This invention relates to the addressing and sustaining of an AC gas discharge plasma display panel (PDP) that uses a surface discharge structure. This invention comprises a method of operating an AC plasma display by applying selective write and/or selective erase voltages to at least one display section of a surface discharge PDP while at least one other display section of the PDP is being simultaneously sustained. This invention of Simultaneous Address and Sustain (SAS) is suitable for high resolution and high-information content AC plasma displays, including high definition television (HDTV).
The PDP industry has used two different AC plasma display panel (PDP) structures, the two-electrode columnar discharge structure and the three-electrode surface discharge structure. The two-electrode columnar discharge display structure is disclosed in U.S. Pat. No. 3,499,167 issued to Baker et al. and U.S. Pat. No. 3,559,190 issued to Bitzer et al. The two-electrode columnar discharge structure is also referred to as opposing electrode discharge, twin substrate discharge, or co-planar discharge. In the two-electrode columnar discharge AC plasma display structure, the sustaining voltage is continuously applied between an electrode on a rear or bottom substrate and an opposite electrode on the front or top viewing substrate. The gas discharge takes place between the two opposing electrodes in between the top viewing substrate and the bottom substrate.
The columnar discharge structure has been widely used in monochrome AC plasma displays that emit orange or red light from a neon gas discharge. Typically phosphors are not used in such monochrome structures.
The present invention relates to a surface discharge AC plasma display panel having a structure with three or more electrodes defining each pixel or cell. In a three-electrode surface discharge AC plasma display, a sustaining voltage is applied between a pair of adjacent parallel electrodes that are on the front or top viewing substrate. These parallel electrodes are called the bulk sustain electrode and the row scan electrode. The row scan electrode is also called a row sustain electrode because of its dual functions of address and sustain. The opposing electrode on the rear or bottom substrate is a column data electrode and is used to periodically address a row scan electrode on the top substrate. The sustaining voltage is applied to the bulk sustain and row scan electrodes on the top substrate. The gas discharge takes place between the row scan and bulk sustain electrodes on the top viewing substrate.
As disclosed and illustrated in Baker ('167), the two-electrode columnar discharge AC plasma display panel is an opposite discharge display with the sustaining voltage being applied to the two opposite top and bottom electrodes. The discharge takes place between these two opposing electrodes and in between the opposing top and bottom substrates. In a multi-color columnar discharge (PDP) structure as disclosed in U.S. Pat. No. 5,793,158 issued to Donald K. Wedding, phosphor stripes or layers are deposited along the barrier walls on the bottom substrate adjacent to and extending in the same direction as the bottom electrode. The discharge between the two opposite electrodes generates electrons and ions that bombard and deteriorate the phosphor thereby shortening the life of the phosphor and the PDP.
In contrast, in a three-electrode surface discharge AC plasma display panel, the sustaining voltage and resulting gas discharge occurs between the electrode pairs on the top or front viewing substrate above and remote from the phosphor on the bottom substrate. This separation of the discharge from the phosphor prevents electron bombardment and deterioration of the phosphor deposited on the walls of the barriers or in the grooves (or channels) on the bottom substrate adjacent to and/or over the third (data) electrode. Because the phosphor is spaced from the discharge between the two electrodes on the top substrate, the phosphor is not subject to electron bombardment as in a columnar discharge PDP.
In a surface discharge PDP, each light emitting pixel or cell is defined by the gas discharge between two electrodes on the top substrate. In a multi-color RGB display, the pixels may be called sub-pixels or sub-cells. Photons from the discharge of an ionizable gas at each pixel or sub-pixel excite a photoluminescent phosphor that emits red, blue, or green light.
In a two electrode columnar discharge PDP as disclosed by Wedding ('158), each light emitting pixel is defined by a gas discharge between a bottom or rear electrode x and a top or front opposite electrode y, each cross-over of the two opposing arrays of bottom electrodes x and top electrodes y defining a pixel or cell.
The three-electrode multi-color surface discharge AC plasma panel structure is widely disclosed in the prior art including U.S. Pat. Nos. 5,661,500 (Shinoda et al.), 5,674,553, (Shinoda et al.), 5,745,086 (Weber), and 5,736,815 (Amemiya), all of which are incorporated herein by reference.
For reasons discussed above and also as presented in TABLE I hereafter, the multi-color columnar discharge PDP with phosphors has not been successfully commercialized in the PDP industry. However, the multi-color surface discharge PDP has been successfully commercialized and is presently been widely manufactured by a number of firms.
TABLE I presents a comparison and overview of the two-electrode multi-color columnar discharge PDP structure versus the three-electrode multi-color surface discharge PDP structure at a sustain frequency of 30 kHz and a gas mixture containing less than 6% xenon.
As summarized in TABLE I, the three-electrode surface discharge PDP superiority over the two-electrode columnar discharge PDP includes lower power, longer life, greater contrast, lower peak discharge current, higher luminance (brightness), and higher luminous efficiency. The high peak discharge current of columnar discharge greatly adds to the costs of the electronic circuitry.
Surface discharge also has manufacturing advantages over columnar discharge. One of these (phosphor deposition) is listed in TABLE I. The deposition of phosphor in the manufacture of surface discharge is very forgiving because the phosphor covers the electrodes on the back (bottom) substrate without decreasing panel life.
In a columnar discharge structure, the phosphor must be precisely deposited and cannot cover electrode discharge sites on the back substrate without further decreasing phosphor life. There is little or no forgiveness in deposition of the phosphor. It may also be necessary to use an overcoat such as magnesium oxide to protect the phosphor from discharge ion bombardment. However, a protective overcoat decreases light output from the phosphor. A protective phosphor overcoat is not used or required in the manufacture of a surface discharge display structure.
The surface discharge PDP structure is also much less sensitive than columnar discharge to variations in the gas discharge gap between the back and front substrates. In a columnar discharge PDP structure, the gap must be precisely controlled to avoid variations and distortions in luminance and chromaticity.
In U.S. Pat. No. 5,828,356, there is disclosed an addressing scheme for an opposite discharge two-electrode multi-color columnar discharge panel structure with an array of bottom electrodes x and an array of top opposite electrodes y, the crossover of each bottom x electrode and each top y electrode defining a pixel. The sustaining voltage is applied to the opposite bottom electrode x and top electrode y with the gas discharge taking place between the electrodes x and y. This is the same electronic architecture as used in the prior art for monochromatic columnar discharge PDP.
A basic electronics architecture for addressing and sustaining a surface discharge AC plasma display is called Address Display Separately (ADS). The ADS architecture is disclosed in a number of Fujitsu patents including U.S. Pat. Nos. 5,541,618 and 5,724,054, both issued to Shinoda. Also see U.S. Pat. No. 5,446,344 (Kanazawa) and Shinoda et al. ('500) referenced above. ADS has become a basic electronic architecture widely used in the AC plasma display industry.
Fujitsu ADS architecture is commercially used by Fujitsu and is also widely used by competing manufacturers including Matsushita and others. ADS is disclosed in U.S. Pat. No. 5,745,086 (Weber). See FIGS. 2, 3, 11 of Weber ('086). The ADS method of addressing and sustaining a surface discharge display as disclosed in U.S. Pat. Nos. 5,541,618 (Shinoda) and 5,724,054 (Shinoda) sustains the entire panel (all rows) after the addressing of the entire panel. Thus the addressing and sustaining are done separately and are not done simultaneously as in the practice of this invention.
Another architecture used in the prior art is called Address While Display (AWD). The AWD electronics architecture was first used during the 1970s and 1980s for addressing and sustaining monochrome PDP. In AWD architecture, the addressing (write and/or erase pulses) are interspersed with the sustain waveform and may include the incorporation of address pulses onto the sustain waveform. Such address pulses may be on top of the sustain and/or on a sustain notch or pedestal. See for example U.S. Pat. Nos. 3,801,861 (Petty et al.) and 3,803,449 (Schmersal). FIGS. 1 and 3 of the Shinoda ('054) ADS patent discloses AWD architecture as prior art.
The prior art AWD electronics architecture for addressing and sustaining monochrome PDP has also been adopted for addressing and sustaining multi-color PDP. For example, Samsung Display Devices Co., Ltd., has disclosed AWD and the superimpose of address pulses with the sustain pulse. Samsung specifically labels this as Address While Display (AWD). See “High-Luminance and High-Contrast HDTV PDP with Overlapping Driving Scheme”, J. Ryeom et al., pages 743 to 746, Proceedings of the Sixth International Display Workshops, IDW 99, Dec. 1-3, 1999, Sendai, Japan. AWD is also disclosed in U.S. Pat. No. 6,208,081 (Eo et al.).
LG Electronics Inc. has disclosed a variation of AWD with a Multiple Addressing in a Single Sustain (MASS) in U.S. Pat. No. 6,198,476 (Hong et al.). Also see U.S. Pat. No. 5,914,563 (Lee et al.).
The present SAS invention offers a unique electronic architecture which is different from prior art columnar discharge and surface discharge electronics architectures including ADS, AWD, and MASS and offers important advantages as discussed herein.
The present SAS invention comprises addressing one display section of a surface discharge PDP while another section of the PDP is being simultaneously sustained. This architecture is called Simultaneous Address and Sustain (SAS).
In accordance with the practice of this SAS invention, addressing voltage waveforms are applied to a surface discharge AC plasma display having an array of column data electrodes on a bottom or rear substrate and an array of at least two electrodes on a top or front viewing substrate, one top electrode being a bulk sustain electrode x and the other top electrode being a row scan electrode y. The row scan electrode y may also be called a row sustain electrode because it performs the dual functions of both addressing and sustaining.
An important feature and advantage of this invention is that it allows selectively addressing of one section of a surface discharge panel, for example with selective write and/or selective erase voltages while another section of the panel is being simultaneously sustained. A section is defined as a predetermined number of bulk sustain electrodes x and row scan electrodes y. In a surface discharge display, a single row is comprised of one pair of parallel top electrodes x and y.
In accordance with one embodiment of this SAS invention, there is provided the simultaneous addressing and sustaining of at least two sections S1 and S1 of a surface discharge PDP having a row scan, bulk sustain, and column data electrodes, which comprises addressing one section S1 of the PDP while a sustaining voltage is being simultaneously applied to at least one other section S2 of the PDP.
In another embodiment hereof, the simultaneous addressing and sustaining is interlaced whereby one pair of electrodes y and x are addressed without being sustained and an adjacent pair of electrodes y and x are simultaneously sustained without being addressed. This interlacing can be repeated throughout the display. In this embodiment, a section S is defined as one or more pairs of interlaced y and x electrodes.
In the practice of this invention, the row scan and bulk sustain electrodes of one section that is being sustained may have a reference voltage which is offset from the voltages applied to the column data electrodes for the addressing of another section such that the addressing does not electrically interact with the row scan and bulk sustain electrodes of the section which is being sustained.
In a plasma display in which gray scale is realized through time multiplexing, a frame or a field of picture data is divided into subfields. Each subfield is typically composed of a reset period, an addressing period, and a number of sustains. The number of sustains in a subfield corresponds to a specific gray scale weight. Pixels that are selected to be “on” in a given subfield will be illuminated proportionally to the number of sustains in the subfield. In the course of one frame, pixels may be selected to be “on” or “off” for the various subfields. A gray scale image is realized by integrating in time the various “on” and “off” pixels of each of the subfields.
Addressing is the selective application of data to individual pixels. It includes the writing or erasing of individual pixels.
Reset is a voltage pulse which forms wall charges to enhance the addressing of a pixel. It can be of various waveform shapes and voltage amplitudes including fast or slow rise time voltage ramps and exponential voltage pulses. A reset is typically used at the start of a frame before the addressing of a section. A reset may also be used before the addressing period of a subsequent subfield.
In accordance with a further embodiment of this SAS invention, there is applied a slow rise time or slow ramp reset voltage. As used herein, “slow rise time or slow ramp voltage” is a bulk address commonly called a reset pulse with a positive or negative slope so as to provide a uniform wall charge at all pixels in the PDP.
The slower the rise time of the reset ramp, the less visible the light or background glow from those off-pixels (not in the on-state) during the slow ramp bulk address.
Less background glow is particularly desirable for increasing the contrast ratio which is inversely proportional to the light-output from the off-pixels during the reset pulse. Those off-pixels which are not in the on-state will give a background glow during the reset. The slower the ramp, the less light output with a resulting higher contrast ratio. Typically the “slow ramp reset voltages” disclosed in the prior art have a slope of about 3.5 volts per microsecond with a range of about 2 to about 9 volts per microsecond.
In the practice of this invention, it is possible to use “slow ramp reset voltages” below 2 volts per microsecond, for example about 1 to 1.5 volts per microsecond without decreasing the number of PDP rows, without decreasing the number of sustain pulses or without decreasing the number of subfields.
The prior art discloses slow rise slopes or ramps for the addressing of AC plasma displays. The early patents include U.S. Pat. Nos. 4,063,131 (Miller) 4,087,805 (Miller), 4,087,807 (Miavecz), 4,611,203 (Criscimagna et al.), and 4,683,470 (Criscimagna et al.).
An architecture for a slow ramp reset voltage is disclosed in U.S. Pat. No. 5,745,086 (Weber). Weber ('086) discloses positive or negative ramp voltages that exhibit a slope that is set to assure that current flow through each display pixel site remains in a positive resistance region of the gas discharge characteristics. The slow ramp architecture is disclosed in FIG. 11 of Weber ('086) in combination with the Fujitsu ADS.
PCT Patent Application WO 00/30065, U.S. Pat. Nos. 6,738,033 (Hibino et al.) and U.S. Pat. No. 6,900,598 (Hibino et al.), disclose architecture for a slow ramp reset voltage. Habino et al. specifies a total ramp reset cycle time restricted to less than 360 microseconds for a display panel resolution up to 1080 row scan electrodes with a maximum of 8 subfields using dual scan. With dual scan, Habino et al. can obtain up to 15 subfields for lower resolution displays such as 480 and 768 row scan electrodes.
The present SAS invention allows for a ramp reset cycle time up to 1000 microseconds (one millisecond) or more depending upon the display panel resolution. For a display panel resolution of 1080 row scan electrodes, the SAS invention allows for a ramp reset cycle time up to 800 microseconds without decreasing the number of sustains and/or sub fields as required in the prior art.
For lower panel scan row resolutions of 480 and 768, this SAS invention allows a ramp reset cycle time up to 1000 microseconds.
Habino et al. specifies a reset voltage rise slope of no more than 9 volts per microsecond. Because the entire reset cycle time of Habino et al. is a maximum of 360 microseconds, it is not feasible for Habino et al. to use a reset ramp slope of 1.5 volts per microsecond without also decreasing the maximum or peak voltage amplitude of the reset voltage below the amplitude required for reliable discharge and stable addressing. The practice of the present SAS invention allows for the use of a reset ramp slope of 1 to 1.5 volts per microsecond at the maximum reset voltage amplitude required for reliable discharge and stable addressing.
The practice of this present SAS method and invention also allows the use of a low reset voltage rise slope of about 1 to 1.5 volts per microsecond with an overall ramp reset cycle time up to 1000 microseconds.
In one embodiment of this invention there is used a ramp reset cycle time of 800 microseconds, a display resolution of 1080 row scan electrodes, and a reset voltage rise slope of 1 to 1.5 volts per micro second.
The resolutions typically contemplated in the practice of this invention are 480, 600, 768, 1024, 1080, and 1200 row scan electrodes which are currently used in the PDP industry. However, other resolutions may be used.
SAS allows for simultaneous addressing and sustaining thereby providing more time within the frame for other waveform operations. By comparison the ADS architecture allocates 75% of the frame time for addressing and 25% for sustaining.
Because both the addressing and sustaining are completed in 75% of the available frame time, SAS has 25% remaining frame time.
SAS has the ability to do 12 to 17 subfields for panel resolutions up to 768 row scan electrodes and 10 to 12 subfields for resolutions of 1080 row scan electrodes without using dual scan.
As noted above slow reset ramp can also be used with SAS. The slow ramp reset can be tailored to ramp slopes of 1.5 microseconds per volt or less which greatly minimizes background glow. This is not possible with the ADS approach. SAS also provides for a more uniform contrast ratio, better wall charge profile and improved addressing stability.
In the practice of this invention the PDP may be physically divided into at least two sections with each section being addressed by separate electronics. This was first disclosed in U.S. Pat. Nos. 4,233,623 (Pavliscak) and 4,320,418 (Pavliscak). It is also disclosed in U.S. Pat. No. 5,914,563 (Lee et al.).
In the PDP industry this dividing of the PDP into two sections with separate electronics for each section is called dual scan. It is more costly to use dual scan because of the added electronics and reduced PDP yield. However, dual scan has been necessary with ADS and AWD architecture in order to obtain sufficient subfields at higher resolutions. The practice of this SAS invention allows for a larger number of subfields at higher resolutions without using dual scan.
SAS maintains higher probability of priming particles due to its virtual “dual-scan” like operation.
Coupled with improved priming and uniform wall charge distribution, SAS allows for the addressing of high resolution AC plasma displays with 10 to 12 subfields at a high resolution of 1080 row scan electrodes without dual scan.
Each barrier 13 comprises a bottom portion 13A and a top portion 13B. The top portion 13B is dark or black for increased contrast ratio. The bottom portion 13A may be translucent, opaque, dark, or black.
The top substrate 15 is transparent glass for viewing and contains y row scan (or sustain) electrodes 18A and x bulk sustain electrodes 18B, dielectric layer 16 covering the electrodes 18A and 18B, and a magnesium oxide layer 17 on the surface of dielectric 16. The magnesium oxide is for secondary electron emission and helps lower the overall operating voltage of the display.
A plurality of channels 19 are formed by the barriers 13 containing the phosphor 14. When the two substrates 11 and 15 are sealed together, an ionizable gas mixture is introduced into the channels 19. This is typically a Penning mixture of the rare gases. Such gases are well known in the manufacture and operation of gas discharge displays.
As noted above, each electrode 12 on the bottom substrate 11 is called a column data electrode. The y electrode 18A on the top substrate 15 is the row scan (or sustain) electrode and the x electrode 18B on the top substrate 15 is the bulk sustain electrode. A pixel or sub-pixel is defined by the three electrodes 12, 18A, and 18B. The gas discharge is initiated by voltages applied between a bottom column data electrode 12 and a top y row scan electrode 18A. The sustaining of the resulting discharge is done between an electrode pair of the top y row scan electrode 18A and a top x bulk sustain electrode 18B. Each pair of the y and x electrodes is a row.
Phosphor 14R emits red luminance when excited by photons from the gas discharge within the plasma panel. Phosphor 14G emits green luminance when excited by photons from the gas discharge within the plasma panel. Phosphor 14B emits blue luminance when excited by photons for the gas discharge within the plasma panel.
Although not illustrated in
Split or divided electrodes connected by cross-overs may also be used for x and y for example as disclosed in U.S. Pat. No. 3,603,836 (Grier). A split electrode structure may also be used for the column data electrodes.
The column data electrodes may be of different widths for each R, G, B phosphor as disclosed in U.S. Pat. No. 6,034,657 (Tokunaga et al.).
The electrode arrays on either substrate are shown in
Although the practice of this invention is described herein with each pixel or sub-pixel defined by a three-electrode surface discharge structure, it will be understood that this invention may also be used with surface discharge structures having more than three distinct electrodes, for example more than two distinct electrodes on the top substrate and/or more than one distinct electrode on the bottom substrate. In the literature, some surface discharge structures have been described with four or more electrodes including three or more electrodes on the front substrate.
The prior art has also described surface discharge structures where there is a sharing of electrodes between pixels or sub-pixels on the front substrate. Fujitsu has described this structure in a paper by Kanazawa et al. published on pages 154 to 157 of the 1999 Digest of the Society for Information Display. Fujitsu calls this “Alternating Lighting on Surfaces” or ALIS. Fujitsu has used ALIS with ADS. Shared electrodes may be used is the practice of the present invention.
In Phases 1 and 6 of
Phase 2 of
As illustrated in
H is a period of time sufficient to allow the ramp to take advantage of the priming caused by the narrow sustain pulse and erase.
At the end of Phase 2 the row scan electrode y and bulk sustain electrode x go back to reference. This can also occur at the end of Phase 4 and the beginning of Phase 5, but such requires additional circuitry and adds to the cost of the system.
Phase 3 of
Phase 4 of
Phase 5 of
The bulk sustain electrode x has a positive voltage applied throughout the addressing phase to induce charge transport between the pair of electrodes x and y which are sustained after the addressing discharge has taken place.
The waveform of
In Table II there is presented a 10 subfield example using the waveform of
Table III shows one subfield within the frame.
Table IV shows 10 subfields with a different number of sustains in each subfield for S1 and S2
Table V shows one subfield within the frame.
In the case of different sustains being employed by S1 and S2, an additional advantage may be derived by changing the order in which S1 and S2 are addressed. Additional time savings may also be obtained if the section with the larger number of sustains is addressed in phase 2. This allows for a greatest amount of overlap to occur between sustaining and addressing in Phase 3. The result is more time available for ramped resets, additional sustains, additional subfields, and/or more rows.
The waveforms of
The PDP industry has used various techniques to reduce motion and visual artifacts in a PDP display.
Pioneer of Tokyo, Japan has disclosed a technique called CLEAR for the reduction of false contour and related problems. See “Development of New Driving Method for AC-PDPs” by Tokunaga et al. of Pioneer Proceedings of the Sixth International Display Workshops, IDW 99, pages 787-790, Dec. 1-3, 1999, Sendai, Japan. Also see European Patent Applications EP 1 020 838 A1 by Tokunaga et al. of Pioneer. The CLEAR technique uses an algorithm and waveform to provide ordered dither gray scale in small increments with few motion or visual artifacts. CLEAR comprises turning on pixels followed by selective erase.
Fujitsu also discloses the CLEAR technique in combination with ADS U.S. Pat. No. 6,097,358 (Hirakasw et al.). The CLEAR techniques disclosed in the above Pioneer IDW publication, Pioneer EP 1020838 A1, and Fujitsu U.S. Pat. No. 6,097,358 are incorporated herein by reference.
In the practice of this invention, it is contemplated that SAS may be combined with a CLEAR or like technique as required for the reduction of motion and visual artifacts.
This invention as illustrated herein allows for a larger number of sustain cycles per frame. This allows for a brighter display or alternatively more subfields per display. This also improves the PDP operating margin (window) due to more time allowed for the various overhead functions.
As disclosed herein, this invention is not to be limited to the exact forms shown and described because changes and modifications may be made by one skilled in the art within the scope of the following claims.
This is a continuation under 35 U.S.C. 120 of U.S. patent application Ser. No. 09/878,953 now U.S. Pat. No. 6,985,953, filed Jun. 13, 2001 which is a continuation in part under 35 U.S.C. 120 of a U.S. patent application Ser. No. 09/774,055 filed Jan. 31, 2001 now abandoned which is a continuation in part under 35 U.S.C. 120 of a U.S. patent application Ser. No. 09/643,843 filed Aug. 23, 2000 now abandoned which is a continuation in part under 35 U.S.C. 120 of U.S. patent application Ser. No. 09/556,337 filed Apr. 24, 2000 now abandoned which claims priority under 35 U.S.C. 119 (e) of Provisional Application 60/131,177 filed Apr. 26, 1999.
Number | Name | Date | Kind |
---|---|---|---|
3499167 | Baker et al. | Mar 1970 | A |
3559190 | Bitzer et al. | Jan 1971 | A |
3603836 | Grier | Sep 1971 | A |
3801861 | Petty et al. | Apr 1974 | A |
3803449 | Schmersal | Apr 1974 | A |
4063131 | Miller | Dec 1977 | A |
4087805 | Miller | May 1978 | A |
4087807 | Miavecz | May 1978 | A |
4130779 | Miller et al. | Dec 1978 | A |
4233623 | Pavliscak | Nov 1980 | A |
4320418 | Pavliscak | Mar 1982 | A |
4611203 | Criscimagna et al. | Sep 1986 | A |
4683470 | Criscimagna et al. | Jul 1987 | A |
5250936 | Warren et al. | Oct 1993 | A |
5430458 | Weber | Jul 1995 | A |
5446344 | Kanazawa | Aug 1995 | A |
5541618 | Shinoda | Jul 1996 | A |
5661500 | Shinoda et al. | Aug 1997 | A |
5663741 | Kanazawa | Sep 1997 | A |
5674553 | Shinoda et al. | Oct 1997 | A |
5724054 | Shinoda | Mar 1998 | A |
5736815 | Amemiya | Apr 1998 | A |
5745086 | Weber | Apr 1998 | A |
5786794 | Kishi et al. | Jul 1998 | A |
5793158 | Wedding, Sr. | Aug 1998 | A |
5828356 | Stoller | Oct 1998 | A |
5914563 | Lee et al. | Jun 1999 | A |
5952782 | Nanto et al. | Sep 1999 | A |
5963184 | Tokunaga et al. | Oct 1999 | A |
6034657 | Tokunaga et al. | Mar 2000 | A |
6097358 | Hirakawa et al. | Aug 2000 | A |
6198476 | Hong et al. | Mar 2001 | B1 |
6208081 | Eo et al. | Mar 2001 | B1 |
6288693 | Song et al. | Sep 2001 | B1 |
6489939 | Asao et al. | Dec 2002 | B1 |
6498593 | Fujimoto et al. | Dec 2002 | B1 |
6531819 | Nakahara et al. | Mar 2003 | B1 |
6559814 | Kanazawa et al. | May 2003 | B1 |
6577062 | Itokawa et al. | Jun 2003 | B2 |
6603446 | Kanazawa et al. | Aug 2003 | B1 |
6630790 | Kanazawa et al. | Oct 2003 | B2 |
6630916 | Shinoda | Oct 2003 | B1 |
6636188 | Kanazawa et al. | Oct 2003 | B1 |
6653993 | Nagao et al. | Nov 2003 | B1 |
6667579 | Kanazawa et al. | Dec 2003 | B2 |
6667728 | Kanazawa et al. | Dec 2003 | B2 |
6703792 | Kawada et al. | Mar 2004 | B2 |
6738033 | Hibino et al. | May 2004 | B1 |
6900598 | Hibino et al. | May 2005 | B2 |
20030160742 | Sakita | Aug 2003 | A1 |
20040046509 | Sakita | Mar 2004 | A1 |
20040189549 | Sakita | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
1 020 838 | Jul 2000 | EP |
WO 0030065 | May 2000 | WO |
Number | Date | Country | |
---|---|---|---|
60131177 | Apr 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09878953 | Jun 2001 | US |
Child | 11206046 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09774055 | Jan 2001 | US |
Child | 09878953 | US | |
Parent | 09643843 | Aug 2000 | US |
Child | 09774055 | US | |
Parent | 09556337 | Apr 2000 | US |
Child | 09643843 | US |