The following additives were used:
Preparation of ethylene copolymers A
Process A): in a continuous tubular reactor, ethylene, propene and vinyl acetate were copolymerized at 200 MPa and a peak temperature of 250° C. with addition of a mixture of various free-radical chain starters and of the molecular weight regulator specified in table 1. The polymer formed was removed from the reaction mixture and then freed of residual monomers.
Process B): in a continuous high-pressure autoclave, ethylene, vinyl acetate and propene were copolymerized with addition of a 10% by weight solution of bis(2-ethylhexyl)peroxodicarbonate as an initiator and the molecular weight regulator specified in table 1. The polymer formed was removed from the reaction mixture and then freed of residual monomers.
For comparison, a terpolymer of ethylene, vinyl acetate and propene according to EP 0 190 553, a terpolymer of ethylene, vinyl acetate and 4-methylpentene-1 according to EP 0 807 642, and a terpolymer of ethylene, vinyl acetate and isobutylene were employed.
The vinyl acetate content was determined by means of pyrolysis of the polymer which had been freed of residual monomers at 150° C./100 mbar. To this end, 100 mg of the polymer are dissociated thermally with 200 mg of pure polyethylene in a pyrolysis flask at 450° C. in a closed system under reduced pressure for 5 minutes, and the dissociation gases are collected in a 250 ml round-bottom flask. The acetic acid dissociation product is reacted with an Nal/KIO3 solution, and the iodine released is titrated with Na2S2O3 solution.
The total number of methyl groups in the polymer which do not stem from vinyl esters is determined by means of 1H NMR spectroscopy at a measurement frequency of 500 MHz on 10 to 15% solutions in C2D2Cl4 at 300 K. The integral of the methylprotons between 0.7 and 0.9 ppm is determined as a ratio relative to that of the methylene and methine protons between 0.9 and 1.9 ppm. A correction of the number of the methyl groups for the structural units which are derived from the moderator used and overlap with the signals of the main chain is effected on the basis of the methine proton of the moderator which appears separately (for example, methyl ethyl ketone exhibits multiplets at 2.4 and 2.5 ppm).
The content of methyl groups which derive from propene is determined by means of 13C NMR spectroscopy at a measurement frequency of 125 MHz on likewise 10 to 15% solutions in C2D2Cl4 at 300 K. The integral of the methyl groups derived from propene between 19.3 and 20.2 ppm is determined as a ratio relative to that of the aliphatic hydrocarbons of the polymer backbone between 22 and 44 ppm. Advantageously, 1H and 13C NMR measurement is performed on the same sample.
The number of chain ends is determined by subtracting the number of methyl groups derived from propene, determined by means of 13C NMR, from the total number of methyl groups, determined by means of 1H NMR. The two values should be treated as dimensionless numbers.
Characterization of flow improver components (B) and further flow improver components (C):
All additives A, B and C used were, unless stated otherwise, used as 50% by weight dilutions in relatively high-boiling, predominantly aliphatic solvents.
Table 2: Characterization of the Test Oils Used
The test oils used were current oils from European refineries. The CFPP value was determined to EN 116 and the cloud point to ISO 3015. The paraffin content was determined by gas chromatography separation of the oil with detection by an FID detector and calculation of the integral of the n-paraffins with a chain length of at least 20 carbon atoms in relation to the total integral.
Effectiveness of the Additives as Cold Flow Improvers
The superior effectiveness of the inventive additives for mineral oils and mineral oil distillates is described with reference to the CFPP test (Cold Filter Plugging Test to EN 116).
Handling and Filter Blocking Tendency of the Polymers
To assess the cold flowability of concentrates of the inventive polymers, the polymers described in table 1 were dissolved at 35% strength by weight in a predominantly aliphatic solvent mixture with boiling range of 175-260° C. and a flashpoint of 66° C. To this end, polymer and solvent were heated to 80° C. with stirring and, after homogenization, cooled to room temperature.
Subsequently, the pour point of the concentrate was determined to DIN ISO 3016.
In addition, the filter blocking tendency of a test oil treated with inventive additives was determined to IP 387/97. In this test, 300 ml of an additized diesel fuel are filtered through a 1.6 pm glass fiber filter at defined temperature and a pump output of 20 ml/min. The test is considered to have been passed when a volume of 300 ml passes through the filter without the pressure (P) having attained or exceeded 105 kPa (filter blocking tendency FBT=(1+(P/105)2)0.5≦1.41). It is considered not to have been passed when the pressure reaches 105 kPa before the total volume (V) of 300 ml has passed through the filter (filter blocking tendency FBT=(1+(300/V)2)0.5>1.41). For the assessment of the additives, it is also important that the filter blocking tendency of the unadditized fuel is increased as little as possible by adding the additive.
For the performance of the test, 350 ml of the test oil 6 of temperature 20-22° C. were admixed with 500 ppm of the additive of temperature 60° C. (50% solution). After manual shaking and storage at 60° C. for 30 minutes, the additized oil was stored at 20° C. for 16 hours. Subsequently, the additized oil was used for filtration without shaking again.
The experiments show that the inventive additives, with regard to the improvement in the cold flowability and especially the lowering of the CFPP of middle distillates are superior to the prior art additives. At the same time, they are usable at relatively low temperatures. In particular, they are also usable in applications in which particularly clean fuels with very low filter blocking tendency are required.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 033 150.8 | Jul 2006 | DE | national |