The superior effectiveness of the inventive additives for mineral oils and mineral oil distillates is described with reference to the CFPP test (Cold Filter Plugging Test to EN 116).
The following additives were used:
Process A): in a continuous tubular reactor, ethylene, propene and vinyl acetate were copolymerized at 200 MPa and a peak temperature of 220° C. with addition of the molecular weight regulator specified in table 1. The polymer formed was removed from the reaction mixture and then freed of residual monomers.
Process B): in a continuous high-pressure autoclave, ethylene, vinyl acetate and propylene were copolymerized with addition of a 10% by weight solution of bis(2-ethylhexyl)peroxodicarbonate as an initiator and the molecular weight regulator specified in table 1. The polymer formed was removed from the reaction mixture and then freed of residual monomers.
For comparison, an ethylene vinyl-acetate copolymer (Ex. 24), a terpolymer of ethylene, vinyl acetate and propene according to EP 0 190 553 (Ex. 25), a terpolymer of ethylene, vinyl acetate and 4-methylpentene-1 according to EP 0 807 642 (Ex. 26), and a terpolymer of ethylene, vinyl acetate and isobutylene (Ex. 27) were employed.
The vinyl acetate content was determined by means of pyrolysis of the polymer which had been freed of residual monomers at 150° C./100 mbar. To this end, 100 mg of the polymer are dissociated thermally with 200 mg of pure polyethylene in a pyrolysis flask at 450° C. in a closed system under reduced pressure for 5 minutes, and the dissociation gases are collected in a 250 ml round-bottom flask. The acetic acid dissociation product is reacted with an NaI/KIO3 solution, and the iodine released is titrated with Na2S2O3 solution.
The total number of methyl groups in the polymer which do not stem from vinyl esters is determined by means of 1H NMR spectroscopy at a measurement frequency of 500 MHz on 10 to 15% solutions in C2D2Cl4 at 300 K. The integral of the methylprotons between about 0.7 and 0.9 ppm is determined as a ratio relative to that of the methylene and methine protons between about 0.9 and 1.9 ppm. A correction of the number of the methyl groups for the structural units which are derived from the moderator used and overlap with the signals of the main polymer chain is effected on the basis of the methine proton of the moderator which appears separately (for example, methyl ethyl ketone and propanal exhibit multiplets at 2.4 and 2.5 ppm).
The content of methyl groups which derive from propene is determined by means of 13C NMR spectroscopy at a measurement frequency of 125 MHz on likewise 10 to 15% solutions in C2D2Cl4 at 300 K. The integral of the methyl groups derived from propene between 19.3 and 20.2 ppm is determined as a ratio relative to that of the aliphatic hydrocarbons of the polymer backbone between 22 and 44 ppm. Advantageously, 1H and 13C NMR measurement is performed on the same sample.
The number of chain ends is determined by subtracting the number of methyl groups derived from propene, determined by means of 13C NMR, from the total number of methyl groups, determined by means of 1H NMR. The two values should be treated as dimensionless numbers.
To assess the cold flowability of concentrates which contain inventive additives, the abovementioned active substances were homogenized at 35% strength in a relatively high-boiling aromatic solvent (Solvent Naphtha) with stirring at 60° C. The pour point of the resulting concentrate was subsequently determined.
The test oils used were current oils from European refineries. The CFPP value was determined to EN 116 and the cloud point to ISO 3015.
The effectiveness of the inventive terpolymers in test oil 2 was determined in combination of 75% by weight of the inventive polymers with 25% by weight of an ethylene copolymer with 24% by weight of vinyl acetate and a melt viscosity measured at 140° C. of 280 mPas.
The effectiveness of the inventive terpolymers was determined in test oils 3 and 4 in a combination of 85% by weight of the inventive polymers with 15% by weight of a condensate of alkylphenol and formaldehyde having a mean molecular weight of 12 000 g/mol.
The experiments show that the inventive additives, with regard to the improvement in the cold flowability and especially the lowering of the CFPP of middle distillates are superior to the prior art additives. At the same time, their concentrates are usable at relatively low temperatures as corresponding copolymers of ethylene and vinyl esters.
Number | Date | Country | Kind |
---|---|---|---|
102006033151.6 | Jul 2006 | DE | national |