Internal combustion engines may include a fuel rail for distributing fuel to one or more fuel injectors. A pressure of the fuel within the fuel rail may be identified from a fuel rail pressure sensor. The fuel injectors may be operated to inject fuel over a fuel injection pulse-width that is selected, based on the pressure of the fuel within the fuel rail as identified by the fuel rail pressure sensor, to obtain a suitable air-fuel ratio for ignition.
The inventors herein have recognized that degradation of the fuel rail pressure sensor, including sensor failure, may cause uncertainty as to the pressure of the fuel within the fuel rail. As such, a deviation in the amount of fuel injected by the fuel injectors may occur as a result of this uncertainty. United States published patent application number 2007251502 attempts to address this issue by determining whether a pressure sensor is in an abnormal operation state. If the pressure sensor is determined to be in an abnormal operation state, then a duty of a pulse width modulation signal for a fuel pump is fixedly maintained at 100%.
However, the inventors herein have recognized a further disadvantage with the above approach. For example, if the fuel pump is continuously operated at a high pressure setting in response to an abnormal pressure sensor as taught by US 2007251502, then minimum pulse width constraints associated with the fuel injectors may cause an air-fuel ratio formed in the combustion chambers of the engine to be overly rich under some conditions. This deviation in the fuel injection amount may cause excessively rich combustion leading to spark plug fouling during attempted start-up of the internal combustion engine, increased levels of combustion products, and reduced engine efficiency.
To address these or other issues, the inventors have provided an engine system and a method which enables starting of the engine system with a higher fuel pressure to obtain better fuel atomization while also enabling subsequent operation of the engine with a lower fuel pressure even if the fuel pressure sensor is in a degraded state. In one embodiment, the method includes adjusting a fuel pressure within a fuel rail to a first value by operating a high pressure fuel pump to provide pressurized fuel to a high pressure regulation device that exceeds a pressure relief setting of the high pressure regulation device. After the fuel pressure within the fuel rail attains the first value, the method further includes initiating delivery of fuel to the internal combustion engine from the fuel rail by successively injecting fuel directly into combustion chambers of the internal combustion engine. After at least a first fuel injection event, the method includes reducing the fuel pressure within the fuel rail from the first value to a second value over subsequent successive fuel injection events by adjusting an operating parameter of the high pressure fuel pump.
In this way, a higher fuel pressure may be initially obtained to provide increased fuel vaporization and a lower fuel pressure may be thereafter obtained to provide reduced variability in the fuel injection amount at lower engine load conditions, such as at engine idle. This reduced variability may serve to decrease the likelihood of spark plug fouling that may otherwise occur during start-up of the internal combustion engine with a degraded fuel rail pressure sensor. Furthermore, by optionally increasing the air-fuel ratio over successive fuel injection events while the fuel rail pressure is decreasing, the likelihood of spark plug fouling may be further reduced in the event of a failed or degraded fuel rail pressure sensor.
Engine system 100 may include a fuel rail 130 that is configured to distribute fuel to the fuel injectors, including direct fuel injector 132. Fuel may be supplied to fuel rail 130 from fuel tank 150 via a fuel passage 152. Fuel passage 152 may include one or more fuel pumps. For example, fuel passage 152 may include a low pressure fuel pump 142 and a high pressure fuel pump 146.
Fuel passage 152 may include one or more pressure regulation devices for regulating a pressure of the fuel within a particular region of fuel passage 152. As a non-limiting example, a low pressure regulation device 144 may be provided along a first fuel regulation passage 154 and a high pressure regulation device 148 may be provided along a second fuel regulation passage 156.
First fuel regulation passage 154 may communicate with fuel passage 152 downstream of low pressure fuel pump 142 so that the fuel pressure provided at an output of low pressure fuel pump 142 may be regulated to a value that is prescribed by low pressure regulation device 144. In some embodiments, low pressure regulation device 144 may include a mechanical or electromechanical check valve or pressure relief valve. In some embodiments, low pressure regulation device 144 may include a fuel pressure regulator. As a non-limiting example, low pressure regulation device 144 may be configured to limit a pressure of the fuel downstream of low pressure fuel pump 142 to approximately 0.4 MPa. However, it should be appreciated that low pressure regulation device 144 may be configured to limit the pressure downstream of low pressure fuel pump 142 to other suitable values.
A second fuel regulation passage 156 may communicate with fuel passage 152 downstream of high pressure fuel pump 146 so that fuel pressure provided at an output of high pressure fuel pump 146 may be regulated to a value that is prescribed by high pressure regulation device 148. In some embodiments, high pressure regulation device 148 may include a mechanical or electromechanical check valve, or a fuel pressure regulator. In some embodiments, high pressure regulation device 148 in combination with low pressure regulation device 144 may be configured to limit a pressure of the fuel in fuel passage 152 downstream of high pressure fuel pump 146 to approximately 19.5 MPa. As such, high pressure regulation device 148 may have a higher pressure regulation setting than low pressure regulation device 144. However, it should be appreciated that high pressure regulation device 148 may be configured to limit the pressure downstream of high pressure fuel pump 146 to other suitable values.
Engine system 100 may include a control system 160. Control system 160 may include a processor 162 and memory 164. Memory 164 may be configured to hold or store executable instructions 166 that, when executed by processor 162, causes the processor to perform one or more of the various methods or processes described herein.
As one example, control system 160 may be configured to adjust an operating parameter of low pressure fuel pump 142 and high pressure fuel pump 146 to vary a pressure of fuel provided to fuel rail 130 by each pump. As another example, control system 160 may be configured to adjust a pressure regulation setting of one or more of low pressure regulation device 144 and high pressure regulation device 148 to vary a pressure at which the fuel is provided to fuel rail 130, such as where devices 144 or 144 include electromechanical check valves or electromechanical pressure regulators that enable their pressure settings to be adjusted. As will be described in the context of the process flow or methods of
As yet another example, control system 160 may control activation of the fuel injectors, including direct fuel injector 132 to vary an amount of fuel that is injected into the combustion chambers, including combustion chamber 120. For example, control system 160 may be configured to vary a pulse-width of direct fuel injector 132 in response to operating conditions associated with engine system 100. Control system 160 may also activate or deactivate a starting motor 192 in response to operating conditions associated with engine system 100. Starting motor 192 may be operatively coupled to crankshaft 172 and may be configured to rotate crankshaft 172 when activated by control system 160.
Control system 160 may also receive an indication of the various operating conditions associated engine system 100 from various sensors, including a fuel rail pressure sensor 180 which provides an indication of a pressure of fuel within fuel rail 130, a crankshaft sensor 182 which provides an indication of engine rotational speed and/or rotational position with respect to crankshaft 172 of internal combustion engine 110, an engine temperature sensor 184 which provides an indication of a temperature of internal combustion engine 110, an exhaust gas composition sensor 186 which provides an indication of exhaust gas composition flowing through exhaust passage 174 of internal combustion engine 110, an ignition sensor 188 which provides an indication of an ignition key position or a user selected setting of any suitable user input device for enabling a user to start the internal combustion engine, and an ambient temperature sensor 190 which provides an indication of ambient temperature to the control system. In some embodiments, exhaust gas composition sensor 186 may include an exhaust oxygen sensor which can provide control system 160 with an indication of an air-fuel ratio of an air and fuel charge that was combusted at the combustion chambers of internal combustion engine 110.
Intake valve 252 may be opened and closed by valve activation device 255 to admit intake air received via an intake passage 244 into combustion chamber 120. In some embodiments, combustion chamber 120 may include two or more intake valves. Exhaust valve 254 may be opened and closed by valve activation device 257 to exhaust combustion gases from combustion chamber 120 into exhaust passage 248. In some embodiments, combustion chamber 120 may include two or more exhaust valves. Valve activation devices 255 and 257 may include cam actuators or electromagnetic valve actuators. In some embodiments, control system 160 may be configured to vary an opening and closing timing of the intake and exhaust valves via their respective valve actuation devices in response to operating conditions associated with the engine system.
Intake passage 244 may supply intake air to two or more combustion chambers of internal combustion engine 110, including combustion chamber 120. Similarly, exhaust passage 248 may exhaust combustion gases from two or more combustion chambers of internal combustion engine 110, including combustion chamber 120. Intake passage 244 may include an intake throttle 262, the position of which may be adjusted by control system 160 in response to operating conditions associated with the engine system. Exhaust passage 248 may include an exhaust after treatment device 270.
A fuel injection pulse width of direct fuel injector 132 may be adjusted by control system 160 via an electronic driver 268. A spark plug 292 may be optionally provided at combustion chamber 120. A spark timing provided by spark plug 292 may be activated to issue an ignition spark by control system 160 via an ignition system 288. In some embodiments, ignition system 288 and electronic driver 268 may form part of control system 160. Intake passage 244 may include a mass airflow sensor 220 and a manifold air pressure sensor 222 in some embodiments. Control system may also receive user input from a user 232 via an accelerator pedal 230 including a pedal position sensor 234 (e.g., where engine system 100 is provided for an automobile).
A non-limiting example of control system 160 is provided in
Some engine systems, including gasoline direct injection (GDI) systems may rely on a fuel rail pressure sensor to control the fuel quantity that is injected into the combustion chambers of the internal combustion engine. In the case of a degradation (e.g., failure) of the fuel rail pressure sensor, these systems may have two “open loop” pressures that are available, including a minimum pressure or low pressure setting (LPS) (e.g., 0.4 MPa) that is provided by a low pressure regulation device (e.g., 142 of
When the internal combustion engine is shut-off (e.g., not carrying out combustion), the fuel may warm toward engine coolant temperature. For a first period of time after shut-off (e.g., for a period of approximately 20 minutes) the fuel rail temperature may increase and after that it may fall for hours toward ambient temperature. Since the fuel rail may be maintained as a closed, rigid container by one or more pressure regulation devices, the fuel rail pressure may increase as the fuel contained therein attempts to expand with increasing fuel rail temperature. After this first period of time after shut-off where fuel heating occurs, the fuel may begin to cool. At this point, the fuel rail temperature may be essentially isothermal with engine coolant temperature. As the fuel rail temperature cools, the fuel rail pressure may drop toward fuel vapor pressure. Thus, during the shut-off period of the internal combustion engine, the fuel rail pressure may be as high as the HPS (e.g. 19.5 MPa) and may be as low as fuel vapor pressure (less than 0.1 MPa, absolute). This range of possible fuel rail pressures may provide a source of uncertainty as to the actual fuel rail pressure if the fuel rail pressure sensor becomes degraded.
In some embodiments, if the fuel rail pressure sensor fails during operation of the internal combustion engine, a transition to the above described open loop pressure may be performed without engine stall. It can only be performed without stall if we program an estimate of fuel pressure based on pump and injector operation. A pump fully on drives the pressure to the high limit of mechanically regulated pressure. A pump fully off drives the fuel rail pressure to lift pump pressure as fuel injection occurs. By knowing how the pump and the injectors are being controlled, one can compute the expected fuel mass gain in the fuel rail. Given the mass change the pressure change is directly computed from the effective bulk modulus and fuel rail volume. Whatever one uses as a fuel rail estimate, it needs to be updated knowing the rate mass change in the fuel rail. Guessing initial fuel rail pressure high results in rich error and guessing low results in lean error. But a running engine often gets close to a usable estimate quick enough to avoid engine stall.
However, GDI engines and other direct injection internal combustion engines may be more susceptible to spark plug fouling during an attempted engine start if the air-fuel ratio of the air and fuel charge that is provided to the combustion chambers is outside of the flammability limits of the fuel. For example, if an estimated fuel pressure results in an air-fuel ratio of the air and fuel charge that is too rich at start-up (e.g., the air-fuel ratio is overly rich), spark plug fouling may occur.
In addition to the above issues, suitable atomization or vaporization of the injected fuel may be difficult to achieve during start-up of the internal combustion engine since the temperature of the internal combustion engine at start-up may be substantially less than the temperature at some period after start-up has occurred. Therefore, higher fuel injection pressures may be desirable at start-up to achieve suitable atomization or vaporization of the fuel. However, these higher fuel pressures may increase variability of fueling the internal combustion engine after start-up, particularly at lower load operation. As such, it is desirable to provide a fuel rail pressure that is initially high to provide increased fuel vaporization and atomization followed by a lower fuel rail pressure to provide reduced variability in the amount of fuel delivered to the internal combustion engine. These different fuel rail pressure targets may be difficult to achieve, particularly if the fuel rail pressure sensor has been degraded.
Referring to 310 of
It should be appreciated that due to the configuration of some fuel systems (e.g., as depicted in
At 312, a pressure of fuel within the fuel rail (a fuel rail pressure) may be estimated independent of an indication of fuel rail pressure provided by fuel rail pressure sensor 180. As a non-limiting example, control system 160 may be configured to estimate the fuel rail pressure using one or more of the following approaches.
In some embodiments, during operation of the internal combustion engine (prior to the present starting operation), the control system may maintain an estimate of a temperature of the fuel within the fuel rail (a fuel rail temperature). This estimate may be a function of one or more of the following factors: an ambient temperature which can provide an estimate of a temperature of the fuel within the fuel tank, an engine coolant temperature provided by engine temperature sensor 184 which can provide an indication of the temperature of internal combustion engine 110 near the fuel rail, and a fuel consumption rate of the internal combustion engine which provides an indication of a flow rate of the fuel through the fuel rail. For example, based on one or more of the above factors, the control system may estimate that the temperature of the fuel within the fuel rail approaches the engine coolant temperature at lower fuel flow rates and approaches the ambient temperature or fuel tank temperature at higher fuel flow rates.
In some embodiments, at key-off or shut-off of the internal combustion engine, the last estimate of the fuel rail temperature may be stored in memory (e.g., memory 164) by the control system. Further, at key-off or shut-off of the internal combustion engine, the control system may begin measuring a time since the key-off or shut-off by activating a time-since-key-off timer. For example, this time-since-key-off timer may be represented as instructions 166 held in memory 164 and may be executed by processor 162 at shut-off of the internal combustion engine. For example, in some embodiments, a fuel rail pressure may be inferred after shut-off of the internal combustion engine, where the fuel rail pressure is known to initially climb (e.g., due to fuel heating within the fuel rail) at a rate no less than a lower bound rate and at a rate now more than an upper bound rate. As another example, after even longer periods of time after shut-off of the engine, the fuel within the fuel rail pressure may cool-off to a temperature where the fuel resides in the fuel rail at fuel vapor pressure, which can provide yet another reliable estimate of fuel rail pressure after shut-of the engine.
In some embodiments, such as where engine system is maintained in an active state while internal combustion engine 110 is shut-off, such as where engine system 100 is part of a hybrid vehicle propulsion system or a stop-start vehicle, the control system may continue estimating the fuel rail temperature based on temperature feedback from one or more temperature sensors without utilizing the previously described time-since-key-off timer. Further, in some embodiments, the control system may utilize a direct measurement of fuel rail temperature obtained from a fuel rail temperature sensor, which may also be represented schematically at 180 in
As a first non-limiting example, if the engine coolant temperature (ENGINE_COOLANT_TEMPERATURE) is cooler than the fuel rail temperature at key off (FUEL_RAIL_TEMPERATURE_KEY_OFF), then the control system may judge that fuel rail cooling has occurred. As such, if
(ENGINE_COOLANT_TEMPERATURE<FUEL_RAIL_TEMPERATURE_KEY_OFF)
Then the estimated fuel rail pressure (ESTIMATED_FUEL_PRESSURE) is governed by the lift pump pressure (LIFT_PUMP_PRESSURE).
ESTIMATED_FUEL_PRESSURE=LIFT_PUMP_PRESSURE−10 psi
As another non-limiting example, when at least 20 minutes (or other suitable period of time) have elapsed since the internal combustion engine has been shut-off, the following approach may be used to estimate the fuel rail pressure at the next key-on. The control system may assume that the estimated fuel rail temperature (ESTIMATED_FUEL_TEMPERATURE) is approximately equal to the engine coolant temperature identified from engine temperature sensor 184.
As such, a rise in the fuel rail temperature (FUEL_RAIL_TEMPERATURE_RISE) is then equal to the difference between the fuel rail temperature at the previous engine shutdown (FUEL_RAIL_TEMPERATURE_KEY_OFF and the estimated fuel temperature (ESTIMATED_FUEL_TEMPERATURE):
FUEL_RAIL_TEMPERATURE_RISE=FUEL_RAIL_TEMPERATURE_KEY_OFF−ESTIMATED_FUEL_TEMPERATURE
Further, the estimated fuel pressure at the previous engine shutdown (ESTIMATED_FUEL_PRESSURE_KEY_OFF) is then equal to the product of the fuel rail temperature rise, the coefficient of thermal expansion of the fuel (FUEL_COEFFICIENT_OF_THERMAL_EXPANSION) and the effective bulk modulus of the fuel rail (EFFECTIVE_FUEL_RAIL_BULK_MODULUS):
ESTIMATED_FUEL_PRESSURE_KEY_OFF=(FUEL_RAIL_TEMPERATURE_RISE*FUEL_COEFFICIENT_OF_THERMAL_EXPANSION)*EFFECTIVE_FUEL_RAIL_BULK_MODULUS
As an example, the FUEL_COEFFICIENT_OF_THERMAL_EXPANSION is equal to 0.001 per degree C. and the EFFECTIVE_FUEL_RAIL_BULK_MODULUS is equal to 700 MPa.
Finally, the estimated fuel pressure is then equal to the greater of the lift pump pressure (LIFT_PUMP_PRESSURE)−10 psi and the estimated fuel pressure at the previous engine shutdown:
ESTIMATED_FUEL_PRESSURE=max((LIFT_PUMP_PRESSURE−10 psi), ESTIMATED_FUEL_PRESSURE_KEY_OFF))
As yet another non-limiting example, when less than 20 minutes (or other suitable period of time) has elapsed since the internal combustion engine has been shutdown, the following approach may be used to estimate the fuel rail pressure at the next key-on.
The fuel rail temperature rise is then equal to the following:
FUEL_RAIL_TEMPERATURE_RISE=(ENGINE_COOLANT_TEMPERATURE−FUEL_RAIL_TEMPERATURE_KEY_OFF)*(1−exp(−(TIME_SINCE_KEY_OFF/TIME_CONSTANT)).
The estimated fuel rail pressure at the previous engine shutoff is then equal to the following equation, at least while the fuel rail pressure is above fuel vapor pressure:
ESTIMATED_FUEL_PRESSURE_KEY_OFF=FUEL_RAIL_TEMPERATURE_RISE*FUEL_COEFFICIENT_OF_THERMAL_EXPANSION*EFFECTIVE_FUEL_RAIL_BULK_MODULUS
Finally, the estimated fuel rail pressure is equal to the following equation:
ESTIMATED_FUEL_PRESSURE=max((LIFT_PUMP_PRESSURE−10 psi), ESTIMATED_FUEL_PRESSURE_KEY_OFF))
In some embodiments, the estimated fuel rail pressure obtained at 312 may be greater than the actual fuel rail pressure as a result of fuel injector leakage or leakage through the high pressure fuel pump (e.g., through one or more check valves of the high pressure fuel pump) from its downstream side of fuel passage 152 to its upstream side of fuel passage 152. As such, the estimated fuel rail pressure may over estimate the actual fuel rail pressure. Hence, the estimated fuel rail pressure that may be used by the control system to control fuel injection amounts may result in an overall leaner air-fuel being formed in the combustion chambers than prescribed by the control system. This leaner air-fuel ratio of the air and fuel charge may be used advantageously to reduce the likelihood of spark plug fouling during start-up as will be described at 330.
At 314, the method may include assessing a state of the fuel rail pressure sensor. For example, the control system may be configured to identify whether the fuel rail pressure sensor is in a degraded state. The fuel rail pressure sensor may be detected to be an unreliable indicator of fuel rail pressure (e.g., degraded) during operation of the engine, from previous operation of the engine, or at the time of engine start. One objective may be to transition the engine system from working with a measured fuel rail pressure to working with a fuel rail pressure achieved in an alternate manner. One may achieve a “default pressure” by a number of ways including using a maximum fuel rail pressure relief valve (e.g., the high pressure regulation device) to regulate fuel rail pressure to a known high pressure or disabling the high pressure fuel pump (e.g., perform fuel volume control) so that the fuel rail pressure becomes a pressure that corresponds to the lift pump pressure (e.g., a value that is at or slightly less than lift pump pressure as a result of pressure drop through the fuel circuit).
In some embodiments, the control system may judge that the fuel rail pressure sensor is in a degraded state when it has stopped functioning or when it provides an indication of fuel rail pressure to the control system that deviates from the estimated fuel rail pressure by a predetermined amount. For example, the control system may determine whether the fuel pressure sensor is in a degraded state by comparing the estimated fuel rail pressure identified at 312 to the fuel rail pressure measured by the fuel rail pressure sensor. If the fuel rail pressure indicated by the fuel rail pressure senor deviates from the estimated fuel rail pressure by at least the predetermined amount, then the control system may assess the state of fuel rail pressure sensor as a degraded state. Conversely, the fuel rail pressure sensor may be assessed by the control system to be in a non-degraded state when the deviation of the fuel rail pressure as measured by the fuel rail pressure sensor is less than the predetermined amount relative to the estimated fuel rail pressure.
It should be appreciated that other approaches may be used to determine whether the fuel rail pressure sensor is in a degraded state. For example, electrical resistance or impedance sensing of the fuel rail pressure sensor may be performed by the control system to determine whether the measured resistance or impedance are within predetermined ranges indicative of a degraded or non-degraded state of the fuel rail pressure sensor. In some embodiments, the control system may limit engine output to a reduced output value (e.g., activate limp home mode) after starting the internal combustion engine if the fuel rail pressure sensor has been judged to be in a degraded state.
If the answer at 316 is judged yes (e.g., the fuel rail pressure sensor is degraded), then the process flow may proceed to 318. At 318, the method may include initiating engine cranking. For example, at 318, the control system may activate starting motor 192 to cause starting motor 192 to rotate crankshaft 172 of internal combustion engine 110.
At 320, the method may optionally include adjusting the fuel rail pressure to at least a first value. For example, the control system may operate one or more of low pressure fuel pump 142 and high pressure fuel pump 146 to provide pressurized fuel to fuel rail 130. Where high pressure fuel pump 146 is powered by crankshaft 172, the control system may adjust a pump stroke volume of the high pressure fuel pump of the crankshaft to increase or decrease a fuel pressure that is provided by high pressure fuel pump. Where low pressure fuel pump 142 is powered by an electric motor, the control system may adjust a speed of the electric motor to increase or decrease a fuel pressure provided by the low pressure fuel pump.
As shown in
However, in some conditions, the fuel rail pressure may be greater than the LPS as a result of high pressure regulation device 148 being present in the fuel circuit which provides a high pressure setting (HPS). Therefore, until the high pressure fuel within the fuel rail has been consumed by the internal combustion engine, the fuel rail pressure may be higher than the LPS. Since the fuel rail pressure sensor has been judged to be in a degraded state, uncertainty as to the fuel rail pressure may exist, as indicated at 500 between the HPS and LPS. This uncertainty may be reduced by referencing the estimated fuel rail pressure obtained at 312.
In some embodiments, the control system may judge whether the fuel rail pressure estimated at 312 exceeds the first value (e.g., the LPS) before or during cranking of the internal combustion engine. If the fuel rail pressure exceeds the first value, then the control system may be configured to inject fuel into one or more of the combustion chambers during cranking or before cranking of the internal combustion engine is initiated, without igniting the fuel, in order to reduce the fuel rail pressure to the first value (e.g., the LPS in this example) before a first ignitable fuel injection is to be performed. The amount of fuel that is injected into each combustion chamber during each cycle with this approach may be adjusted to be less than an amount of fuel that may cause spark plug fouling. In this way, depressurization of the fuel rail may be performed (as indicated at 510) before initiating combustion in the internal combustion engine by delivering fuel to the combustion chambers to be exhausted to the exhaust passage via the exhaust valves during the power and/or exhaust strokes.
Alternatively, as shown in
Since the high and low pressure fuel pumps are operated in the example of
In each of the above examples, the fuel rail pressure may be adjusted to the first value (e.g., either the LPS or the HPS) by commanding one or more of the high pressure fuel pump and low pressure fuel pump to a setting that provides a fuel pressure that exceeds a pressure relief setting of one or more of low pressure regulation device 144 and high pressure regulation device 148. In this way, the control system may achieve a consistent fuel rail pressure corresponding to the first value at the time of the first fuel injection without relying on feedback from the degraded fuel rail pressure sensor.
At 322, the method may include initiating fuel delivery to the internal combustion engine. For example, the control system may command the fuel injectors to successively inject fuel into the combustion chambers of the internal combustion engine. It should be appreciated that the order at which the fuel is injected into the various engine cylinders may be performed in accordance with a prescribed firing order of the internal combustion engine. In some embodiments, the control system may initiate fuel delivery at 322 only after the rotational speed of the crankshaft attains or exceeds a predetermined rotational speed as indicated by crankshaft sensor 182.
At 324, the method may include initiating ignition at the combustion chambers of the internal combustion engine. For example, the control system may command the spark plugs to provide a spark to the combustion chambers at a predetermined timing relative to the fuel injections initiated at 322 to ignite an air and fuel charge that was formed within the combustion chambers. It should be appreciated that the order at which the spark plugs are commanded to provide a spark to the combustion chambers may be performed in accordance with the firing order of the internal combustion engine.
At 326, after fuel delivery is initiated at 322, the method may include reducing the fuel rail pressure over successive fuel injection events from the first value to a second value that is less than the first value. In some embodiments, the fuel rail pressure may be reduced as a result of fuel being injected by the various fuel injectors at a greater rate than fuel is provided to the fuel rail via fuel passage 152.
For example, referring again to
Referring again to
Referring to
In the example of
In each of the example shown in
Referring to
At 328, the fuel rail pressure estimated at 312 may be optionally updated to reflect decreasing fuel rail pressure caused by injecting fuel while the high pressure fuel pump is commanded to the minimum or substantially low pump stroke volume. For example, as shown in
At 330, after fuel delivery is initiated at 322, the method may include varying an amount of fuel that is directly injected into the combustion chambers over one or more of the subsequent successive fuel injection events after the delivery of fuel to the internal combustion engine is initiated to increase an air-fuel ratio of air and fuel charges formed in the combustion chambers relative to an air-fuel ratio of the first fuel injection event. In some embodiments, increasing the air-fuel ratio includes varying the amount of fuel that is directly injected into the combustion chambers over the successive fuel injection events responsive to the updated estimate of the fuel rail pressure (e.g., obtained at 328) as the fuel rail pressure is reduced from the first value to the second value (e.g., at 326). Furthermore, in some embodiments, increasing the air-fuel ratio includes maintaining the air-fuel ratio produced by any two consecutive fuel injection events to within a flammability limit of the fuel.
Further still, since the estimated fuel rail pressure obtained at 312 may include considerable uncertainty, fueling of the internal combustion engine may be performed in a way that reduces or minimizes spark plug fouling. As described above with respect to fuel system leakage, the actual fuel rail pressure may be less than the estimated fuel rail pressure, which causes less fuel to be injected by the control system as a result of the control system basing the fuel injection amount on the estimated fuel rail pressure rather than the measured fuel rail pressure from the fuel rail pressure sensor. As such, the initial fuel injection events may provide an air and fuel charge that is actually leaner than estimated by the control system, thereby providing an additional margin for error against spark plug fouling.
As such, the method at 328 may include fueling the combustion chambers based on the estimated fuel rail pressure or fueling lean of the estimated fuel rail pressure and then increasing the air-fuel ratio of the air and fuel charges over successive fueling events to enter the window of the flammability limits for the fuel from the lean side. In other words, the method at 328 may include creeping up on a fuel injection amount that produces an air-fuel ratio that is within the flammability limits of the fuel by assuming a high fuel rail pressure and ramping down the assumed pressure to keep any two consecutive injections within the flammability limits.
Returning to 316, if it is instead judged that the fuel rail pressure sensor is in a non-degraded state, the process flow may proceed to 332. At 332, engine cranking may be initiated and the fuel rail pressure may be adjusted by the control system (e.g., by the previously described fuel rail pressure controller) at 334 to a third value using feedback from the fuel rail pressure sensor. The third value may be the same as the first value or the second value described above, or may be any other suitable value. At 336, the control system may initiate fuel delivery at the internal combustion engine and may initiate ignition at 338. At 340, the fuel rail pressure may be optionally adjusted relative to the third value used at start-up responsive to operating conditions using feedback from the fuel rail pressure sensor. For example, the control system may reduce fuel rail pressure at idle using feedback from the fuel rail pressure sensor to control the high pressure fuel pump volume.
If the estimated fuel rail pressure is less than the threshold value, the process flow may proceed to 420. At 420, the starting sequence that was previously described with reference to
Alternatively, if the estimated fuel rail pressure is not less than the threshold value, the process flow may proceed to 430. At 430, one of the starting sequences that were previously described with reference to
The process flows of
The operation of operating the high pressure fuel pump to provide pressurized fuel to the high pressure regulation device that exceeds the pressure relief setting of the high pressure regulation device may include setting a pump stroke volume of the high pressure fuel pump to a maximum pump stroke volume, and may be performed responsive to a lower temperature state of the fuel rail. In some embodiments, responsive to a higher temperature state of the fuel rail, the method include setting the pump stroke volume of the high pressure fuel pump to a lesser pump stroke volume than the maximum pump stroke volume before the delivery of fuel to the internal combustion engine is initiated.
In some embodiments, the method may further include varying a number of pump strokes performed by the high pressure pump before initiating the delivery of fuel to the internal combustion engine responsive to one or more of a temperature of the internal combustion engine and a period of time since the internal combustion engine has been previously shut-off. For example, the delivery of fuel to the internal combustion engine may be initiated after a minimum number of pump strokes are performed by the high pressure fuel pump, where the minimum number of pump strokes is selected based on one or more of: a temperature of the internal combustion engine and a period of time since the internal combustion engine was previously shut-off, among other previously described operating conditions that may affect the estimated fuel rail pressure. In this way, the estimated fuel rail pressure may be used to advantage by the control system to reduce a duration of the cranking phase of the starting operation if the estimated fuel rail pressure indicates that the first value is likely to have been attained.
After the fuel pressure within the fuel rail approaches or attains the first value, the method includes initiating delivery of fuel to the internal combustion engine from the fuel rail by successively injecting fuel directly into combustion chambers of the internal combustion engine. After at least a first fuel injection event, the method includes reducing the fuel pressure within the fuel rail from the first value to a second value over subsequent successive fuel injection events by adjusting an operating parameter of the high pressure fuel pump. The operating parameter may include the pump stroke volume of the high pressure fuel pump, where adjusting the operating parameter of the high pressure fuel pump includes reducing a pump stroke volume of the high pressure fuel pump. For example, reducing the pump stroke volume of the high pressure fuel pump may include reducing the pump stroke volume to a minimum pump stroke volume of the high pressure fuel pump.
In some embodiments, the operation of reducing the fuel pressure within the fuel rail from the first value to the second value is performed responsive to degradation of a fuel rail pressure sensor. In response to a non-degraded state of the fuel rail pressure sensor, the method may include adjusting the fuel pressure within the fuel rail after at least the first fuel injection event to a third value that is greater than the second value responsive to a non-degraded state of the fuel rail pressure sensor.
It should be appreciated that the method may include operating a low pressure fuel pump to provide pressurized fuel to a low pressure regulation device that exceeds a pressure relief setting of the low pressure regulation device. In this way, the pressure relief setting of the high pressure regulation device corresponds to the first value and the where the pressure relief setting of the low pressure regulation device corresponds to the second value. In some embodiments, the control system may limit the performance of the internal combustion engine responsive to degradation of the fuel rail pressure sensor if the fuel pressure is reduced to the second value. For example, the control system may limit the speed, of the engine, the speed of the vehicle, or an engine load.
Note that the example control and estimation routines included herein can be used with various engine and/or vehicle system configurations. The specific routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various acts, operations, or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases omitted. Likewise, the order of processing is not necessarily required to achieve the features and advantages of the example embodiments described herein, but is provided for ease of illustration and description. One or more of the illustrated acts or functions may be repeatedly performed depending on the particular strategy being used. Further, the described acts may graphically represent code to be programmed into the computer readable storage medium (e.g., memory) of the control system.
It will be appreciated that the configurations and routines disclosed herein are exemplary in nature, and that these specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. For example, the above technology can be applied to V-6, I-4, I-6, V-12, opposed 4, and other engine types. The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various systems and configurations, and other features, functions, and/or properties disclosed herein. The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and subcombinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
5425342 | Ariga et al. | Jun 1995 | A |
5546912 | Yamada et al. | Aug 1996 | A |
5572964 | Cogneville et al. | Nov 1996 | A |
5651347 | Oi et al. | Jul 1997 | A |
5711275 | Minagawa et al. | Jan 1998 | A |
5842454 | Miwa et al. | Dec 1998 | A |
5884597 | Hiraku et al. | Mar 1999 | A |
5927253 | Oyafuso et al. | Jul 1999 | A |
5937826 | Olson et al. | Aug 1999 | A |
5992373 | Hosoya et al. | Nov 1999 | A |
6024064 | Kato et al. | Feb 2000 | A |
6065436 | Koga et al. | May 2000 | A |
6269801 | Channing | Aug 2001 | B1 |
6382188 | Hasegawa et al. | May 2002 | B2 |
6408822 | Rembold et al. | Jun 2002 | B1 |
6408825 | Enoki et al. | Jun 2002 | B1 |
6415770 | Kojima | Jul 2002 | B1 |
6578555 | Sykes | Jun 2003 | B2 |
6659085 | Kojima | Dec 2003 | B2 |
6761151 | Kojima | Jul 2004 | B2 |
6918367 | Denz et al. | Jul 2005 | B2 |
7066126 | Tokuyasu et al. | Jun 2006 | B2 |
7089914 | Joos et al. | Aug 2006 | B2 |
7093576 | DeRaad | Aug 2006 | B2 |
7134413 | Cho | Nov 2006 | B2 |
7143747 | Uchiyama | Dec 2006 | B2 |
7281509 | Fukui et al. | Oct 2007 | B2 |
7308880 | Katayama et al. | Dec 2007 | B2 |
7383804 | Wolber et al. | Jun 2008 | B2 |
7412953 | Shimazaki et al. | Aug 2008 | B2 |
7596447 | Oono | Sep 2009 | B2 |
20070246021 | Takayanagi et al. | Oct 2007 | A1 |
20070251502 | Takayanagi et al. | Nov 2007 | A1 |
20090111338 | Fujino et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
10240069 | Mar 2003 | DE |
102005001922 | Dec 2005 | DE |
Number | Date | Country | |
---|---|---|---|
20100108035 A1 | May 2010 | US |