress is created in the reinforcement during discharge. In this mode of operation, the matrix may cling to the reinforcement and thereby also be pulled from head 16 along with the reinforcement, and/or the matrix may be discharged from head 16 under pressure along with the pulled reinforcement. In the second mode of operation, where the composite material is being pulled from head 16, the resulting tension in the reinforcement may increase a strength of structure 12, while also allowing for a greater length of unsupported material to have a straighter trajectory (i.e., the tension may act against the force of gravity to provide free-standing support for structure 12).


The reinforcement may be pulled from head 16 as a result of head 16 moving away from an anchor point 18. For example, at the start of structure-formation, a length of matrix-impregnated reinforcement may be pulled and/or pushed from head 16, deposited onto anchor point 18, and cured, such that the discharged material adheres to anchor point 18. Thereafter, head 16 may be moved away from anchor point 18, and the relative movement may cause the reinforcement to be pulled from head 16. It should be noted that the movement of reinforcement through head 16 could be assisted (e.g., via one or more internal and/or external feed mechanisms—not shown), if desired. However, the discharge rate of reinforcement from head 16 may primarily be the result of relative movement between head 16 and anchor point 18, such that tension is created and maintained within the reinforcement. It is contemplated that anchor point 18 could be moved away from head 16 instead of or in addition to head 16 being moved away from anchor point 18.


One or more cure enhancers (e.g., a UV light, an ultrasonic emitter, a laser, a heater, a catalyst dispenser, etc.) 20 may be mounted proximate (e.g., within, on, and/or trailing from) head 16 and configured to enhance a cure rate and/or quality of the matrix as it is discharged from head 16. Cure enhancer 20 may be controlled to selectively expose internal and/or external surfaces of structure 12 to energy (e.g., UV light, electromagnetic radiation, vibrations, heat, a chemical catalyst, hardener, or initiator, etc.) during the formation of structure 12. The energy may increase a rate of chemical reaction occurring within the matrix, harden the material, or otherwise cause the material to achieve a desired state as it discharges from head 16. It is contemplated that cure enhancers 20 may be omitted, in some embodiments.


A controller 22 may be provided and communicatively coupled with support 14, head 16, and any number and type of cure enhancers 20. Controller 22 may embody a single processor or multiple processors that include a means for controlling an operation of system 10. Controller 22 may include one or more general- or special-purpose processors or microprocessors. Controller 22 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics of structure 12, and corresponding parameters of each component of system 10. Various other known circuits may be associated with controller 22, including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry. Moreover, controller 22 may be capable of communicating with other components of system 10 via wired and/or wireless transmission.


One or more maps may be stored in the memory of controller 22 and used during fabrication of structure 12. Each of these maps may include a collection of data in the form of lookup tables, graphs, and/or equations. In the disclosed embodiment, the maps are used by controller 22 to determine desired characteristics of cure enhancers 20, the matrix, and/or the reinforcements at different locations within structure 12. The characteristics may include, among others, a type, quantity, and/or configuration of reinforcement and/or matrix to be discharged at a particular location within structure 12, and/or an amount, shape, and/or location of desired curing. Controller 22 may then correlate operation of support 14 (e.g., the location and/or orientation of head 16) and/or the discharge of material from head 16 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation of cure enhancers 20 such that structure 12 is produced in a desired manner.


In some applications, the reinforcements discharging from head 16 may need to be coated with specialized materials (e.g., other than or in addition to the matrix material described above), in order to give structure 12 particular properties. For example, the reinforcements (illustrated as fibers and represented by F in FIG. 2) may benefit from a metallic and/or ceramic coating C (shown in FIG. 2) that provides a desired hardness, rigidity, conductivity (e.g., heat and/or electricity conductivity), smoothness, lubricity, etc. In this example, the fibers F, after formation of the coating C, may function as a structural support core for the coating C. In another example, post processing may actually remove the support core (e.g., via heating or rinsing), such that the coating C becomes a hollow tube. This may result in a lighter structure and/or provide conduits for ventilation, heating, cooling, signal transmission, etc.


The fibers F may be coated with matrix (represented as M in FIG. 2) while passing through head 16, prior to receiving coating C. For example, one or more resin jets 24 may be located inside of head 16 and arranged to spray each fiber F or grouping of fibers F with matrix M as the fibers F pass axially by jets 24. In another example, the fibers F may pass through a bath and become saturated with matrix M prior to being coated with metallic and/or ceramic material. It is also contemplated that a combination of bath(s) and jet(s) may be used to apply the matrix M, in some examples.


The matrix M may be applied to the fibers F for multiple purposes. For instance, the matrix M may function as an adhesive, to help bind the metallic and/or ceramic material to the fibers F. This may improve a stability of the metallic and/or ceramic material during discharge from head 16. That is, the matrix M may reduce an amount of the metallic and/or ceramic material that falls off the fibers F during passage through a nozzle of head 16. Additionally or alternatively, the matrix M may be a rosin or another type of flux that helps the metallic and/or ceramic materials to flow and coalesce during post-processing, which will be explained in more detail below.


Precursors of the coating C may be applied to the matrix-encapsulated fibers M+F at a downstream location by way of one or more coating jets 26. Specifically, coating jet(s) 26 may be located to dispense metallic and/or ceramic particles P onto the wetted fibers M+F. The particles P may stick to the wetted fibers M+F and be discharged from head 16 in the manner described above (e.g., via extrusion and/or pultrusion).


Thereafter, at a location outside of head 16, one or more coating cure enhancers 28 (e.g., a heat source, such as an infrared lamp or high-power lasers) may cause the particles P to sinter and/or coalesce (e.g., to melt and flow together) around the fibers F. Although a single coating cure enhancer 28 is shown as being located downstream of cure enhancers 20, it is contemplated that other arrangements may be possible. For example, cure enhancers 20 could alternatively be used to both cure the matrix M and sinter and/or coalesce the particles P at the same time (i.e., without requiring use of coating cure enhancers 28), or curing of the matrix M could occur downstream of where coating cure enhancer(s) 28 are located (e.g., to cure the matrix M through a transparent coating made up of the particles P). It is also contemplated that cure enhancers 20 may not be required, in some applications, and that coating cure enhancer(s) 28 may both cure matrix M and sinter/coalesce particles P.


Another embodiment of system 10 and head 16 is shown in FIG. 3. In this embodiment, rather than causing the particles P to sinter and coalesce around fibers F immediately after discharge from head 16 (e.g., during formation of individual layers of structure 12), multiple layers (e.g., all) of structure 12 may first be formed prior to exposing the particles P to an elevated energy levels. For example, at some point during the fabrication of structure 12 (e.g., after completion or after reaching an earlier fabrication milestone), structure 12 may be placed in the vicinity of (e.g., inside of) a coating cure enhancer 30. Structure 12 may then be exposed to energy (e.g., heat, vibrations, and/or pressure) that causes the particles P on multiple layers of structure 12 to simultaneously cure, sinter, and/or coalesce. The fibers F may be melted and/or rinsed away at this same time or shortly thereafter, if desired.


INDUSTRIAL APPLICABILITY

The disclosed system may be used to continuously manufacture composite structures having any desired cross-sectional shape, length, density, and/or strength. The composite structures may include any number of different reinforcements of the same or different types, diameters, shapes, configurations, and consists, and/or any number of different matrixes. Operation of system 10 will now be described in detail.


At a start of a manufacturing event, information regarding a desired structure 12 may be loaded into system 10 (e.g., into controller 22 that is responsible for regulating operation of support 14, cure enhancer(s) 20, jet(s) 24, jet(s) 26, coating cure enhancer(s) 28 and 30, and/or any other associated components). This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), location-specific matrix stipulations, location-specific reinforcement stipulations, desired cure rates, cure locations, cure shapes, cure amounts, coating specifications, etc. It should be noted that this information may alternatively or additionally be loaded into system 10 at different times and/or continuously during the manufacturing event, if desired.


Based on the component information, a specific cure enhancer configuration may be connected to head 16, and one or more different (e.g., different sizes, shapes, and/or types of) reinforcements, matrixes, and/or coating particles may be selectively installed within system 10 and/or continuously supplied into head 16. The corresponding reinforcements (e.g., prepreg or dry fibers, tows, ribbons, or sheets) may be passed through one or more fiber-teasing mechanisms (e.g., between the bristles of adjacent brushes, and/or over or around protrusions, etc.—not shown), passed through a nozzle of head 16, and thereafter connected to a pulling machine (not shown) and/or to a mounting fixture (e.g., to anchor point 18). Installation of the matrix may include filling head 16 with a matrix and/or coupling of an extruder (not shown) to head 16.


Head 16 may be moved by support 14 under the regulation of controller 22 to cause matrix-encapsulated and particle-coated reinforcements to be placed against or on a corresponding anchor point 18. Cure enhancers 20 may then be selectively activated to cause hardening of the matrix surrounding the reinforcements, thereby bonding the reinforcements to anchor point 18. It should be noted that, during anchoring, the matrix-coated reinforcements may not be sprayed with metallic or ceramic particles, in some applications.


The component information may then be used to control operation of system 10. For example, the reinforcements may be pulled through the fiber-teasing mechanism; separated and/or flattened; submerged and/or sprayed within matrix, wrung out by any associated regulating device (not shown); and then discharged from head 16. Controller 22 selectively cause support 14 to move head 16 in a desired manner at this time, such that an axis of the resulting structure 12 follows a desired trajectory (e.g., a free-space, unsupported, 3-D trajectory). In addition, cure enhancers 20 and/or coating cure enhancer 28 may be selectively activated by controller 22 during material discharge to initiate, speed up, or complete hardening of the matrix and sintering of the associated coating particles. Once structure 12 has grown to a desired length, structure 12 may be disconnected (e.g., severed) from head 16 in any desired manner. At this point in time, the entire structure may additionally (or instead of being exposed to energy from coating cure enhancer 28) be placed inside coating cure enhancer 30, if desired, to cause the metallic and/or ceramic particles to sinter and coalesce.


It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed systems and head. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed systems and heads. For example, in some embodiments, it may beneficial to mechanically press the metallic and/or ceramic particles into the matrix prior to discharge from head 16. This may reduce an amount of the particles that are dislodged from the matrix during discharge. Rollers, dies, presses, covering nozzles, and other devices may be used for this purpose. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.

Claims
  • 1. A method of additively manufacturing a composite structure, comprising: directing into a print head a continuous reinforcement;at least partially coating the continuous reinforcement with a liquid matrix inside the print head;applying dry particles to an outer surface of the liquid matrix on the continuous reinforcement;discharging from the print head a track containing the continuous reinforcement; andexposing the track to energy to cause the particles to sinter.
  • 2. The method of claim 1, wherein exposing the track to energy includes exposing the track to energy as the track discharges from the print head.
  • 3. The method of claim 2, wherein exposing the track to energy includes causing the continuous reinforcement to melt away.
  • 4. The method of claim 2, wherein the continuous reinforcement remains intact after exposing the track to energy.
  • 5. The method of claim 1, further including exposing the liquid matrix on the continuous reinforcement to energy to cause the liquid matrix to cure, prior to exposing the track to energy to cause the particles to sinter.
  • 6. The method of claim 5, wherein: exposing the track to energy includes exposing the track to at least one of infrared heat and laser energy; andexposing the liquid matrix on the continuous reinforcement to energy includes exposing the liquid matrix to UV light.
  • 7. The method of claim 1, wherein exposing the track to energy includes exposing all tracks making up the composite structure to energy at the same time, after the composite structure is formed.
  • 8. The method of claim 1, further including moving the print head in multiple dimensions during discharging of the track.
  • 9. A method of additively manufacturing a composite structure, comprising: directing into a print head a continuous reinforcement;at least partially coating the continuous reinforcement with a liquid matrix inside the print head;applying at least one of metallic particles and ceramic particles to the liquid matrix on the continuous reinforcement;discharging from the print head a track containing the continuous reinforcement; andexposing the track to energy to cause the at least one of metallic particles and ceramic particles to sinter,wherein applying at least one of metallic particles and ceramic particles to the liquid matrix on the continuous reinforcement includes spraying the at least one of metallic particles and ceramic particles onto the liquid matrix prior to discharge of the continuous reinforcement from the print head.
  • 10. The method of claim 9, wherein at least partially coating the continuous reinforcement with the liquid matrix includes at least one of spraying the continuous reinforcement with the liquid matrix and passing the continuous reinforcement through a bath of the liquid matrix.
  • 11. The method of claim 10, wherein the liquid matrix is a flux configured to facilitate coalescence of the at least one of metallic particles and ceramic particles.
  • 12. A method of additively manufacturing a composite structure, comprising: discharging a continuous reinforcement that is wetted with a liquid matrix from a print head;moving the print head during discharging to shape the composite structure;exposing the liquid matrix to energy from a first energy source to harden the liquid matrix and maintain the shape of the composite structure;applying particles to the wetted continuous reinforcement; andexposing the particles to energy from a second energy source to sinter the particles after the liquid matrix has hardened.
  • 13. The method of claim 12, further including wetting the continuous reinforcement with the liquid matrix prior to applying the particles.
  • 14. The method of claim 13, wherein the liquid matrix is a flux configured to facilitate coalescence of the particles.
  • 15. The method of claim 12, wherein sintering the particles causing the continuous reinforcement to melt away.
  • 16. The method of claim 12, wherein the continuous reinforcement remains intact after sintering of the particles.
  • 17. The method of claim 12, wherein the particles include at least one of metallic particles and ceramic particles.
  • 18. The method of claim 12, wherein applying particles to the liquid matrix on the continuous reinforcement includes applying the particles prior to discharge of the continuous reinforcement from the print head.
  • 19. The method of claim 12, wherein the continuous reinforcement includes at least one of a fiber and a wire.
RELATED APPLICATIONS

This application is based on and claims the benefit of priority from U.S. Provisional Application No. 62/459,398 that was filed on Feb. 15, 2017, the contents of which are expressly incorporated herein by reference.

US Referenced Citations (180)
Number Name Date Kind
3286305 Seckel Nov 1966 A
3809514 Nunez May 1974 A
3984271 Gilbu Oct 1976 A
3993726 Moyer Nov 1976 A
4643940 Shaw et al. Feb 1987 A
4671761 Adrian et al. Jun 1987 A
4822548 Hempel Apr 1989 A
4851065 Curtz Jul 1989 A
5002712 Goldmann et al. Mar 1991 A
5037691 Medney et al. Aug 1991 A
5296335 Thomas et al. Mar 1994 A
5340433 Crump Aug 1994 A
5599604 Goettsch Feb 1997 A
5746967 Hoy et al. May 1998 A
5866058 Batchelder et al. Feb 1999 A
5936861 Jang et al. Aug 1999 A
6153034 Lipsker Nov 2000 A
6459069 Rabinovich Oct 2002 B1
6501554 Hackney et al. Dec 2002 B1
6531191 Notenboom Mar 2003 B1
6799081 Hale et al. Sep 2004 B1
6803003 Rigali et al. Oct 2004 B2
6934600 Jang et al. Aug 2005 B2
7039485 Engelbart et al. May 2006 B2
7555404 Brennan et al. Jun 2009 B2
7795349 Bredt et al. Sep 2010 B2
8221669 Batchelder et al. Jul 2012 B2
8962717 Roth et al. Feb 2015 B2
9126365 Mark et al. Sep 2015 B1
9126367 Mark et al. Sep 2015 B1
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9186846 Mark et al. Nov 2015 B1
9186848 Mark et al. Nov 2015 B2
9327452 Mark et al. May 2016 B2
9327453 Mark et al. May 2016 B2
9370896 Mark Jun 2016 B2
9381702 Hollander Jul 2016 B2
9457521 Johnston et al. Oct 2016 B2
9458955 Hammer et al. Oct 2016 B2
9527248 Hollander Dec 2016 B2
9539762 Durand et al. Jan 2017 B2
9579851 Mark et al. Feb 2017 B2
9688028 Mark et al. Jun 2017 B2
9694544 Mark et al. Jul 2017 B2
9764378 Peters et al. Sep 2017 B2
9770876 Farmer et al. Sep 2017 B2
9782926 Witzel et al. Oct 2017 B2
20020009935 Hsiao et al. Jan 2002 A1
20020062909 Jang et al. May 2002 A1
20020113331 Zhang et al. Aug 2002 A1
20020165304 Mulligan et al. Nov 2002 A1
20030044539 Oswald Mar 2003 A1
20030056870 Comb et al. Mar 2003 A1
20030160970 Basu et al. Aug 2003 A1
20030186042 Dunlap et al. Oct 2003 A1
20030236588 Jang et al. Dec 2003 A1
20050006803 Owens Jan 2005 A1
20050061422 Martin Mar 2005 A1
20050104257 Gu et al. May 2005 A1
20050109451 Hauber et al. May 2005 A1
20050230029 Vaidyanathan et al. Oct 2005 A1
20070003650 Schroeder Jan 2007 A1
20070228592 Dunn et al. Oct 2007 A1
20080176092 Owens Jul 2008 A1
20090095410 Oldani Apr 2009 A1
20110032301 Fienup et al. Feb 2011 A1
20110143108 Fruth et al. Jun 2011 A1
20120060468 Dushku et al. Mar 2012 A1
20120159785 Pyles et al. Jun 2012 A1
20120231225 Mikulak et al. Sep 2012 A1
20120247655 Erb et al. Oct 2012 A1
20130164498 Langone et al. Jun 2013 A1
20130209600 Tow Aug 2013 A1
20130233471 Kappesser et al. Sep 2013 A1
20130292039 Peters et al. Nov 2013 A1
20130337256 Farmer et al. Dec 2013 A1
20130337265 Farmer Dec 2013 A1
20140034214 Boyer et al. Feb 2014 A1
20140061974 Tyler Mar 2014 A1
20140159284 Leavitt Jun 2014 A1
20140232035 Bheda Aug 2014 A1
20140268604 Wicker et al. Sep 2014 A1
20140291886 Mark et al. Oct 2014 A1
20150136455 Fleming May 2015 A1
20160012935 Rothfuss Jan 2016 A1
20160031155 Tyler Feb 2016 A1
20160046082 Fuerstenberg Feb 2016 A1
20160052208 Debora et al. Feb 2016 A1
20160082641 Bogucki et al. Mar 2016 A1
20160082659 Hickman et al. Mar 2016 A1
20160107379 Mark et al. Apr 2016 A1
20160114532 Schirtzinger et al. Apr 2016 A1
20160136885 Nielsen-Cole et al. May 2016 A1
20160144565 Mark et al. May 2016 A1
20160144566 Mark et al. May 2016 A1
20160192741 Mark Jul 2016 A1
20160200047 Mark et al. Jul 2016 A1
20160243762 Fleming et al. Aug 2016 A1
20160263806 Gardiner Sep 2016 A1
20160263822 Boyd Sep 2016 A1
20160263823 Espiau et al. Sep 2016 A1
20160271876 Lower Sep 2016 A1
20160297104 Guillemette et al. Oct 2016 A1
20160311165 Mark et al. Oct 2016 A1
20160325491 Sweeney et al. Nov 2016 A1
20160332369 Shah et al. Nov 2016 A1
20160339633 Stolyarov et al. Nov 2016 A1
20160346998 Mark et al. Dec 2016 A1
20160361869 Mark et al. Dec 2016 A1
20160368213 Mark Dec 2016 A1
20160368255 Witte et al. Dec 2016 A1
20170007359 Kopelman et al. Jan 2017 A1
20170007360 Kopelman et al. Jan 2017 A1
20170007361 Boronkay et al. Jan 2017 A1
20170007362 Chen et al. Jan 2017 A1
20170007363 Boronkay Jan 2017 A1
20170007365 Kopelman et al. Jan 2017 A1
20170007366 Kopelman et al. Jan 2017 A1
20170007367 Li et al. Jan 2017 A1
20170007368 Boronkay Jan 2017 A1
20170007386 Mason et al. Jan 2017 A1
20170008333 Mason et al. Jan 2017 A1
20170015059 Lewicki Jan 2017 A1
20170015060 Lewicki et al. Jan 2017 A1
20170015061 Lewicki Jan 2017 A1
20170021565 Deaville Jan 2017 A1
20170028434 Evans et al. Feb 2017 A1
20170028588 Evans et al. Feb 2017 A1
20170028617 Evans et al. Feb 2017 A1
20170028619 Evans et al. Feb 2017 A1
20170028620 Evans et al. Feb 2017 A1
20170028621 Evans et al. Feb 2017 A1
20170028623 Evans et al. Feb 2017 A1
20170028624 Evans et al. Feb 2017 A1
20170028625 Evans et al. Feb 2017 A1
20170028627 Evans et al. Feb 2017 A1
20170028628 Evans et al. Feb 2017 A1
20170028633 Evans et al. Feb 2017 A1
20170028634 Evans et al. Feb 2017 A1
20170028635 Evans et al. Feb 2017 A1
20170028636 Evans et al. Feb 2017 A1
20170028637 Evans et al. Feb 2017 A1
20170028638 Evans et al. Feb 2017 A1
20170028639 Evans et al. Feb 2017 A1
20170028644 Evans et al. Feb 2017 A1
20170030207 Kittleson Feb 2017 A1
20170036403 Ruff et al. Feb 2017 A1
20170050340 Hollander Feb 2017 A1
20170057164 Hemphill et al. Mar 2017 A1
20170057165 Waldrop et al. Mar 2017 A1
20170057167 Tooren et al. Mar 2017 A1
20170057181 Waldrop et al. Mar 2017 A1
20170064840 Espalin et al. Mar 2017 A1
20170066187 Mark et al. Mar 2017 A1
20170087768 Bheda Mar 2017 A1
20170106565 Braley et al. Apr 2017 A1
20170120519 Mark May 2017 A1
20170129170 Kim et al. May 2017 A1
20170129171 Gardner et al. May 2017 A1
20170129176 Waatti et al. May 2017 A1
20170129182 Sauti et al. May 2017 A1
20170129186 Sauti et al. May 2017 A1
20170144375 Waldrop et al. May 2017 A1
20170151728 Kunc et al. Jun 2017 A1
20170157828 Mandel et al. Jun 2017 A1
20170157831 Mandel et al. Jun 2017 A1
20170157844 Mandel et al. Jun 2017 A1
20170157851 Nardiello et al. Jun 2017 A1
20170165908 Pattinson et al. Jun 2017 A1
20170173868 Mark Jun 2017 A1
20170182712 Scribner et al. Jun 2017 A1
20170210074 Ueda et al. Jul 2017 A1
20170217088 Boyd et al. Aug 2017 A1
20170232674 Mark Aug 2017 A1
20170259502 Chapiro et al. Sep 2017 A1
20170259507 Hocker Sep 2017 A1
20170266876 Hocker Sep 2017 A1
20170274585 Armijo et al. Sep 2017 A1
20170284876 Moorlag et al. Oct 2017 A1
Foreign Referenced Citations (28)
Number Date Country
4102257 Jul 1992 DE
2589481 Jan 2016 EP
3219474 Sep 2017 EP
100995983 Nov 2010 KR
101172859 Aug 2012 KR
2013017284 Feb 2013 WO
2016088042 Jun 2016 WO
2016088048 Jun 2016 WO
2016110444 Jul 2016 WO
2016159259 Oct 2016 WO
2016196382 Dec 2016 WO
2017006178 Jan 2017 WO
2017006324 Jan 2017 WO
2017051202 Mar 2017 WO
2017081253 May 2017 WO
2017085649 May 2017 WO
2017087663 May 2017 WO
2017108758 Jun 2017 WO
2017122941 Jul 2017 WO
2017122942 Jul 2017 WO
2017122943 Jul 2017 WO
2017123726 Jul 2017 WO
2017124085 Jul 2017 WO
2017126476 Jul 2017 WO
2017126477 Jul 2017 WO
2017137851 Aug 2017 WO
2017142867 Aug 2017 WO
2017150186 Sep 2017 WO
Non-Patent Literature Citations (12)
Entry
A. Di. Pietro & Paul Compston, Resin Hardness and Interlaminar Shear Strength of a Glass-Fibre/Vinylester Composite Cured with High Intensity Ultraviolet (UV) Light, Journal of Materials Science, vol. 44, pp. 4188-4190 (Apr. 2009).
A. Endruweit, M. S. Johnson, & A. C. Long, Curing of Composite Components by Ultraviolet Radiation: A Review, Polymer Composites, pp. 119-128 (Apr. 2006).
C. Fragassa, & G. Minak, Standard Characterization for Mechanical Properties of Photopolymer Resins for Rapid Prototyping, 1st Symposium on Multidisciplinary Studies of Design in Mechanical Engineering, Bertinoro, Italy (Jun. 25-28, 2008).
Hyouk Ryeol Choi and Se-gon Roh, In-pipe Robot with Active Steering Capability for Moving Inside of Pipelines, Bioinspiration and Robotics: Walking and Climbing Robots, Sep. 2007, p. 544, I-Tech, Vienna, Austria.
Kenneth C. Kennedy II & Robert P. Kusy, UV-Cured Pultrusion Processing of Glass-Reinforced Polymer Composites, Journal of Vinyl and Additive Technology, vol. 1, Issue 3, pp. 182-186 (Sep. 1995). cited by applicant.
M. Martin-Gallego et al., Epoxy-Graphene UV-Cured Nanocomposites, Polymer, vol. 52, Issue 21, pp. 4664-4669 (Sep. 2011).
P. Compston, J. Schiemer, & A. Cvetanovska, Mechanical Properties and Styrene Emission Levels of a UV-Cured Glass-Fibre/Vinylester Composite, Composite Structures, vol. 86, pp. 22-26 (Mar. 2008).
S Kumar & J.-P. Kruth, Composites by Rapid Prototyping Technology, Materials and Design, (Feb. 2009).
S. L. Fan, F. Y. C. Boey, & M. J. M. Abadie, UV Curing of a Liquid Based Bismaleimide-Containing Polymer System, eXPRESS Polymer Letters, vol. 1, No. 6, pp. 397-405 (2007).
T. M. Llewelly-Jones, Bruce W. Drinkwater, and Richard S. Trask; 3D Printed Components With Ultrasonically Arranged Microscale Structure, Smart Materials and Structures, 2016, pp. 1-6, vol. 25, IOP Publishing Ltd., UK.
Vincent J. Lopata et al., Electron-Beam-Curable Epoxy Resins for the Manufacture of High-Performance Composites, Radiation Physics and Chemistry, vol. 56, pp. 405-415 (1999).
Yugang Duan et al., Effects of Compaction and UV Exposure on Performance of Acrylate/Glass-Fiber Composites Cured Layer by Layer, Journal of Applied Polymer Science, vol. 123, Issue 6, pp. 3799-805 (May 15, 2012).
Related Publications (1)
Number Date Country
20180229429 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
62459398 Feb 2017 US