Adherent device with multiple physiological sensors

Information

  • Patent Grant
  • 9770182
  • Patent Number
    9,770,182
  • Date Filed
    Wednesday, July 2, 2014
    10 years ago
  • Date Issued
    Tuesday, September 26, 2017
    7 years ago
Abstract
An adherent device to monitor a patient for an extended period comprises a breathable tape. The breathable tape comprises a porous material with an adhesive coating to adhere the breathable tape to a skin of the patient. At least one electrode is affixed to the breathable tape and capable of electrically coupling to a skin of the patient. A printed circuit board is connected to the breathable tape to support the printed circuit board with the breathable tape when the tape is adhered to the patient. Electronic components electrically are connected to the printed circuit board and coupled to the at least one electrode to measure physiologic signals of the patient. A breathable cover and/or an electronics housing is disposed over the circuit board and electronic components and connected to at least one of the electronics components, the printed circuit board or the breathable tape.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to patient monitoring and/or therapy. Although embodiments make specific reference to monitoring impedance and electrocardiogram signals with an adherent device, the system methods and devices described herein may be applicable to many applications in which physiological monitoring and/or therapy is used for extended periods, for example wireless physiological monitoring for extended periods.


Patients are often treated for diseases and/or conditions associated with a compromised status of the patient, for example a compromised physiologic status. In some instances, a patient may report symptoms that require diagnosis to determine the underlying cause. For example, a patient may report fainting or dizziness that requires diagnosis, in which long term monitoring of the patient can provide useful information as to the physiologic status of the patient. In some instances a patient may have suffered a heart attack and require care and/or monitoring after release from the hospital. One example of a device to provide long term monitoring of a patient is the Holter monitor, or ambulatory electrocardiography device.


In addition to measuring heart signals with electrocardiograms, known physiologic measurements include impedance measurements. For example, transthoracic impedance measurements can be used to measure hydration and respiration. Although transthoracic measurements can be useful, such measurements may use electrodes that are positioned across the midline of the patient, and may be somewhat uncomfortable and/or cumbersome for the patient to wear. In at least some instances, the electrodes that are held against the skin of the patient may become detached and/or dehydrated, such that the electrodes must be replaced, thereby making long term monitoring more difficult.


Work in relation to embodiments of the present invention suggests that known methods and apparatus for long term monitoring of patients may be less than ideal. In at least some instances, devices that are worn by the patient may be somewhat uncomfortable, which may lead to patients not wearing the devices and not complying with direction from the health care provider, such that data collected may be less than ideal.


Therefore, a need exists for improved patient monitoring. Ideally, such improved patient monitoring would avoid at least some of the short-comings of the present methods and devices.


2. Description of the Background Art


The following U.S. Patents and Publications may describe relevant background art: U.S. Pat. Nos. 3,170,459; 3,370,459; 3,805,769; 3,845,757; 3,972,329; 4,121,573; 4,141,366; 4,838,273; 4,955,381; 4,981,139; 5,080,099; 5,353,793; 5,511,553; 5,544,661; 5,558,638; 5,724,025; 5,772,586; 5,862,802; 6,047,203; 6,117,077; 6,129,744; 6,225,901; 6,385,473; 6,416,471; 6,454,707; 6,527,711; 6,527,729; 6,551,252; 6,595,927; 6,595,929; 6,605,038; 6,645,153; 6,795,722; 6,821,249; 6,980,851; 7,020,508; 7,054,679; 7,153,262; 2003/0092975; 2005/0113703; 2005/0131288; 2006/0010090; 2006/0031102; 2006/0089679; 2006/122474; 2006/0155183; 2006/0224051; 2006/0264730; 2007/0021678; and 2007/0038038.


BRIEF SUMMARY OF THE INVENTION

The present invention relates to patient monitoring. Although embodiments make specific reference to monitoring impedance and electrocardiogram signals with an adherent patch, the system methods and device described herein may be applicable to any application in which physiological monitoring and/or therapy is used for extended periods, for example wireless physiological monitoring for extended periods. In many embodiments, the adherent device comprises a breathable support, for example a breathable adherent patch, and breathable cover that can be used for extended periods with improved patient comfort. The breathable adherent patch, for example breathable tape, and breathable cover may be configured to stretch, for example to stretch together along two dimensions of the skin of the patient when the patch is adhered to the skin of the patient, such that patient comfort and the lifetime of the patch on the skin can be improved.


According to one aspect, an adherent device to monitor a patient for an extended period includes a breathable tape with an adhesive coating to adhere the breathable tape to a skin of the patient, at least one electrode affixed to the breathable tape and capable of electrically coupling to a skin of the patient, and electronic components electrically coupled to the at least one electrode to measure physiologic signals of the patient. The electronic components are coupled to the breathable tape to support the electronic components when the tape is adhered to the patient. The adherent device further includes an electronics housing covering the electronic components, and a breathable cover disposed over the electronic components such that the electronics housing is disposed between the cover and the electronic components. In some embodiments, the adherent device further includes a printed circuit board to which the electronic components are electrically connected. The adherent device may further include a flexible connection structure to couple the electrodes to the printed circuit board so as to relieve strain between the electrodes and the printed circuit board. The electronics housing may be adhered to at least one of the electronic components. The breathable cover may be connected to the breathable tape. The breathable cover may include a stretchable material. In some embodiments, the breathable cover fits loosely over the electronics housing, such that a portion of the breathable cover can move with respect to the electronics housing. The electronics housing may be smooth, such that the breathable cover is slidably coupled with the electronics housing.


In some embodiments, the electronic components comprise wireless communications circuitry that transmits at least one physiologic signal to a remote server. The electronic components may include impedance circuitry, wherein the wireless communications circuitry is coupled to the impedance circuitry to transmit to the remote server a hydration signal derived from an output of the impedance circuitry. The electronic components may include electrocardiogram circuitry, wherein the wireless communications circuitry is coupled to the electrocardiogram circuitry to transmit to the remote server an electrocardiogram signal derived from an output of the electrocardiogram circuitry. The electronic components may include an accelerometer, wherein the wireless communications circuitry is coupled to the accelerometer to transmit to the remote server an inclination signal derived from an output of the accelerometer.


In some embodiments, the breathable tape comprises an acrylate pressure sensitive adhesive on an underside of the tape, and the adhesive has a thickness less than about 0.004″ to allow the tape to breath when the adhesive is applied to the patient. In some embodiments, the electronics housing comprises a waterproof encapsulant to protect the electronic components from moisture and/or mechanical forces.


In some embodiments, the adherent device includes a gel cover positioned over the breathable tape to inhibit a flow of the gel through the breathable tape, and the electronic components are located over the gel cover such that the gel cover is disposed between the breathable tape and the electronic components. The gel cover may include at least one of a polyurethane film or polyurethane non-woven backing and an acrylate pressure sensitive adhesive. The gel cover may have a porosity of at least about 200 sec./100 cc/in 2 to protect the hydrogel from external moisture. The breathable tape may include a knit polyester fabric backing and the gel cover may include a polyurethane film backing. In some embodiments, the breathable tape has a first porosity and the gel cover comprises a breathable tape with a second porosity, the second porosity less than the first porosity to inhibit flow of the gel through the breathable tape having the first porosity.


In some embodiments, the electronic components are comprised in an electronics module that is separable from the breathable tape, the adhesive coating, and the at least one electrode. The electronics module may be reusable. The breathable tape, the adhesive coating, and the at least one electrode may not be reusable. The electronics module may include the breathable cover. The electronics module may include the electronics housing.


In some embodiments, the adherent device further includes at least one gel disposed over a contact surface of the at least one electrode to electrically connect the electrode to the skin. The adherent device may further include an adhesive disposed around the breathable tape to connect the cover to the breathable tape. The adherent device may further include a gel cover positioned over the breathable tape, wherein a moisture vapor transmission rate (MVTR) through the breathable tape, the gel cover, and the breathable cover is at least about 400 g/m^2/24 hrs.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A shows a patient and a monitoring system comprising an adherent device, according to embodiments of the present invention;



FIG. 1B shows a bottom view of the adherent device as in FIG. 1A comprising an adherent patch;



FIG. 1C shows a top view of the adherent patch, as in FIG. 1B;



FIG. 1D shows a printed circuit boards and electronic components over the adherent patch, as in FIG. 1C;


FIG. 1D1 shows an equivalent circuit that can be used to determine optimal frequencies for determining patient hydration, according to embodiments of the present invention;



FIG. 1E shows batteries positioned over the printed circuit board and electronic components as in FIG. 1D;



FIG. 1F shows a top view of an electronics housing and a breathable cover over the batteries, electronic components and printed circuit board as in FIG. 1E;



FIG. 1G shows a side view of the adherent device as in FIGS. 1A to 1F;



FIG. 1H shown a bottom isometric view of the adherent device as in FIGS. 1A to 1G;



FIGS. 1I and 1J show a side cross-sectional view and an exploded view, respectively, of the adherent device as in FIGS. 1A to 1H;


FIGS. 1I1 and 1J1 show a side cross-sectional view and an exploded view, respectively, of an adherent device with a temperature sensor affixed to the gel cover, according to embodiments of the present invention;



FIG. 1K shows at least one electrode configured to electrically couple to a skin of the patient through a breathable tape, according to embodiments of the present invention; and



FIGS. 2A and 2B show components of an adherent device comprising an adhesive patch and connection structures to provide strain relief so as to decouple the adhesive patch from an electronics module, according to embodiments of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention relate to patient monitoring and/or therapy. Although embodiments make specific reference to monitoring impedance and electrocardiogram signals with an adherent device, the system methods and device described herein may be applicable to any application in which physiological monitoring and/or therapy is used for extended periods, for example wireless physiological monitoring for extended periods.


The adherent device comprises a support, for example a patch that may comprise breathable tape, and the support can be configured to adhere to the patient and support the electronics and sensors on the patient. The support can be porous and breathable so as to allow water vapor transmission. The support can also stretch with skin of the patient, so as to improve patient comfort and extend the time that the support can be adhered to the patient.


In many embodiments, the adherent devices described herein may be used for 90 day monitoring, or more, and may comprise completely disposable components and/or reusable components, and can provide reliable data acquisition and transfer. In many embodiments, the patch is configured for patient comfort, such that the patch can be worn and/or tolerated by the patient for extended periods, for example 90 days or more. The patch may be worn continuously for at least seven days, for example 14 days, and then replaced with another patch. Adherent devices with comfortable patches that can be worn for extended periods and in which patches can be replaced and the electronics modules reused are described in U.S. Pat. App. Nos. 60/972,537, entitled “Adherent Device with Multiple Physiological Sensors”; and 60/972,629, entitled “Adherent Device with Multiple Physiological Sensors”, both filed on Sep. 14, 2007, the full disclosures of which have been previously incorporated herein by reference. In many embodiments, the adherent patch comprises a tape, which comprises a material, preferably breathable, with an adhesive, such that trauma to the patient skin can be minimized while the patch is worn for the extended period. The printed circuit board may comprise a flex printed circuit board that can flex with the patient to provide improved patient comfort.



FIG. 1A shows a patient P and a monitoring system 10. Patient P comprises a midline M, a first side S1 , for example a right side, and a second side S2 , for example a left side. Monitoring system 10 comprises an adherent device 100. Adherent device 100 can be adhered to a patient P at many locations, for example thorax T of patient P. In many embodiments, the adherent device may adhere to one side of the patient, from which side data can be collected. Work in relation with embodiments of the present invention suggests that location on a side of the patient can provide comfort for the patient while the device is adhered to the patient.


Monitoring system 10 includes components to transmit data to a remote center 106. Remote center 106 can be located in a different building from the patient, for example in the same town as the patient, and can be located as far from the patient as a separate continent from the patient, for example the patient located on a first continent and the remote center located on a second continent. Adherent device 100 can communicate wirelessly to an intermediate device 102, for example with a single wireless hop from the adherent device on the patient to the intermediate device. Intermediate device 102 can communicate with remote center 106 in many ways, for example with an internet connection and/or with a cellular connection. In many embodiments, monitoring system 10 comprises a distributed processing system with at least one processor comprising a tangible medium on device 100, at least one processor on intermediate device 102, and at least one processor 106P at remote center 106, each of which processors can be in electronic communication with the other processors. At least one processor 102P comprises a tangible medium 102T, and at least one processor 106P comprises a tangible medium 106T. Remote processor 106P may comprise a backend server located at the remote center. Remote center 106 can be in communication with a health care provider 108A with a communication system 107A, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Health care provider 108A, for example a family member, can be in communication with patient P with a communication, for example with a two way communication system, as indicated by arrow 109A, for example by cell phone, email, landline. Remote center 106 can be in communication with a health care professional, for example a physician 108B, with a communication system 107B, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Physician 108B can be in communication with patient P with a communication, for example with a two way communication system, as indicated by arrow 109B, for example by cell phone, email, landline. Remote center 106 can be in communication with an emergency responder 108C, for example a 911 operator and/or paramedic, with a communication system 107C, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Emergency responder 108C can travel to the patient as indicated by arrow 109C. Thus, in many embodiments, monitoring system 10 comprises a closed loop system in which patient care can be monitored and implemented from the remote center in response to signals from the adherent device.


In many embodiments, the adherent device may continuously monitor physiological parameters, communicate wirelessly with a remote center, and provide alerts when necessary. The system may comprise an adherent patch, which attaches to the patient's thorax and contains sensing electrodes, battery, memory, logic, and wireless communication capabilities. In some embodiments, the patch can communicate with the remote center, via the intermediate device in the patient's home. In some embodiments, the remote center 106 receives the patient data and applies a patient evaluation and/or prediction algorithm. When a flag is raised, the center may communicate with the patient, hospital, nurse, and/or physician to allow for therapeutic intervention, for example to prevent decompensation.


The adherent device may be affixed and/or adhered to the body in many ways. For example, with at least one of the following an adhesive tape, a constant-force spring, suspenders around shoulders, a screw-in microneedle electrode, a pre-shaped electronics module to shape fabric to a thorax, a pinch onto roll of skin, or transcutaneous anchoring. Patch and/or device replacement may occur with a keyed patch (e.g. two-part patch), an outline or anatomical mark, a low-adhesive guide (place guide|remove old patch|place new patch|remove guide), or a keyed attachment for chatter reduction. The patch and/or device may comprise an adhesiveless embodiment (e.g. chest strap), and/or a low-irritation adhesive for sensitive skin. The adherent patch and/or device can comprise many shapes, for example at least one of a dogbone, an hourglass, an oblong, a circular or an oval shape.


In many embodiments, the adherent device may comprise a reusable electronics module with replaceable patches, and each of the replaceable patches may include a battery. The module may collect cumulative data for approximately 90 days and/or the entire adherent component (electronics+patch) may be disposable. In a completely disposable embodiment, a “baton” mechanism may be used for data transfer and retention, for example baton transfer may include baseline information. In some embodiments, the device may have a rechargeable module, and may use dual battery and/or electronics modules, wherein one module 101A can be recharged using a charging station 103 while the other module 101B is placed on the adherent patch with connectors. In some embodiments, the intermediate device 102 may comprise the charging module, data transfer, storage and/or transmission, such that one of the electronics modules can be placed in the intermediate device for charging and/or data transfer while the other electronics module is worn by the patient.


System 10 can perform the following functions: initiation, programming, measuring, storing, analyzing, communicating, predicting, and displaying. The adherent device may contain a subset of the following physiological sensors: bioimpedance, respiration, respiration rate variability, heart rate (ave, min, max), heart rhythm, hear rate variability (hereinafter “HRV”), heart rate turbulence (hereinafter “HRT”), heart sounds (e.g. S3), respiratory sounds, blood pressure, activity, posture, wake/sleep, orthopnea, temperature/heat flux, and weight. The activity sensor may comprise one or more of the following: ball switch, accelerometer, minute ventilation, HR, bioimpedance noise, skin temperature/heat flux, BP, muscle noise, posture.


The adherent device can wirelessly communicate with remote center 106. The communication may occur directly (via a cellular or Wi-Fi network), or indirectly through intermediate device 102. Intermediate device 102 may consist of multiple devices, which can communicate wired or wirelessly to relay data to remote center 106.


In many embodiments, instructions are transmitted from remote site 106 to a processor supported with the adherent patch on the patient, and the processor supported with the patient can receive updated instructions for the patient treatment and/or monitoring, for example while worn by the patient.



FIG. 1B shows a bottom view of adherent device 100 as in FIG. 1A comprising an adherent patch 110. Adherent patch 110 comprises a first side, or a lower side 110A, that is oriented toward the skin of the patient when placed on the patient. In many embodiments, adherent patch 110 comprises a tape 110T which is a material, preferably breathable, with an adhesive 116A. Patient side 110A comprises adhesive 116A to adhere the patch 110 and adherent device 100 to patient P. Electrodes 112A, 112B, 112C and 112D are affixed to adherent patch 110. In many embodiments, at least four electrodes are attached to the patch, for example six electrodes. In some embodiments the patch comprises two electrodes, for example two electrodes to measure the electrocardiogram (ECG) of the patient. Gel 114A, gel 114B, gel 114C and gel 114D can each be positioned over electrodes 112A, 112B, 112C and 112D, respectively, to provide electrical conductivity between the electrodes and the skin of the patient. In many embodiments, the electrodes can be affixed to the patch 110, for example with known methods and structures such as rivets, adhesive, stitches, etc. In many embodiments, patch 110 comprises a breathable material to permit air and/or vapor to flow to and from the surface of the skin.



FIG. 1C shows a top view of the adherent patch 100, as in FIG. 1B. Adherent patch 100 comprises a second side, or upper side 110B. In many embodiments, electrodes 112A, 112B, 112C and 112D extend from lower side 110A through adherent patch 110 to upper side 110B. An adhesive 116B can be applied to upper side 110B to adhere structures, for example a breathable cover, to the patch such that the patch can support the electronics and other structures when the patch is adhered to the patient. The printed circuit board (hereinafter “PCB”) may comprise completely flex PCB, combined flex PCB and/or rigid PCB boards connected by cable.



FIG. 1D shows a printed circuit boards and electronic components over adherent patch 110, as in FIGS. 1A to 1C. In some embodiments, a printed circuit board (PCB), for example flex printed circuit board 120, may be connected to electrodes 112A, 112B, 112C and 112D with connectors 122A, 122B, 122C and 122D. Flex printed circuit board 120 can include traces 123A, 123B, 123C and 123D that extend to connectors 122A, 122B, 122C and 122D, respectively, on the flex printed circuit board. Connectors 122A, 122B, 122C and 122D can be positioned on flex printed circuit board 120 in alignment with electrodes 112A, 112B, 112C and 112D so as to electrically couple the flex PCB with the electrodes. In some embodiments, connectors 122A, 122B, 122C and 122D may comprise insulated wires and/or a film with conductive ink that provide strain relief between the PCB and the electrodes. For example, connectors 122A, 122B, 122C and 122D may comprise a flexible film, such as at least one of known polyester film or known polyurethane film, coated with a conductive ink, for example a conductive silver ink. In some embodiments, additional PCB's, for example rigid PCB's 120A, 120B, 120C and 120D, can be connected to flex PCB 120. Electronic components 130 can be connected to flex PCB 120 and/or mounted thereon. In some embodiments, electronic components 130 can be mounted on the additional PCB's.


Electronic components 130 comprise components to take physiologic measurements, transmit data to remote center 106 and receive commands from remote center 106. In many embodiments, electronics components 130 may comprise known low power circuitry, for example complementary metal oxide semiconductor (CMOS) circuitry components. Electronics components 130 comprise an activity sensor and activity circuitry 134, impedance circuitry 136 and electrocardiogram circuitry, for example ECG circuitry 138. In some embodiments, electronics circuitry 130 may comprise a microphone and microphone circuitry 142 to detect an audio signal from within the patient, and the audio signal may comprise a heart sound and/or a respiratory sound, for example an S3 heart sound and a respiratory sound with rales and/or crackles.


Electronics circuitry 130 may comprise a temperature sensor 177, for example a thermistor in contact with the skin of the patient, and temperature sensor circuitry 144 to measure a temperature of the patient, for example a temperature of the skin of the patient. A temperature sensor 177 may be used to determine the sleep and wake state of the patient. The temperature of the patient can decrease as the patient goes to sleep and increase when the patient wakes up.


Work in relation to embodiments of the present invention suggests that skin temperature may effect impedance and/or hydration measurements, and that skin temperature measurements may be used to correct impedance and/or hydration measurements. In some embodiments, increase in skin temperature or heat flux can be associated with increased vaso-dilation near the skin surface, such that measured impedance measurement decreased, even through the hydration of the patient in deeper tissues under the skin remains substantially unchanged. Thus, use of the temperature sensor can allow for correction of the hydration signals to more accurately assess the hydration, for example extra cellular hydration, of deeper tissues of the patient, for example deeper tissues in the thorax.


Electronics circuitry 130 may comprise a processor 146. Processor 146 comprises a tangible medium, for example read only memory (ROM), electrically erasable programmable read only memory (EEPROM) and/or random access memory (RAM). Electronic circuitry 130 may comprise real time clock and frequency generator circuitry 148. In some embodiments, processor 136 may comprise the frequency generator and real time clock. The processor can be configured to control a collection and transmission of data from the impedance circuitry electrocardiogram circuitry and the accelerometer. In many embodiments, device 100 comprise a distributed processor system, for example with multiple processors on device 100.


In many embodiments, electronics components 130 comprise wireless communications circuitry 132 to communicate with remote center 106. Printed circuit board 120 may comprise an antenna to facilitate wireless communication. The antennae may be integral with printed circuit board 120 or may be separately coupled thereto. The wireless communication circuitry can be coupled to the impedance circuitry, the electrocardiogram circuitry and the accelerometer to transmit to a remote center with a communication protocol at least one of the hydration signal, the electrocardiogram signal or the inclination signal. In specific embodiments, wireless communication circuitry is configured to transmit the hydration signal, the electrocardiogram signal and the inclination signal to the remote center with a single wireless hop, for example from wireless communication circuitry 132 to intermediate device 102. The communication protocol comprises at least one of Bluetooth, Zigbee, WiFi, WiMax, IR, amplitude modulation or frequency modulation. In many embodiments, the communications protocol comprises a two way protocol such that the remote center is capable of issuing commands to control data collection.


Intermediate device 102 may comprise a data collection system to collect and store data from the wireless transmitter. The data collection system can be configured to communicate periodically with the remote center. The data collection system can transmit data in response to commands from remote center 106 and/or in response to commands from the adherent device.


Activity sensor and activity circuitry 134 can comprise many known activity sensors and circuitry. In many embodiments, the accelerometer comprises at least one of a piezoelectric accelerometer, capacitive accelerometer or electromechanical accelerometer. The accelerometer may comprises a 3-axis accelerometer to measure at least one of an inclination, a position, an orientation or acceleration of the patient in three dimensions. Work in relation to embodiments of the present invention suggests that three dimensional orientation of the patient and associated positions, for example sitting, standing, lying down, can be very useful when combined with data from other sensors, for example ECG data and/or hydration data.


Impedance circuitry 136 can generate both hydration data and respiration data. In many embodiments, impedance circuitry 136 is electrically connected to electrodes 112A, 112B, 112C and 112D such that electrodes 112A and 112D comprise outer electrodes that are driven with a current, or force electrodes. The current delivered between electrodes 112A and 112D generates a measurable voltage between electrodes 112B and 112C, such that electrodes 112B and 112C comprise inner sense electrodes that sense and/or measure the voltage in response to the current from the force electrodes. In some embodiments, electrodes 112B and 112C may comprise force electrodes and electrodes 112A and 112B may comprise sense electrodes. The voltage measured by the sense electrodes can be used measure the impedance of the patient to determine respiration rate and/or the hydration of the patient.


FIG. 1D1 shows an equivalent circuit 152 that can be used to determine optimal frequencies for measuring patient hydration. Work in relation to embodiments of the present invention indicates that the frequency of the current and/or voltage at the force electrodes can be selected so as to provide impedance signals related to the extracellular and/or intracellular hydration of the patient tissue. Equivalent circuit 152 comprises an intracellular resistance 156, or R(ICW) in series with a capacitor 154, and an extracellular resistance 158, or R(ECW). Extracellular resistance 158 is in parallel with intracellular resistance 156 and capacitor 154 related to capacitance of cell membranes. In many embodiments, impedances can be measured and provide useful information over a wide range of frequencies, for example from about 0.5 kHz to about 200 KHz. Work in relation to embodiments of the present invention suggests that extracellular resistance 158 can be significantly related extracellular fluid and to cardiac decompensation, and that extracellular resistance 158 and extracellular fluid can be effectively measured with frequencies in a range from about 0.5 kHz to about 20 kHz, for example from about 1 kHz to about 10 kHz. In some embodiments, a single frequency can be used to determine the extracellular resistance and/or fluid. As sample frequencies increase from about 10 kHz to about 20 kHz, capacitance related to cell membranes decrease the impedance, such that the intracellular fluid contributes to the impedance and/or hydration measurements. Thus, many embodiments of the present invention employ measure hydration with frequencies from about 0.5 kHz to about 20 kHz to determine patient hydration.


In many embodiments, impedance circuitry 136 can be configured to determine respiration of the patient. In specific embodiments, the impedance circuitry can measure the hydration at 25 Hz intervals, for example at 25 Hz intervals using impedance measurements with a frequency from about 0.5 kHz to about 20 kHz.


ECG circuitry 138 can generate electrocardiogram signals and data from two or more of electrodes 112A, 112B, 112C and 112D in many ways. In some embodiments, ECG circuitry 138 is connected to inner electrodes 112B and 122C, which may comprise sense electrodes of the impedance circuitry as described above. In some embodiments, ECG circuitry 138 can be connected to electrodes 112A and 112D so as to increase spacing of the electrodes. The inner electrodes may be positioned near the outer electrodes to increase the voltage of the ECG signal measured by ECG circuitry 138. In many embodiments, the ECG circuitry may measure the ECG signal from electrodes 112A and 112D when current is not passed through electrodes 112A and 112D, for example with switches as described in U.S. App. No. 60/972,527, the full disclosure of which has been previously incorporated herein by reference.



FIG. 1E shows batteries 150 positioned over the flex printed circuit board and electronic components as in FIG. 1D. Batteries 150 may comprise rechargeable batteries that can be removed and/or recharged. In some embodiments, batteries 150 can be removed from the adherent patch and recharged and/or replaced.



FIG. 1F shows a top view of a cover 162 over the batteries, electronic components and flex printed circuit board as in FIGS. 1A to 1E. In many embodiments, an electronics housing 160 may be disposed under cover 162 to protect the electronic components, and in some embodiments electronics housing 160 may comprise an encapsulant over the electronic components and PCB. In some embodiments, cover 162 can be adhered to adherent patch 110 with an adhesive 164 on an underside of cover 162. In many embodiments, electronics housing 160 may comprise a water proof material, for example a sealant adhesive such as epoxy or silicone coated over the electronics components and/or PCB. In some embodiments, electronics housing 160 may comprise metal and/or plastic. Metal or plastic may be potted with a material such as epoxy or silicone.


Cover 162 may comprise many known biocompatible cover, casing and/or housing materials, such as elastomers, for example silicone. The elastomer may be fenestrated to improve breathability. In some embodiments, cover 162 may comprise many known breathable materials, for example polyester, polyamide, nylon and/or elastane (Spandex™). The breathable fabric may be coated to make it water resistant, waterproof, and/or to aid in wicking moisture away from the patch.



FIG. 1G shows a side view of adherent device 100 as in FIGS. 1A to 1F. Adherent device 100 comprises a maximum dimension, for example a length 170 from about 4 to 10 inches (from about 100 mm to about 250 mm), for example from about 6 to 8 inches (from about 150 mm to about 200 mm). In some embodiments, length 170 may be no more than about 6 inches (no more than about 150 mm). Adherent device 100 comprises a thickness 172. Thickness 172 may comprise a maximum thickness along a profile of the device. Thickness 172 can be from about 0.2 inches to about 0.6 inches (from about 5 mm to about 15 mm), from about 0.2 inches to about 0.4 inches (from about 5 mm to about 10 mm), for example about 0.3 inches (about 7.5 mm).



FIG. 1H shown a bottom isometric view of adherent device 100 as in FIGS. 1A to 1G. Adherent device 100 comprises a width 174, for example a maximum width along a width profile of adherent device 100. Width 174 can be from about 2 to about 4 inches (from about 50 mm to 100 mm), for example about 3 inches (about 75 mm).



FIGS. 1I and 1J show a side cross-sectional view and an exploded view, respectively, of adherent device 100 as in FIGS. 1A to 1H. In many embodiments, device 100 comprises several layers. FIGS. 1I1 and 1J1 show a side cross-sectional view and an exploded view, respectively, of embodiments of the adherent device with a temperature sensor affixed to the gel cover. In these embodiments, gel cover 180 extends over a wider area than in the embodiments shown in FIGS. 1I and 1J. Temperature sensor 177 is disposed over a peripheral portion of gel cover 180. Temperature sensor 177 can be affixed to gel cover 180 such that the temperature sensor can move when the gel cover stretches and tape stretch with the skin of the patient. Temperature sensor 177 may be coupled to temperature sensor circuitry 144 through a flex connection comprising at least one of wires, shielded wires, non-shielded wires, a flex circuit, or a flex PCB. This coupling of the temperature sensor allows the temperature near the skin to be measured though the breathable tape and the gel cover. The temperature sensor can be affixed to the breathable tape, for example through a cutout in the gel cover with the temperature sensor positioned away from the gel pads. A heat flux sensor can be positioned near the temperature sensor, for example to measure heat flux through to the gel cover, and the heat flux sensor coupled to heat flux circuitry similar to the temperature sensor.


The adherent device comprises electrodes 112A1, 112B1, 112C1 and 112D1 configured to couple to tissue through apertures in the breathable tape 110T. Electrodes 112A1, 112B1, 112C1 and 112D1 can be fabricated in many ways. For example, electrodes 112A1, 112B1, 112C1 and 112D1 can be printed on a flexible connector 112F, such as silver ink on polyurethane. Breathable tape 110T comprise apertures 180A1, 180B1, 180C1 and 180D1. Electrodes 112A1, 112B1, 112C1 and 112D1 are exposed to the gel through apertures 180A1, 180B1, 180C1 and 180D1 of breathable tape 110T. Gel 114A, gel 114B, gel 114C and gel 114D can be positioned over electrodes 112A1, 112B1, 112C1 and 112D1 and the respective portions of breathable tape 110T proximate apertures 180A1, 180B1, 180C1 and 180D1, so as to couple electrodes 112A1, 112B1, 112C1 and 112D1 to the skin of the patient. The flexible connector 112F comprising the electrodes can extend from under the gel cover to the printed circuit board to connect to the printed circuit boards and/or components supported thereon. For example, flexible connector 112F may comprise flexible connector 122A to provide strain relief, as described above.


In many embodiments, gel 114A, or gel layer, comprises a hydrogel that is positioned on electrode 112A to provide electrical conductivity between the electrode and the skin. In many embodiments, gel 114A comprises a hydrogel that provides a conductive interface between skin and electrode, so as to reduce impedance between electrode/skin interface. In many embodiments, gel may comprise water, glycerol, and electrolytes, pharmacological agents, such as beta blockers, ace inhibiters, diuretics, steroid for inflammation, antibiotic, antifungal agent. In specific embodiments the gel may comprise cortisone steroid. The gel layer may comprise many shapes, for example, square, circular, oblong, star shaped, many any polygon shapes. In specific embodiments, the gel layer may comprise at least one of a square or circular geometry with a dimension in a range from about 0.005″ to about 0.100″, for example within a range from about 0.015″-0.070″, in some embodiments within a range from about 0.015″-0.040″, and in specific embodiments within a range from about 0.020″-0.040″. In many embodiments, the gel layer of each electrode comprises an exposed surface area to contact the skin within a range from about 100 mm^2 to about 1500 mm^2, for example a range from about 250 mm^2 to about 750 mm^2, and in specific embodiments within a range from about 350 mm^2 to about 650 mm^2. Work in relation with embodiments of the present invention suggests that such dimensions and/or exposed surface areas can provide enough gel area for robust skin interface without excessive skin coverage. In many embodiments, the gel may comprise an adhesion to skin, as may be tested with a 1800 degree peel test on stainless steel, of at least about 3 oz/in, for example an adhesion within a range from about 5-10 oz/in. In many embodiments, a spacing between gels is at least about 5 mm, for example at least about 10 mm. Work in relation to embodiments of the present invention suggests that this spacing may inhibit the gels from running together so as to avoid crosstalk between the electrodes. In many embodiments, the gels comprise a water content within a range from about 20% to about 30%, a volume resistivity within a range from about 500 to 2000 ohm-cm, and a pH within a range from about 3 to about 5.


In many embodiments, the electrodes, for example electrodes 112A to 112D, may comprise an electrode layer. A 0.001″-0.005″ polyester strip with silver ink for traces can extend to silver/silver chloride electrode pads. In many embodiments, the electrodes can provide electrical conduction through hydrogel to skin, and in some embodiments may be coupled directly to the skin. Although at least 4 electrodes are shown, some embodiments comprise at least two electrodes, for example 2 electrodes. In some embodiments, the electrodes may comprise at least one of carbon-filled ABS plastic, silver, nickel, or electrically conductive acrylic tape. In specific embodiments, the electrodes may comprise at least one of carbon-filled ABS plastic, Ag/AgCl. The electrodes may comprise many geometric shapes to contact the skin, for example at least one of square, circular, oblong, star shaped, polygon shaped, or round. In specific embodiments, a dimension across a width of each electrodes is within a range from about 002″ to about 0.050″, for example from about 0.010 to about 0.040″. In many a surface area of the electrode toward the skin of the patient is within a range from about 25 mm^2 to about 1500 mm^2, for example from about 75 mm^2 to about 150 mm^2. In many embodiments, the electrode comprises a tape that may cover the gel near the skin of the patient. In specific embodiments, the two inside electrodes may comprise force, or current electrodes, with a center to center spacing within a range from about 20 to about 50 mm. In specific embodiments, the two outside electrodes may comprise measurement electrodes, for example voltage electrodes, and a center-center spacing between adjacent voltage and current electrodes is within a range from about 15 mm to about 35 mm. Therefore, in many embodiments, a spacing between inner electrodes may be greater than a spacing between an inner electrode and an outer electrode.


In many embodiments, adherent patch 110 may comprise a layer of breathable tape 110T, for example a known breathable tape, such as tricot-knit polyester fabric. In many embodiments, breathable tape 110T comprises a backing material, or backing 111, with an adhesive. In many embodiments, the patch adheres to the skin of the patient's body, and comprises a breathable material to allow moisture vapor and air to circulate to and from the skin of the patient through the tape. In many embodiments, the backing is conformable and/or flexible, such that the device and/or patch does not become detached with body movement. In many embodiments, backing can sufficiently regulate gel moisture in absence of gel cover. In many embodiments, adhesive patch may comprise from 1 to 2 pieces, for example 1 piece. In many embodiments, adherent patch 110 comprises pharmacological agents, such as at least one of beta blockers, ace inhibiters, diuretics, steroid for inflammation, antibiotic, or antifungal agent. In specific embodiments, patch 110 comprises cortisone steroid. Patch 110 may comprise many geometric shapes, for example at least one of oblong, oval, butterfly, dogbone, dumbbell, round, square with rounded corners, rectangular with rounded corners, or a polygon with rounded corners. In specific embodiments, a geometric shape of patch 110 comprises at least one of an oblong, an oval or round. In many embodiments, the geometric shape of the patch comprises a radius on each corner that is no less than about one half a width and/or diameter of tape. Work in relation to embodiments of the present invention suggests that rounding the corner can improve adherence of the patch to the skin for an extended period of time because sharp corners, for example right angle corners, can be easy to peel. In specific embodiments, a thickness of adherent patch 110 is within a range from about 0.001″ to about 0.020″, for example within a range from about 0.005″ to about 0.010″. Work in relation to embodiments of the present invention indicates that these ranges of patch thickness can improve adhesion of the device to the skin of the patient for extended periods as a thicker adhesive patch, for example tape, may peel more readily. In many embodiments, length 170 of the patch is within a range from about 2″ to about 10″, width 174 of the patch is within a range from about 1″ to about 5″. In specific embodiments, length 170 is within a range from about 4″ to about 8″ and width 174 is within a range from about 2″ to about 4″. In many embodiments, an adhesion to the skin, as measured with a 180 degree peel test on stainless steel, can be within a range from about 10 to about 100 oz/in width, for example within a range from about 30 to about 70 oz/in width. Work in relation to embodiments of the present invention suggests that adhesion within these ranges may improve the measurement capabilities of the patch because if the adhesion is too low, patch will not adhere to the skin of the patient for a sufficient period of time and if the adhesion is too high, the patch may cause skin irritation upon removal. In many embodiments adherent patch 110 comprises a moisture vapor transmission rate (MVTR, g/m 2/24 hrs) per American Standard for Testing and Materials E-96 (ASTM E-96) is at least about 400, for example at least about 1000. Work in relation to embodiments of the present invention suggest that MVTR values as specified above can provide improved comfort, for example such that in many embodiments skin does not itch. In some embodiments, the breathable tape 110T of adherent patch 110 may comprise a porosity (sec./100 cc/in.sup.2) within a wide range of values, for example within a range from about 0 to about 200. The porosity of breathable tape 110T may be within a range from about 0 to about 5. The above amounts of porosity can minimize itching of the patient's skin when the patch is positioned on the skin of the patient. In many embodiments, the MVTR values above may correspond to a MVTR through both the gel cover and the breathable tape. The above MVTR values may also correspond to an MVTR through the breathable tape, the gel cover and the breathable cover. The MVTR can be selected to minimize patient discomfort, for example itching of the patient's skin. In some embodiments, the breathable tape may contain and elute a pharmaceutical agent, such as an antibiotic, anti-inflammatory or antifungal agent, when the adherent device is placed on the patient.


In many embodiments, tape 110T of adherent patch 110 may comprise backing material, or backing 111, such as a fabric configured to provide properties of patch 110 as described above. In many embodiments backing 111 provides structure to breathable tape 110T, and many functional properties of breathable tape 110T as described above. In many embodiments, backing 111 comprises at least one of polyester, polyurethane, rayon, nylone, breathable plastic film; woven, nonwoven, spunlace, knit, film, or foam. In specific embodiments, backing 111 may comprise polyester tricot knit fabric. In many embodiments, backing 111 comprises a thickness within a range from about 0.0005″ to about 0.020″, for example within a range from about 0.005″ to about 0.010″.


In many embodiments, an adhesive 116A, for example breathable tape adhesive comprising a layer of acrylate pressure sensitive adhesive, can be disposed on underside 110A of patch 110. In many embodiments, adhesive 116A adheres adherent patch 110 comprising backing 111 to the skin of the patient, so as not to interfere with the functionality of breathable tape, for example water vapor transmission as described above. In many embodiments, adhesive 116A comprises at least one of acrylate, silicone, synthetic rubber, synthetic resin, hydrocolloid adhesive, pressure sensitive adhesive (PSA), or acrylate pressure sensitive adhesive. In many embodiments, adhesive 116A comprises a thickness from about 0.0005″ to about 0.005″, in specific embodiments no more than about 0.003″. Work in relation to embodiments of the present invention suggests that these thicknesses can allow the tape to breathe and/or transmit moisture, so as to provide patient comfort.


A gel cover 180, or gel cover layer, for example a polyurethane non-woven tape, can be positioned over patch 110 comprising the breathable tape. A PCB layer, for example flex printed circuit board 120, or flex PCB layer, can be positioned over gel cover 180 with electronic components 130 connected and/or mounted to flex printed circuit board 120, for example mounted on flex PCB so as to comprise an electronics layer disposed on the flex PCB layer. In many embodiments, the adherent device may comprise a segmented inner component, for example the PCB may be segmented to provide at least some flexibility. In many embodiments, the electronics layer may be encapsulated in electronics housing 160 which may comprise a waterproof material, for example silicone or epoxy. In many embodiments, the electrodes are connected to the PCB with a flex connection, for example trace 123A of flex printed circuit board 120, so as to provide strain relive between the electrodes 112A, 112B, 112C and 112D and the PCB.


Gel cover 180 can inhibit flow of gel 114A and liquid. In many embodiments, gel cover 180 can inhibit gel 114A from seeping through breathable tape 110T to maintain gel integrity over time. Gel cover 180 can also keep external moisture from penetrating into gel 114A. For example gel cover 180 can keep liquid water from penetrating though the gel cover into gel 114A, while allowing moisture vapor from the gel, for example moisture vapor from the skin, to transmit through the gel cover. The gel cover may comprise a porosity at least 200 sec./100 cc/in.sup.2, and this porosity can ensure that there is a certain amount of protection from external moisture for the hydrogel.


In many embodiments, the gel cover can regulate moisture of the gel near the electrodes so as to keeps excessive moisture, for example from a patient shower, from penetrating gels near the electrodes. In many embodiments, the gel cover may avoid release of excessive moisture form the gel, for example toward the electronics and/or PCB modules. Gel cover 180 may comprise at least one of a polyurethane, polyethylene, polyolefin, rayon, PVC, silicone, non-woven material, foam, or a film. In many embodiments gel cover 180 may comprise an adhesive, for example a acrylate pressure sensitive adhesive, to adhere the gel cover to adherent patch 110. In specific embodiments gel cover 180 may comprise a polyurethane film with acrylate pressure sensitive adhesive. In many embodiments, a geometric shape of gel cover 180 comprises at least one of oblong, oval, butterfly, dogbone, dumbbell, round, square, rectangular with rounded corners, or polygonal with rounded corners. In specific embodiments, a geometric shape of gel cover 180 comprises at least one of oblong, oval, or round. In many embodiments, a thickness of gel cover is within a range from about 0.0005″ to about 0.020″, for example within a range from about 0.0005 to about 0.010″. In many embodiments, gel cover 180 can extend outward from about 0-20 mm from an edge of gels, for example from about 5-15 mm outward from an edge of the gels.


In many embodiments, the breathable tape of adherent patch 110 comprises a first mesh with a first porosity and gel cover 180 comprises a breathable tape with a second porosity, in which the second porosity is less than the first porosity to inhibit flow of the gel through the breathable tape.


In many embodiments, device 100 includes a printed circuitry, for example a printed circuitry board (PCB) module that includes at least one PCB with electronics component mounted thereon on and the battery, as described above. In many embodiments, the PCB module comprises two rigid PCB modules with associated components mounted therein, and the two rigid PCB modules are connected by flex circuit, for example a flex PCB. In specific embodiments, the PCB module comprises a known rigid FR4 type PCB and a flex PCB comprising known polyimide type PCB. In specific embodiments, the PCB module comprises a rigid PCB with flex interconnects to allow the device to flex with patient movement. The geometry of flex PCB module may comprise many shapes, for example at least one of oblong, oval, butterfly, dogbone, dumbbell, round, square, rectangular with rounded corners, or polygon with rounded corners. In specific embodiments the geometric shape of the flex PCB module comprises at least one of dogbone or dumbbell. The PCB module may comprise a PCB layer with flex PCB 120 can be positioned over gel cover 180 and electronic components 130 connected and/or mounted to flex PCB 120 so as to comprise an electronics layer disposed on the flex PCB. In many embodiments, the adherent device may comprise a segmented inner component, for example the PCB, for limited flexibility. The printed circuit may comprise polyester film with silver traces printed thereon.


In many embodiments, the electronics layer may be encapsulated in electronics housing 160. Electronics housing 160 may comprise an encapsulant, such as a dip coating, which may comprise a waterproof material, for example silicone and/or epoxy. In many embodiments, the PCB encapsulant protects the PCB and/or electronic components from moisture and/or mechanical forces. The encapsulant may comprise silicone, epoxy, other adhesives and/or sealants. In some embodiments, the electronics housing may comprising metal and/or plastic housing and potted with aforementioned sealants and/or adhesives.


In many embodiments, the electrodes are connected to the PCB with a flex connection, for example trace 123A of flex PCB 120, so as to provide strain relive between the electrodes 112A, 112B, 112C and 112D and the PCB. In such embodiments, motion of the electrodes relative to the electronics modules, for example rigid PCB's 120A, 120B, 120C and 120D with the electronic components mounted thereon, does not compromise integrity of the electrode/hydrogel/skin contact. In some embodiments, the electrodes can be connected to the PCB and/or electronics module with a flex PCB 120, such that the electrodes and adherent patch can move independently from the PCB module. In many embodiments, the flex connection comprises at least one of wires, shielded wires, non-shielded wires, a flex circuit, or a flex PCB. In specific embodiments, the flex connection may comprise insulated, non-shielded wires with loops to allow independent motion of the PCB module relative to the electrodes.


In many embodiments, cover 162 can encase the flex PCB and/or electronics and can be adhered to at least one of the electronics, the flex PCB or adherent patch 110, so as to protect at least the electronics components and the PCB. Cover 162 can attach to adherent patch 110 with adhesive 116B. Cover 162 can comprise many known biocompatible cover materials, for example silicone. Cover 162 can comprise an outer polymer cover to provide smooth contour without limiting flexibility. In many embodiments, cover 162 may comprise a breathable fabric. Cover 162 may comprise many known breathable fabrics, for example breathable fabrics as described above. In some embodiments, the breathable cover may comprise a breathable water resistant cover. In some embodiments, the breathable fabric may comprise polyester, nylon, polyamide, and/or elastane (Spandex™) to allow the breathable fabric to stretch with body movement. In some embodiments, the breathable tape may contain and elute a pharmaceutical agent, such as an antibiotic, anti-inflammatory or antifungal agent, when the adherent device is placed on the patient.


In specific embodiments, cover 162 comprises at least one of polyester, 5-25% elastane/spandex, polyamide fabric; silicone, a polyester knit, a polyester knit without elastane, or a thermoplastic elastomer. In many embodiments cover 162 comprises at least 400% elongation. In specific embodiments, cover 162 comprises at least one of a polyester knit with 10-20% spandex or a woven polyamide with 10-20% spandex. In many embodiments, cover 162 comprises a water repellent coating and/or layer on outside, for example a hydrophobic coating, and a hydrophilic coating on inside to wick moisture from body. In many embodiments the water repellent coating on the outside comprises a stain resistant coating. Work in relation to embodiments of the present invention suggests that these coatings can be important to keep excessive moisture from the gels near the electrodes and to remove moisture from body so as to provide patient comfort.


The breathable cover 162 and adherent patch 110 comprise breathable tape can be configured to couple continuously for at least one week the at least one electrode to the skin so as to measure breathing of the patient. The breathable tape may comprise the stretchable breathable material with the adhesive and the breathable cover may comprises a stretchable breathable material connected to the breathable tape, as described above, such that both the adherent patch and cover can stretch with the skin of the patient. The breathable cover may also comprise a water resistant material. Arrows 182 show stretching of adherent patch 110, and the stretching of adherent patch can be at least two dimensional along the surface of the skin of the patient. As noted above, connectors 122A, 122B, 122C and 122D between PCB 130 and electrodes 112A, 112B, 112C and 112D may comprise insulated wires that provide strain relief between the PCB and the electrodes, such that the electrodes can move with the adherent patch as the adherent patch comprising breathable tape stretches. Arrows 184 show stretching of cover 162, and the stretching of the cover can be at least two dimensional along the surface of the skin of the patient.


Cover 162 can be attached to adherent patch 110 with adhesive 116B such that cover 162 stretches and/or retracts when adherent patch 110 stretches and/or retracts with the skin of the patient. For example, cover 162 and adherent patch 110 can stretch in two dimensions along length 170 and width 174 with the skin of the patient, and stretching along length 170 can increase spacing between electrodes. Stretching of the cover and adherent patch 110, for example in two dimensions, can extend the time the patch is adhered to the skin as the patch can move with the skin such that the patch remains adhered to the skin. Electronics housing 160 can be smooth and allow breathable cover 162 to slide over electronics housing 160, such that motion and/or stretching of cover 162 is slidably coupled with housing 160. The printed circuit board can be slidably coupled with adherent patch 110 that comprises breathable tape 110T, such that the breathable tape can stretch with the skin of the patient when the breathable tape is adhered to the skin of the patient, for example along two dimensions comprising length 170 and width 174.


The stretching of the adherent device 100 along length 170 and width 174 can be characterized with a composite modulus of elasticity determined by stretching of cover 162, adherent patch 110 comprising breathable tape 110T and gel cover 180. For the composite modulus of the composite fabric cover-breathable tape-gel cover structure that surrounds the electronics, the composite modulus may comprise no more than about 1 MPa, for example no more than about 0.3 MPa at strain of no more than about 5%. These values apply to any transverse direction against the skin.


The stretching of the adherent device 100 along length 170 and width 174, may also be described with a composite stretching elongation of cover 162, adherent patch 110 comprising breathable tape breathable tape 110T and gel cover 180. The composite stretching elongation may comprise a percentage of at least about 10% when 3 kg load is a applied, for example at least about 100% when the 3 kg load applied. These percentages apply to any transverse direction against the skin.


The printed circuit board may be adhered to the adherent patch 110 comprising breathable tape 110T at a central portion, for example a single central location, such that adherent patch 110 can stretch around this central region. The central portion can be sized such that the adherence of the printed circuit board to the breathable tape does not have a substantial effect of the modulus of the composite modulus for the fabric cover, breathable tape and gel cover, as described above. For example, the central portion adhered to the patch may be less than about 100 mm^2, for example with dimensions of approximately 10 mm by 10 mm (about 0.5″ by 0.5″). Such a central region may comprise no more than about 10% of the area of patch 110, such that patch 110 can stretch with the skin of the patient along length 170 and width 174 when the patch is adhered to the patient.


The cover material may comprise a material with a low recovery, which can minimize retraction of the breathable tape from the pulling by the cover. Suitable cover materials with a low recovery include at least one of polyester or nylon, for example polyester or nylon with a loose knit. The recovery of the cover material may be within a range from about 0% recovery to about 25% recovery. Recovery can refer to the percentage of retraction the cover material that occurs after the material has been stretched from a first length to a second length. For example, with 25% recovery, a cover that is stretched from a 4 inch length to a 5 inch length will retract by 25% to a final length of 4.75 inches.


Electronics components 130 can be affixed to printed circuit board 120, for example with solder, and the electronics housing can be affixed over the PCB and electronics components, for example with dip coating, such that electronics components 130, printed circuit board 120 and electronics housing 160 are coupled together. Electronics components 130, printed circuit board 120, and electronics housing 160 are disposed between the stretchable breathable material of adherent patch 110 and the stretchable breathable material of cover 160 so as to allow the adherent patch 110 and cover 160 to stretch together while electronics components 130, printed circuit board 120, and electronics housing 160 do not stretch substantially, if at all. This decoupling of electronics housing 160, printed circuit board 120 and electronic components 130 can allow the adherent patch 110 comprising breathable tape to move with the skin of the patient, such that the adherent patch can remain adhered to the skin for an extended time of at least one week, for example two or more weeks.


An air gap 169 may extend from adherent patch 110 to the electronics module and/or PCB, so as to provide patient comfort. Air gap 169 allows adherent patch 110 and breathable tape 110T to remain supple and move, for example bend, with the skin of the patient with minimal flexing and/or bending of printed circuit board 120 and electronic components 130, as indicated by arrows 186. Printed circuit board 120 and electronics components 130 that are separated from the breathable tape 110T with air gap 169 can allow the skin to release moisture as water vapor through the breathable tape, gel cover, and breathable cover. This release of moisture from the skin through the air gap can minimize, and even avoid, excess moisture, for example when the patient sweats and/or showers.


The breathable tape of adherent patch 110 may comprise a first mesh with a first porosity and gel cover 180 may comprise a breathable tape with a second porosity, in which the second porosity is less than the first porosity to minimize, and even inhibit, flow of the gel through the breathable tape. The gel cover may comprise a polyurethane film with the second porosity.


Cover 162 may comprise many shapes. In many embodiments, a geometry of cover 162 comprises at least one of oblong, oval, butterfly, dogbone, dumbbell, round, square, rectangular with rounded corners, or polygonal with rounded corners. In specific embodiments, the geometric of cover 162 comprises at least one of an oblong, an oval or a round shape.


Cover 162 may comprise many thicknesses and/or weights. In many embodiments, cover 162 comprises a fabric weight: within a range from about 100 to about 200 g/m 2, for example a fabric weight within a range from about 130 to about 170 g/m 2.


In many embodiments, cover 162 can attach the PCB module to adherent patch 110 with cover 162, so as to avoid interaction of adherent patch 110C with the PCB having the electronics mounted therein. Cover 162 can be attached to breathable tape 110T and/or electronics housing 160 comprising over the encapsulated PCB. In many embodiments, adhesive 116B attaches cover 162 to adherent patch 110. In many embodiments, cover 162 attaches to adherent patch 110 with adhesive 116B, and cover 162 is adhered to the PCB module with an adhesive 161 on the upper surface of the electronics housing. Thus, the PCB module can be suspended above the adherent patch via connection to cover 162, for example with a gap 169 between the PCB module and adherent patch. In many embodiments, gap 169 permits air and/or water vapor to flow between the adherent patch and cover, for example through adherent patch 110 and cover 162, so as to provide patient comfort.


In many embodiments, adhesive 116B is configured such that adherent patch 110 and cover 162 can be breathable from the skin to above cover 162 and so as to allow moisture vapor and air to travel from the skin to outside cover 162. In many embodiments, adhesive 116B is applied in a pattern on adherent patch 110 such that the patch and cover can be flexible so as to avoid detachment with body movement. Adhesive 116B can be applied to upper side 110B of patch 110 and comprise many shapes, for example a continuous ring, dots, dashes around the perimeter of adherent patch 110 and cover 162. Adhesive 116B may comprise at least one of acrylate, silicone, synthetic rubber, synthetic resin, pressure sensitive adhesive (PSA), or acrylate pressure sensitive adhesive. Adhesive 16B may comprise a thickness within a range from about 0.0005″ to about 0.005″, for example within a range from about 0.001-0.005″. In many embodiments, adhesive 116B comprises a width near the edge of patch 110 and/or cover 162 within a range from about 2 to about 15 mm, for example from about 3 to about 7 near the periphery. In many embodiments with such widths and/or thickness near the edge of the patch and/or cover, the tissue adhesion may be at least about 30 oz/in, for example at least about 40 oz/in, such that the cover remains attached to the adhesive patch when the patient moves.


In many embodiments, the cover is adhered to adherent patch 110 comprising breathable tape 110T at least about 1 mm away from an outer edge of adherent patch 110. This positioning protects the adherent patch comprising breathable tape 110T from peeling away from the skin and minimizes edge peeling, for example because the edge of the patch can be thinner. In some embodiments, the edge of the cover may be adhered at the edge of the adherent patch, such that the cover can be slightly thicker at the edge of the patch which may, in some instances, facilitate peeling of the breathable tape from the skin of the patient.


Gap 169 extend from adherent patch 110 to the electronics module and/or PCB a distance within a range from about 0.25 mm to about 4 mm, for example within a range from about 0.5 mm to about 2 mm.


In many embodiments, the adherent device comprises a patch component and at least one electronics module. The patch component may comprise adherent patch 110 comprising the breathable tape with adhesive coating 116A, at least one electrode, for example electrode 114A and gel 114. The at least one electronics module can be separable from the patch component. In many embodiments, the at least one electronics module comprises the flex printed circuit board 120, electronic components 130, electronics housing 160 and cover 162, such that the flex printed circuit board, electronic components, electronics housing and cover are reusable and/or removable for recharging and data transfer, for example as described above. In many embodiments, adhesive 116B is coated on upper side 110A of adherent patch 110B, such that the electronics module can be adhered to and/or separated from the adhesive component. In specific embodiments, the electronic module can be adhered to the patch component with a releasable connection, for example with Velcro™, a known hook and loop connection, and/or snap directly to the electrodes. Two electronics modules can be provided, such that one electronics module can be worn by the patient while the other is charged, as described above. Monitoring with multiple adherent patches for an extended period is described in U.S. Pat. App. No. 60/972,537, the full disclosure of which has been previously incorporated herein by reference. Many patch components can be provided for monitoring over the extended period. For example, about 12 patches can be used to monitor the patient for at least 90 days with at least one electronics module, for example with two reusable electronics modules.


At least one electrode 112A can extend through at least one aperture 180A in the breathable tape 110.


In some embodiments, the adhesive patch may comprise a medicated patch that releases a medicament, such as antibiotic, beta-blocker, ACE inhibitor, diuretic, or steroid to reduce skin irritation. The adhesive patch may comprise a thin, flexible, breathable patch with a polymer grid for stiffening. This grid may be anisotropic, may use electronic components to act as a stiffener, may use electronics-enhanced adhesive elution, and may use an alternating elution of adhesive and steroid.



FIG. 1K shows at least one electrode 190 configured to electrically couple to a skin of the patient through a breathable tape 192. In many embodiments, at least one electrode 190 and breathable tape 192 comprise electrodes and materials similar to those described above. Electrode 190 and breathable tape 192 can be incorporated into adherent devices as described above, so as to provide electrical coupling between the skin and an electrode through the breathable tape, for example with the gel.



FIGS. 2A and 2B show components of an adherent device 200 comprising an adhesive patch 210 and connection structures to provide strain relief so as to decouple the patch from an electronics module 220. Adherent device 200 comprises many structures similar to those shown above. Adherent device 200 comprises electrodes 212A, 212B, 212C and 212D affixed to adherent patch 210. Adherent device 200 may comprise a gel, for example gel 214A over the electrodes, for example over electrode 212A. Electrodes 212A, 212B, 212C and 212D are connected to electronics module 220 with structures 223A, 223B, 223C and 223D. Electronics module 220 may comprise PCB with components mounted thereon, as described above. In many embodiments, structures 223A, 223B, 223C and 223D connect adhesive patch 210 to electronics module 220 with a flexible connection. In many embodiments, structures 223A, 223B, 223C and 223D comprise curved flexible wires, for example spirals and/or loops of wire that connect electrodes 212A, 212B, 212C and 212D to an electronics module 220. Structures 223A, 223B, 223C and 223D may comprise polyester film with silver traces coupled to silver/silver chloride electrodes to provide strain relief. Adhesive patch 210 comprises a lower side 210A toward the skin of the patient and an upper side 210B away from the skin of the patient. Adhesive 216B is disposed on upper side 210B of patch 210 to connect the adhesive patch to a cover, as described above. Electronics module 220 can be connected to the cover, as described above, such that module 220 is suspended above adhesive patch 210 with a gap 269. Gap 269 can decouple movement between patch 210 and electronic module 220. In many embodiments, gap 260 allows adhesive patch 210 and/or device 200 to breath, for example from the skin through the patch and cover to the outside of the cover, as described above.


In many embodiments, gap 269 can extend from adherent patch 210 to the electronics module 220 and/or PCB a distance within a range from about 0.25 mm to about 4 mm, for example within a range from about 0.5 mm to about 2 mm.


While the exemplary embodiments have been described in some detail, by way of example and for clarity of understanding, those of skill in the art will recognize that a variety of modifications, adaptations, and changes may be employed. Hence, the scope of the present invention should be limited solely by the appended claims.

Claims
  • 1. An adherent device to monitor a patient for an extended period, the device comprising: a breathable tape comprising a porous material with an adhesive coating to adhere the breathable tape to a skin of the patient;at least one electrode affixed to the breathable tape and capable of electrically coupling to a skin of the patient;a printed circuit board (PCB) module connected to the breathable tape to support the printed circuit board module with the breathable tape when the tape is adhered to the patient, the PCB module including at least two rigid PCB modules connected to one another by a flexible PCB; andelectronic components mounted on the at least two rigid PCB modules, the electronic components coupled to the at least one electrode to measure physiologic signals of the patient.
  • 2. The adherent device of claim 1, further including a flexible connector positioned to couple the at least one electrode to the PCB module to relieve strain between the at least one electrode and the PCB module.
  • 3. The adherent device of claim 2, wherein the flexible connector comprises at least one of wires, shielded wires, non-shielded wires, a flex circuit, a flexible PCB, or polyester film with silver printing.
  • 4. The adherent device of claim 2, wherein the flexible connector comprises curved, flexible wires formed into loops or spirals to provide the desired strain relief.
  • 5. The adherent device of claim 1, wherein electronic components include at least one of an activity sensor, impedance circuitry, and electrocardiogram circuitry.
  • 6. The adherent device of claim 1, further including rechargeable batteries positioned over the PCB module.
  • 7. The adherent device of claim 6, wherein the rechargeable batteries are connected to be removed from the adherent device to be recharged or replaced.
  • 8. The adherent device of claim 1, further including an electronics housing adhered to at least one of the electronic components or the PCB module.
  • 9. The adherent device of claim 8, wherein the electronics housing includes a waterproof encapsulant to protect the printed circuit board module and the electronic components from moisture and/or mechanical forces.
  • 10. The adherent device of claim 9, further including a breathable cover disposed over the PCB module and electronic components and connected to at least one of the electronic components, the PCB module or the breathable tape.
  • 11. The adherent device of claim 1, further comprising a gap extending between the breathable tape and the printed circuit board module.
  • 12. The adherent device of claim 11, wherein the gap extends between the breathable tape and printed circuit board module for a distance from about 0.25 mm to about 4 mm to allow the tape to breathe under the printed circuit board module when the tape is adhered to the patient.
  • 13. The adherent device of claim 1, further comprising a gel cover positioned over the breathable tape to inhibit a flow of a gel through the breathable tape and wherein the PCB module is located over a gel cover such that the gel cover is disposed between the breathable tape and the PCB module.
  • 14. The adherent device of claim 13, wherein the gel cover comprises at least one of a polyurethane film or polyurethane non-woven backing and an acrylate pressure sensitive adhesive.
  • 15. The adherent device of claim 13, wherein the breathable tape comprises a first porosity and wherein the gel cover comprises a breathable tape with a second porosity, the second porosity less than the first porosity to inhibit flow of the gel through the breathable tape having the first porosity.
  • 16. The adherent device of claim 1 wherein the breathable tape and the at least one electrode are separable from the printed circuit board module and the electronic components, such that the PCB module and the electronic components can be reused.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. application Ser. No. 13/647,284, filed on 8 Oct. 2012, now U.S. Pat. No. 8,818,481, which is a Continuation of U.S. application Ser. No. 13/347,238, filed on 10 Jan. 2012, and now U.S. Pat. No. 8,285,356, which is a Continuation of U.S. application Ser. No. 12/209,273, filed on 12 Sep. 2008, and now U.S. Pat. No. 8,116,841, which claims the benefit of the following provisional applications: 61/055,645 filed on 23 May 2008, 61/055,666 filed on 23 May 2008, 60/972,537 filed on 14 Sep. 2007, and 60/972,629 filed on 14 Sep. 2007, all of which applications are incorporated herein by reference. A claim of priority to all, to the extent appropriate, is made.

US Referenced Citations (763)
Number Name Date Kind
834261 Chambers Oct 1906 A
2087124 Smith et al. Jul 1937 A
2184511 Bagno et al. Dec 1939 A
3170459 Phipps et al. Feb 1965 A
3232291 Parker Feb 1966 A
3370459 Cescati Feb 1968 A
3517999 Weaver Jun 1970 A
3620216 Szymanski Nov 1971 A
3677260 Funfstuck et al. Jul 1972 A
3805769 Sessions Apr 1974 A
3845757 Weyer Nov 1974 A
3874368 Asrican Apr 1975 A
3882853 Gofman et al. May 1975 A
3942517 Bowles et al. Mar 1976 A
3972329 Kaufman Aug 1976 A
4008712 Nyboer Feb 1977 A
4024312 Korpman May 1977 A
4077406 Sandhage et al. Mar 1978 A
4121573 Crovella et al. Oct 1978 A
4141366 Cross, Jr. et al. Feb 1979 A
RE30101 Kubicek et al. Sep 1979 E
4185621 Morrow Jan 1980 A
4216462 DiGiacomo et al. Aug 1980 A
4300575 Wilson Nov 1981 A
4308872 Watson et al. Jan 1982 A
4358678 Lawrence Nov 1982 A
4409983 Albert Oct 1983 A
4450527 Sramek May 1984 A
4451254 Dinius et al. May 1984 A
4478223 Allor Oct 1984 A
4498479 Martio et al. Feb 1985 A
4522211 Bare et al. Jun 1985 A
4661103 Harman Apr 1987 A
4664129 Helzel et al. May 1987 A
4669480 Hoffman Jun 1987 A
4673387 Phillips et al. Jun 1987 A
4674511 Cartmell Jun 1987 A
4681118 Asai et al. Jul 1987 A
4692685 Blaze Sep 1987 A
4699146 Sieverding Oct 1987 A
4721110 Lampadius Jan 1988 A
4730611 Lamb Mar 1988 A
4733107 O'Shaughnessy et al. Mar 1988 A
4781200 Baker Nov 1988 A
4793362 Tedner Dec 1988 A
4838273 Cartmell Jun 1989 A
4838279 Fore Jun 1989 A
4850370 Dower Jul 1989 A
4880004 Baker, Jr. et al. Nov 1989 A
4895163 Libke et al. Jan 1990 A
4911175 Shizgal Mar 1990 A
4945916 Kretschmer et al. Aug 1990 A
4955381 Way et al. Sep 1990 A
4966158 Honma et al. Oct 1990 A
4981139 Pfohl Jan 1991 A
4988335 Prindle et al. Jan 1991 A
4989612 Fore Feb 1991 A
5001632 Hall-Tipping Mar 1991 A
5012810 Strand May 1991 A
5025791 Niwa Jun 1991 A
5027824 Dougherty et al. Jul 1991 A
5050612 Matsumura Sep 1991 A
5063937 Ezenwa et al. Nov 1991 A
5080099 Way et al. Jan 1992 A
5083563 Collins Jan 1992 A
5086781 Bookspan Feb 1992 A
5113869 Nappholz et al. May 1992 A
5125412 Thornton Jun 1992 A
5133355 Strand et al. Jul 1992 A
5140985 Schroeder et al. Aug 1992 A
5150708 Brooks Sep 1992 A
5168874 Segalowitz Dec 1992 A
5226417 Swedlow et al. Jul 1993 A
5241300 Buschmann Aug 1993 A
5257627 Rapoport Nov 1993 A
5271411 Ripley et al. Dec 1993 A
5273532 Niezink et al. Dec 1993 A
5282840 Hudrlik Feb 1994 A
5291013 Nafarrate et al. Mar 1994 A
5297556 Shankar Mar 1994 A
5301677 Hsung Apr 1994 A
5319363 Welch et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5335664 Nagashima Aug 1994 A
5343869 Pross et al. Sep 1994 A
5353793 Bornn Oct 1994 A
5362069 Hall-Tipping Nov 1994 A
5375604 Kelly et al. Dec 1994 A
5406945 Riazzi et al. Apr 1995 A
5411530 Akhtar May 1995 A
5437285 Verrier et al. Aug 1995 A
5443073 Wang et al. Aug 1995 A
5449000 Libke et al. Sep 1995 A
5450845 Axel Sep 1995 A
5454377 Dzwonczyk et al. Oct 1995 A
5458124 Stanko et al. Oct 1995 A
5464012 Falcone Nov 1995 A
5469859 Tsoglin et al. Nov 1995 A
5482036 Diab et al. Jan 1996 A
5503157 Sramek Apr 1996 A
5511548 Riazzi Apr 1996 A
5511553 Segalowitz Apr 1996 A
5518001 Snell May 1996 A
5523742 Simkins et al. Jun 1996 A
5529072 Sramek Jun 1996 A
5544661 Davis et al. Aug 1996 A
5558638 Evers et al. Sep 1996 A
5560368 Berger Oct 1996 A
5564429 Bornn et al. Oct 1996 A
5564434 Halperin et al. Oct 1996 A
5566671 Lyons Oct 1996 A
5575284 Athan et al. Nov 1996 A
5607454 Cameron et al. Mar 1997 A
5632272 Diab et al. May 1997 A
5634468 Platt et al. Jun 1997 A
5642734 Ruben et al. Jul 1997 A
5673704 Marchlinski et al. Oct 1997 A
5678562 Sellers Oct 1997 A
5687717 Halpern et al. Nov 1997 A
5710376 Weber, Jr. Jan 1998 A
5718234 Warden et al. Feb 1998 A
5724025 Tavori Mar 1998 A
5738107 Martinsen et al. Apr 1998 A
5748103 Flach et al. May 1998 A
5767791 Stoop et al. Jun 1998 A
5769793 Pincus et al. Jun 1998 A
5772508 Sugita et al. Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5778882 Raymond et al. Jul 1998 A
5788643 Feldman Aug 1998 A
5788682 Maget, Jr. Aug 1998 A
5803915 Kremenchugsky et al. Sep 1998 A
5807272 Kun et al. Sep 1998 A
5814079 Kieval Sep 1998 A
5817035 Sullivan Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5836990 Li Nov 1998 A
5855614 Stevens et al. Jan 1999 A
5860860 Clayman Jan 1999 A
5862802 Bird Jan 1999 A
5862803 Besson et al. Jan 1999 A
5865733 Malinouskas et al. Feb 1999 A
5876353 Riff Mar 1999 A
5904708 Goedeke May 1999 A
5935079 Swanson et al. Aug 1999 A
5941831 Turcott Aug 1999 A
5944659 Flach et al. Aug 1999 A
5949636 Johnson et al. Sep 1999 A
5957854 Besson et al. Sep 1999 A
5957861 Combs et al. Sep 1999 A
5964703 Goodman et al. Oct 1999 A
5970986 Bolz et al. Oct 1999 A
5984102 Tay Nov 1999 A
5987352 Klein et al. Nov 1999 A
6007532 Netherly Dec 1999 A
6027523 Schmieding Feb 2000 A
6045513 Stone et al. Apr 2000 A
6047203 Sackner et al. Apr 2000 A
6047259 Campbell et al. Apr 2000 A
6049730 Kristbjarnarson Apr 2000 A
6050267 Nardella et al. Apr 2000 A
6050951 Friedman et al. Apr 2000 A
6052615 Feild et al. Apr 2000 A
6067467 John May 2000 A
6080106 Lloyd et al. Jun 2000 A
6081735 Diab et al. Jun 2000 A
6095991 Krausman et al. Aug 2000 A
6102856 Groff et al. Aug 2000 A
6104949 Pitts et al. Aug 2000 A
6112224 Peifer et al. Aug 2000 A
6117077 Del Mar Sep 2000 A
6125297 Siconolfi Sep 2000 A
6129744 Boute et al. Oct 2000 A
6141575 Price Oct 2000 A
6144878 Schroeppel et al. Nov 2000 A
6164284 Schulman et al. Dec 2000 A
6181963 Chin Jan 2001 B1
6185452 Schulman et al. Feb 2001 B1
6190313 Hinkle Feb 2001 B1
6190324 Kieval et al. Feb 2001 B1
6198394 Jacobsen et al. Mar 2001 B1
6198955 Axelgaard et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6212427 Hoover Apr 2001 B1
6213942 Flach et al. Apr 2001 B1
6225901 Kail, IV May 2001 B1
6245021 Stampfer Jun 2001 B1
6259939 Rogel Jul 2001 B1
6267730 Pacunas Jul 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6277078 Porat et al. Aug 2001 B1
6287252 Lugo Sep 2001 B1
6289238 Besson et al. Sep 2001 B1
6290646 Cosentino et al. Sep 2001 B1
6295466 Ishikawa et al. Sep 2001 B1
6305943 Pougatchev et al. Oct 2001 B1
6306088 Krausman et al. Oct 2001 B1
6308094 Shusterman et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6327487 Stratbucker Dec 2001 B1
6330464 Colvin, Jr. et al. Dec 2001 B1
6336903 Bardy Jan 2002 B1
6339722 Heethaar et al. Jan 2002 B1
6343140 Brooks Jan 2002 B1
6347245 Lee et al. Feb 2002 B1
6358208 Lang et al. Mar 2002 B1
6385473 Haines et al. May 2002 B1
6398727 Bui et al. Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6409674 Brockway et al. Jun 2002 B1
6411853 Millot et al. Jun 2002 B1
6416471 Kumar et al. Jul 2002 B1
6440069 Raymond Aug 2002 B1
6442422 Duckert Aug 2002 B1
6450820 Palsson et al. Sep 2002 B1
6450953 Place et al. Sep 2002 B1
6453186 Lovejoy et al. Sep 2002 B1
6454707 Casscells, III et al. Sep 2002 B1
6454708 Ferguson et al. Sep 2002 B1
6459930 Takehara et al. Oct 2002 B1
6463328 John Oct 2002 B1
6473640 Erlebacher Oct 2002 B1
6480733 Turcott Nov 2002 B1
6480734 Zhang et al. Nov 2002 B1
6490478 Zhang et al. Dec 2002 B1
6491647 Bridger et al. Dec 2002 B1
6494829 New, Jr. et al. Dec 2002 B1
6496715 Lee et al. Dec 2002 B1
6512949 Combs et al. Jan 2003 B1
6520967 Cauthen Feb 2003 B1
6527711 Stivoric et al. Mar 2003 B1
6527729 Turcott Mar 2003 B1
6544173 West et al. Apr 2003 B2
6544174 West et al. Apr 2003 B2
6546285 Owen et al. Apr 2003 B1
6551251 Zuckerwar et al. Apr 2003 B2
6551252 Sackner et al. Apr 2003 B2
6569160 Goldin et al. May 2003 B1
6572557 Tchou et al. Jun 2003 B2
6572636 Hagen et al. Jun 2003 B1
6577139 Cooper Jun 2003 B2
6577893 Besson et al. Jun 2003 B1
6577897 Shurubura et al. Jun 2003 B1
6579231 Phipps Jun 2003 B1
6580942 Willshire Jun 2003 B1
6584343 Ransbury et al. Jun 2003 B1
6587715 Singer Jul 2003 B2
6589170 Flach et al. Jul 2003 B1
6595927 Pitts-Crick et al. Jul 2003 B2
6595929 Stivoric et al. Jul 2003 B2
6600949 Turcott Jul 2003 B1
6602201 Hepp et al. Aug 2003 B1
6605038 Teller et al. Aug 2003 B1
6611705 Hopman et al. Aug 2003 B2
6616606 Petersen et al. Sep 2003 B1
6622042 Thacker Sep 2003 B1
6636754 Baura et al. Oct 2003 B1
6641542 Cho et al. Nov 2003 B2
6643541 Mok et al. Nov 2003 B2
6645153 Kroll et al. Nov 2003 B2
6649829 Garber et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6658300 Govari et al. Dec 2003 B2
6659947 Carter et al. Dec 2003 B1
6659949 Lang et al. Dec 2003 B1
6687540 Marcovecchio Feb 2004 B2
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699200 Cao et al. Mar 2004 B2
6701271 Willner et al. Mar 2004 B2
6714813 Ishigooka et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721594 Conley et al. Apr 2004 B2
6728572 Hsu et al. Apr 2004 B2
6745061 Hicks Jun 2004 B1
6748269 Thompson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6751498 Greenberg et al. Jun 2004 B1
6760617 Ward et al. Jul 2004 B2
6773396 Flach et al. Aug 2004 B2
6775566 Nissila Aug 2004 B2
6790178 Mault et al. Sep 2004 B1
6795722 Sheraton et al. Sep 2004 B2
6814706 Barton et al. Nov 2004 B2
6816744 Garfield et al. Nov 2004 B2
6821249 Casscells et al. Nov 2004 B2
6824515 Suorsa et al. Nov 2004 B2
6827690 Bardy Dec 2004 B2
6829503 Alt Dec 2004 B2
6858006 MacCarter et al. Feb 2005 B2
6871211 Labounty et al. Mar 2005 B2
6878121 Krausman et al. Apr 2005 B2
6879850 Kimball Apr 2005 B2
6881191 Oakley et al. Apr 2005 B2
6887201 Bardy May 2005 B2
6890096 Tokita et al. May 2005 B2
6893396 Schulze et al. May 2005 B2
6894204 Dunshee May 2005 B2
6906530 Geisel Jun 2005 B2
6912414 Tong Jun 2005 B2
6936006 Sabra Aug 2005 B2
6940403 Kail Sep 2005 B2
6942622 Turcott Sep 2005 B1
6952695 Trinks et al. Oct 2005 B1
6970742 Mann et al. Nov 2005 B2
6972683 Lestienne et al. Dec 2005 B2
6978177 Chen et al. Dec 2005 B1
6980851 Zhu et al. Dec 2005 B2
6980852 Jersey-Willuhn et al. Dec 2005 B2
6985078 Suzuki et al. Jan 2006 B2
6987965 Ng et al. Jan 2006 B2
6988989 Weiner et al. Jan 2006 B2
6993378 Wiederhold et al. Jan 2006 B2
6997879 Turcott Feb 2006 B1
7003346 Singer Feb 2006 B2
7009362 Tsukamoto et al. Mar 2006 B2
7010340 Scarantino et al. Mar 2006 B2
7018338 Vetter et al. Mar 2006 B2
7020508 Stivoric et al. Mar 2006 B2
7027862 Dahl et al. Apr 2006 B2
7041062 Friedrichs et al. May 2006 B2
7044911 Drinan et al. May 2006 B2
7047067 Gray et al. May 2006 B2
7050846 Sweeney et al. May 2006 B2
7054679 Hirsh May 2006 B2
7059767 Tokita et al. Jun 2006 B2
7088242 Aupperle et al. Aug 2006 B2
7113826 Henry et al. Sep 2006 B2
7118531 Krill Oct 2006 B2
7127370 Kelly et al. Oct 2006 B2
7129836 Lawson et al. Oct 2006 B2
7130396 Rogers et al. Oct 2006 B2
7130679 Parsonnet et al. Oct 2006 B2
7133716 Kraemer et al. Nov 2006 B2
7136697 Singer Nov 2006 B2
7136703 Cappa et al. Nov 2006 B1
7142907 Xue et al. Nov 2006 B2
7149574 Yun et al. Dec 2006 B2
7149773 Haller et al. Dec 2006 B2
7153262 Stivoric et al. Dec 2006 B2
7156807 Carter et al. Jan 2007 B2
7156808 Quy et al. Jan 2007 B2
7160252 Cho et al. Jan 2007 B2
7160253 Nissila et al. Jan 2007 B2
7166063 Rahman et al. Jan 2007 B2
7167743 Heruth et al. Jan 2007 B2
7184821 Belalcazar et al. Feb 2007 B2
7191000 Zhu et al. Mar 2007 B2
7194306 Turcott Mar 2007 B1
7206630 Tarler Apr 2007 B1
7212849 Zhang et al. May 2007 B2
7215984 Doab et al. May 2007 B2
7215991 Besson et al. May 2007 B2
7238159 Banet et al. Jul 2007 B2
7248916 Bardy Jul 2007 B2
7251524 Hepp et al. Jul 2007 B1
7257438 Kinast Aug 2007 B2
7261690 Teller et al. Aug 2007 B2
7273454 Raymond et al. Sep 2007 B2
7277741 Debreczeny et al. Oct 2007 B2
7284904 Tokita et al. Oct 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7294105 Islam Nov 2007 B1
7295879 Denker et al. Nov 2007 B2
7297119 Westbrook et al. Nov 2007 B2
7318808 Tarassenko et al. Jan 2008 B2
7319386 Collins et al. Jan 2008 B2
7336187 Hubbard, Jr. et al. Feb 2008 B2
7346380 Axelgaard et al. Mar 2008 B2
7382247 Welch et al. Jun 2008 B2
7384398 Gagnadre et al. Jun 2008 B2
7390299 Weiner et al. Jun 2008 B2
7395106 Ryu et al. Jul 2008 B2
7423526 Despotis Sep 2008 B2
7423537 Bonnet et al. Sep 2008 B2
7443302 Reeder et al. Oct 2008 B2
7450024 Wildman et al. Nov 2008 B2
7468032 Stahmann et al. Dec 2008 B2
7510699 Black et al. Mar 2009 B2
7515043 Welch et al. Apr 2009 B2
7701227 Saulnier et al. Apr 2010 B2
7813778 Benaron et al. Oct 2010 B2
7881763 Brauker et al. Feb 2011 B2
7942824 Kayyali et al. May 2011 B1
8116841 Bly Feb 2012 B2
8285356 Bly et al. Oct 2012 B2
20010047127 New, Jr. et al. Nov 2001 A1
20020004640 Conn et al. Jan 2002 A1
20020019586 Teller et al. Feb 2002 A1
20020019588 Marro et al. Feb 2002 A1
20020022786 Takehara et al. Feb 2002 A1
20020028989 Pelletier et al. Mar 2002 A1
20020032581 Reitberg Mar 2002 A1
20020045836 Alkawwas et al. Apr 2002 A1
20020088465 Hill Jul 2002 A1
20020099277 Harry et al. Jul 2002 A1
20020116009 Fraser et al. Aug 2002 A1
20020123672 Christophersom et al. Sep 2002 A1
20020123674 Plicchi et al. Sep 2002 A1
20020138017 Bui et al. Sep 2002 A1
20020167389 Uchikoba et al. Nov 2002 A1
20020180605 Ozguz et al. Dec 2002 A1
20020182485 Anderson et al. Dec 2002 A1
20030009092 Parker Jan 2003 A1
20030023184 Pitts-Crick et al. Jan 2003 A1
20030028221 Zhu et al. Feb 2003 A1
20030028327 Brunner et al. Feb 2003 A1
20030051144 Williams Mar 2003 A1
20030055460 Owen et al. Mar 2003 A1
20030069510 Semler Apr 2003 A1
20030083559 Thompson May 2003 A1
20030083581 Taha et al. May 2003 A1
20030085717 Cooper May 2003 A1
20030087244 McCarthy May 2003 A1
20030092975 Casscells, III et al. May 2003 A1
20030093125 Zhu et al. May 2003 A1
20030093298 Hernandez et al. May 2003 A1
20030100367 Cooke May 2003 A1
20030105411 Smallwood et al. Jun 2003 A1
20030109775 O'Neil Jun 2003 A1
20030109905 Mok Jun 2003 A1
20030135127 Sackner et al. Jul 2003 A1
20030143544 McCarthy Jul 2003 A1
20030149349 Jensen Aug 2003 A1
20030187370 Kodama Oct 2003 A1
20030191503 Zhu et al. Oct 2003 A1
20030212319 Magill Nov 2003 A1
20030221687 Kaigler Dec 2003 A1
20030233129 Matos Dec 2003 A1
20040006279 Arad (Abboud) Jan 2004 A1
20040010303 Bolea et al. Jan 2004 A1
20040015058 Besson et al. Jan 2004 A1
20040019292 Drinan et al. Jan 2004 A1
20040044293 Burton Mar 2004 A1
20040049132 Barron et al. Mar 2004 A1
20040073094 Baker Apr 2004 A1
20040073126 Rowlandson Apr 2004 A1
20040077954 Oakley et al. Apr 2004 A1
20040100376 Lye et al. May 2004 A1
20040102683 Khanuja et al. May 2004 A1
20040106951 Edman et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040127790 Lang et al. Jul 2004 A1
20040133079 Mazar et al. Jul 2004 A1
20040133081 Teller et al. Jul 2004 A1
20040134496 Cho et al. Jul 2004 A1
20040143170 DuRousseau Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040152956 Korman Aug 2004 A1
20040158132 Zaleski Aug 2004 A1
20040167389 Brabrand Aug 2004 A1
20040172080 Stadler et al. Sep 2004 A1
20040199056 Husemann et al. Oct 2004 A1
20040215240 Lovett et al. Oct 2004 A1
20040215247 Bolz Oct 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040225199 Evanyk et al. Nov 2004 A1
20040225203 Jemison et al. Nov 2004 A1
20040243018 Organ et al. Dec 2004 A1
20040267142 Paul Dec 2004 A1
20050004506 Gyory Jan 2005 A1
20050015094 Keller Jan 2005 A1
20050015095 Keller Jan 2005 A1
20050020935 Helzel et al. Jan 2005 A1
20050027175 Yang Feb 2005 A1
20050027204 Kligfield et al. Feb 2005 A1
20050027207 Westbrook et al. Feb 2005 A1
20050027918 Govindarajulu et al. Feb 2005 A1
20050043675 Pastore et al. Feb 2005 A1
20050054944 Nakada et al. Mar 2005 A1
20050059867 Chung Mar 2005 A1
20050065445 Arzbaecher et al. Mar 2005 A1
20050065571 Imran Mar 2005 A1
20050070768 Zhu et al. Mar 2005 A1
20050070778 Lackey et al. Mar 2005 A1
20050080346 Gianchandani et al. Apr 2005 A1
20050080460 Wang et al. Apr 2005 A1
20050080463 Stahmann et al. Apr 2005 A1
20050085734 Tehrani Apr 2005 A1
20050091338 de la Huerga Apr 2005 A1
20050096513 Ozguz May 2005 A1
20050113703 Farringdon et al. May 2005 A1
20050124878 Sharony Jun 2005 A1
20050124901 Misczynski et al. Jun 2005 A1
20050124908 Belalcazar et al. Jun 2005 A1
20050131288 Turner et al. Jun 2005 A1
20050137464 Bomba Jun 2005 A1
20050137626 Pastore et al. Jun 2005 A1
20050148895 Misczynski et al. Jul 2005 A1
20050158539 Murphy et al. Jul 2005 A1
20050177038 Kolpin et al. Aug 2005 A1
20050187482 O'Brien et al. Aug 2005 A1
20050187796 Rosenfeld et al. Aug 2005 A1
20050192488 Bryenton et al. Sep 2005 A1
20050197654 Edman et al. Sep 2005 A1
20050203433 Singer Sep 2005 A1
20050203435 Nakada Sep 2005 A1
20050203436 Davies Sep 2005 A1
20050203637 Edman et al. Sep 2005 A1
20050206518 Welch et al. Sep 2005 A1
20050215914 Bornzin et al. Sep 2005 A1
20050215918 Frantz et al. Sep 2005 A1
20050228234 Yang Oct 2005 A1
20050228238 Monitzer Oct 2005 A1
20050228244 Banet Oct 2005 A1
20050239493 Batkin et al. Oct 2005 A1
20050240087 Keenan et al. Oct 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050251004 Istvan et al. Nov 2005 A1
20050251044 Hoctor et al. Nov 2005 A1
20050256418 Mietus et al. Nov 2005 A1
20050261598 Banet et al. Nov 2005 A1
20050261743 Kroll Nov 2005 A1
20050267376 Marossero et al. Dec 2005 A1
20050267377 Marossero et al. Dec 2005 A1
20050267381 Benditt et al. Dec 2005 A1
20050273023 Bystrom et al. Dec 2005 A1
20050277841 Shennib Dec 2005 A1
20050277842 Silva Dec 2005 A1
20050277992 Koh et al. Dec 2005 A1
20050280531 Fadem et al. Dec 2005 A1
20050283197 Daum et al. Dec 2005 A1
20050288601 Wood et al. Dec 2005 A1
20060004300 Kennedy Jan 2006 A1
20060004377 Keller Jan 2006 A1
20060009691 Yeo et al. Jan 2006 A1
20060009697 Banet et al. Jan 2006 A1
20060009701 Nissila et al. Jan 2006 A1
20060010090 Brockway et al. Jan 2006 A1
20060020218 Freeman et al. Jan 2006 A1
20060025661 Sweeney et al. Feb 2006 A1
20060030781 Shennib Feb 2006 A1
20060030782 Shennib Feb 2006 A1
20060031102 Teller et al. Feb 2006 A1
20060041280 Stahmann et al. Feb 2006 A1
20060047215 Newman et al. Mar 2006 A1
20060052678 Drinan et al. Mar 2006 A1
20060058543 Walter et al. Mar 2006 A1
20060058593 Drinan et al. Mar 2006 A1
20060064030 Cosentino et al. Mar 2006 A1
20060064040 Berger et al. Mar 2006 A1
20060064142 Chavan et al. Mar 2006 A1
20060066449 Johnson Mar 2006 A1
20060074283 Henderson et al. Apr 2006 A1
20060074462 Verhoef Apr 2006 A1
20060075257 Martis et al. Apr 2006 A1
20060084881 Korzinov et al. Apr 2006 A1
20060085049 Cory et al. Apr 2006 A1
20060089679 Zhu et al. Apr 2006 A1
20060094948 Gough et al. May 2006 A1
20060102476 Niwa et al. May 2006 A1
20060116592 Zhou et al. Jun 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060135858 Nidd et al. Jun 2006 A1
20060142654 Rytky Jun 2006 A1
20060142820 Von Arx et al. Jun 2006 A1
20060149168 Czarnek Jul 2006 A1
20060155174 Glukhovsky et al. Jul 2006 A1
20060155183 Kroecker et al. Jul 2006 A1
20060155200 Ng Jul 2006 A1
20060161073 Singer Jul 2006 A1
20060161205 Mitrani et al. Jul 2006 A1
20060161459 Rosenfeld et al. Jul 2006 A9
20060167374 Takehara et al. Jul 2006 A1
20060173257 Nagai et al. Aug 2006 A1
20060173269 Glossop Aug 2006 A1
20060195039 Drew et al. Aug 2006 A1
20060195097 Evans et al. Aug 2006 A1
20060195144 Giftakis et al. Aug 2006 A1
20060202816 Crump et al. Sep 2006 A1
20060212097 Varadan et al. Sep 2006 A1
20060224051 Teller et al. Oct 2006 A1
20060224072 Shennib Oct 2006 A1
20060224079 Washchuk Oct 2006 A1
20060235281 Tuccillo Oct 2006 A1
20060235316 Ungless et al. Oct 2006 A1
20060235489 Drew et al. Oct 2006 A1
20060238333 Welch et al. Oct 2006 A1
20060241641 Albans et al. Oct 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241722 Thacker et al. Oct 2006 A1
20060247545 St. Martin Nov 2006 A1
20060252999 Devaul et al. Nov 2006 A1
20060253005 Drinan et al. Nov 2006 A1
20060253044 Zhang et al. Nov 2006 A1
20060258952 Stahmann et al. Nov 2006 A1
20060264730 Stivoric et al. Nov 2006 A1
20060264767 Shennib Nov 2006 A1
20060264776 Stahmann et al. Nov 2006 A1
20060271116 Stahmann et al. Nov 2006 A1
20060276714 Holt et al. Dec 2006 A1
20060281981 Jang et al. Dec 2006 A1
20060281996 Kuo et al. Dec 2006 A1
20060293571 Bao et al. Dec 2006 A1
20060293609 Stahmann et al. Dec 2006 A1
20070010721 Chen et al. Jan 2007 A1
20070010750 Ueno et al. Jan 2007 A1
20070015973 Nanikashvili et al. Jan 2007 A1
20070015976 Miesel et al. Jan 2007 A1
20070016089 Fischell et al. Jan 2007 A1
20070021678 Beck et al. Jan 2007 A1
20070021790 Kieval et al. Jan 2007 A1
20070021792 Kieval et al. Jan 2007 A1
20070021794 Kieval et al. Jan 2007 A1
20070021796 Kieval et al. Jan 2007 A1
20070021797 Kieval et al. Jan 2007 A1
20070021798 Kieval et al. Jan 2007 A1
20070021799 Kieval et al. Jan 2007 A1
20070027388 Chou Feb 2007 A1
20070027497 Parnis Feb 2007 A1
20070032749 Overall et al. Feb 2007 A1
20070038038 Stivoric et al. Feb 2007 A1
20070038078 Osadchy Feb 2007 A1
20070038255 Kieval et al. Feb 2007 A1
20070038262 Kieval et al. Feb 2007 A1
20070043301 Martinsen et al. Feb 2007 A1
20070043303 Osypka et al. Feb 2007 A1
20070048224 Howell et al. Mar 2007 A1
20070060800 Drinan et al. Mar 2007 A1
20070060802 Ghevondian et al. Mar 2007 A1
20070069887 Welch et al. Mar 2007 A1
20070073132 Vosch Mar 2007 A1
20070073168 Zhang et al. Mar 2007 A1
20070073181 Pu et al. Mar 2007 A1
20070073361 Goren et al. Mar 2007 A1
20070082189 Gillette Apr 2007 A1
20070083092 Rippo et al. Apr 2007 A1
20070092862 Gerber Apr 2007 A1
20070104840 Singer May 2007 A1
20070106132 Elhag et al. May 2007 A1
20070106137 Baker, Jr. et al. May 2007 A1
20070106167 Kinast May 2007 A1
20070118039 Bodecker et al. May 2007 A1
20070123756 Kitajima et al. May 2007 A1
20070123903 Raymond et al. May 2007 A1
20070123904 Stad et al. May 2007 A1
20070129622 Bourget et al. Jun 2007 A1
20070129643 Kwok et al. Jun 2007 A1
20070129769 Bourget et al. Jun 2007 A1
20070142715 Banet et al. Jun 2007 A1
20070142732 Brockway et al. Jun 2007 A1
20070149282 Lu et al. Jun 2007 A1
20070150008 Jones et al. Jun 2007 A1
20070150009 Kveen et al. Jun 2007 A1
20070150029 Bourget et al. Jun 2007 A1
20070162089 Mosesov Jul 2007 A1
20070167753 Van Wyk et al. Jul 2007 A1
20070167848 Kuo et al. Jul 2007 A1
20070167849 Zhang et al. Jul 2007 A1
20070167850 Russell et al. Jul 2007 A1
20070172424 Roser Jul 2007 A1
20070173705 Teller et al. Jul 2007 A1
20070180047 Dong et al. Aug 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070191723 Prystowsky et al. Aug 2007 A1
20070207858 Breving Sep 2007 A1
20070208232 Kovacs Sep 2007 A1
20070208233 Kovacs Sep 2007 A1
20070208235 Besson et al. Sep 2007 A1
20070208262 Kovacs Sep 2007 A1
20070232867 Hansmann Oct 2007 A1
20070244403 Natarajan et al. Oct 2007 A1
20070249946 Kumar et al. Oct 2007 A1
20070250121 Miesel et al. Oct 2007 A1
20070255120 Rosnov Nov 2007 A1
20070255153 Kumar et al. Nov 2007 A1
20070255184 Shennib Nov 2007 A1
20070255531 Drew Nov 2007 A1
20070260133 Meyer Nov 2007 A1
20070260155 Rapoport et al. Nov 2007 A1
20070260289 Giftakis et al. Nov 2007 A1
20070270678 Fadem et al. Nov 2007 A1
20070273504 Tran Nov 2007 A1
20070276273 Watson, Jr. Nov 2007 A1
20070282173 Wang et al. Dec 2007 A1
20070299325 Farrell et al. Dec 2007 A1
20080001735 Tran Jan 2008 A1
20080004499 Davis Jan 2008 A1
20080004904 Tran Jan 2008 A1
20080013747 Tran Jan 2008 A1
20080021336 Dobak Jan 2008 A1
20080024293 Stylos Jan 2008 A1
20080024294 Mazar Jan 2008 A1
20080033260 Sheppard et al. Feb 2008 A1
20080039700 Drinan et al. Feb 2008 A1
20080058614 Banet et al. Mar 2008 A1
20080058656 Costello et al. Mar 2008 A1
20080059239 Gerst et al. Mar 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091090 Guillory et al. Apr 2008 A1
20080114220 Banet et al. May 2008 A1
20080120784 Warner et al. May 2008 A1
20080139934 McMorrow et al. Jun 2008 A1
20080139953 Baker et al. Jun 2008 A1
20080146892 LeBoeuf et al. Jun 2008 A1
20080167538 Teller et al. Jul 2008 A1
20080171918 Teller et al. Jul 2008 A1
20080171922 Teller et al. Jul 2008 A1
20080171929 Katims Jul 2008 A1
20080183052 Teller et al. Jul 2008 A1
20080200774 Luo Aug 2008 A1
20080214901 Gehman Sep 2008 A1
20080214903 Orbach Sep 2008 A1
20080220865 Hsu Sep 2008 A1
20080221399 Zhou et al. Sep 2008 A1
20080221402 Despotis Sep 2008 A1
20080224852 Dicks et al. Sep 2008 A1
20080228084 Bedard et al. Sep 2008 A1
20080275465 Paul et al. Nov 2008 A1
20080287751 Stivoric et al. Nov 2008 A1
20080287752 Stroetz et al. Nov 2008 A1
20080293491 Wu et al. Nov 2008 A1
20080294019 Tran Nov 2008 A1
20080294020 Sapounas Nov 2008 A1
20080312524 Solosko et al. Dec 2008 A1
20080318681 Rofougaran et al. Dec 2008 A1
20080319279 Ramsay et al. Dec 2008 A1
20080319282 Tran Dec 2008 A1
20080319290 Mao et al. Dec 2008 A1
20090005016 Eng et al. Jan 2009 A1
20090018410 Coene et al. Jan 2009 A1
20090018456 Hung Jan 2009 A1
20090048526 Aarts et al. Feb 2009 A1
20090054737 Magar et al. Feb 2009 A1
20090062670 Sterling et al. Mar 2009 A1
20090073991 Landrum et al. Mar 2009 A1
20090076336 Mazar et al. Mar 2009 A1
20090076340 Libbus et al. Mar 2009 A1
20090076341 James et al. Mar 2009 A1
20090076342 Amurthur et al. Mar 2009 A1
20090076343 James et al. Mar 2009 A1
20090076344 Libbus et al. Mar 2009 A1
20090076345 Manicka et al. Mar 2009 A1
20090076346 James et al. Mar 2009 A1
20090076348 Manicka et al. Mar 2009 A1
20090076349 Libbus et al. Mar 2009 A1
20090076350 Bly et al. Mar 2009 A1
20090076363 Bly et al. Mar 2009 A1
20090076364 Libbus et al. Mar 2009 A1
20090076397 Libbus et al. Mar 2009 A1
20090076401 Mazar et al. Mar 2009 A1
20090076405 Amurthur et al. Mar 2009 A1
20090076410 Libbus et al. Mar 2009 A1
20090076559 Libbus et al. Mar 2009 A1
20090105555 Dacso et al. Apr 2009 A1
20090132018 Diubaldi et al. May 2009 A1
20090177145 Ohlander et al. Jul 2009 A1
20090182204 Semler et al. Jul 2009 A1
20090234410 Libbus et al. Sep 2009 A1
20090292194 Libbus et al. Nov 2009 A1
20100056881 Libbus et al. Mar 2010 A1
20100061913 Hariharan et al. Mar 2010 A1
20100063365 Pisani et al. Mar 2010 A1
20100081913 Cross et al. Apr 2010 A1
20100191310 Bly et al. Jul 2010 A1
20100228113 Solosko et al. Sep 2010 A1
20100317958 Beck et al. Dec 2010 A1
20110144470 Mazar et al. Jun 2011 A1
20110245711 Katra et al. Oct 2011 A1
20110270049 Katra et al. Nov 2011 A1
20120029310 Paquet et al. Feb 2012 A1
20120310070 Kumar et al. Dec 2012 A1
Foreign Referenced Citations (20)
Number Date Country
2003220574 Oct 2003 AU
1487535 Dec 2004 EP
1579801 Sep 2005 EP
2005521448 Jul 2005 JP
9319667 Oct 1993 WO
WO 0079255 Dec 2000 WO
WO 0189362 Nov 2001 WO
WO 02092101 Nov 2002 WO
WO 02092101 Nov 2002 WO
WO 03082080 Oct 2003 WO
WO 03082080 Oct 2003 WO
WO 2005051164 Jun 2005 WO
WO 2005104930 Nov 2005 WO
WO 2006008745 Jan 2006 WO
WO 2006102476 Sep 2006 WO
WO 2006111878 Oct 2006 WO
WO 2007041783 Apr 2007 WO
WO 2007106455 Sep 2007 WO
WO 2007106455 Sep 2007 WO
WO 2009116906 Sep 2009 WO
Non-Patent Literature Citations (175)
Entry
Abraham, “New approaches to monitoring heart failure before symptoms appear”, Rev. Cardiovasc. Med., vol. 7 Suppl 1, 2006, pp. 33-41.
Acute Decompensated Heart Failure, Wikipedia Entry, downloaded from: http://en.wikipedia.org/wiki/Acute—decompensated—heart—failure, downloaded Feb. 11, 2011, 6 pages.
Adams, Jr., “Guiding heart failure care by invasive hemodynamic measurements: possible or useful?”, Journal of Cardiac Failure, vol. 8 (2), 2002, pp. 71-73.
Adamson et al., “Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization device”, Circulation, vol. 110, 2004, pp. 2389-2394.
Adamson, “Integrating device monitoring into the infrastructure and workflow of routine practice”, Rev. Cardiovasc. Med., vol. 7 Suppl 1, 2006, pp. 42-60.
Adamson et al., “Ongoing right ventricular hemodynamics in heart failure”, J. Am. Coll. Cardiol, vol. 41, 2003, pp. 565-570.
Advamed, “Health Information Technology: Improving Patient Safety and Quality of Care”, Jun. 2005, 23 pages.
Aghababian, “Acutely decompensated heart failure: opportunities to improve care and outcomes in the emergency department”, Rev. Cardiovasc. Med., vol. 3 Suppl 4, 2002, pp. S3-S9.
Albert, “Bioimpedance to prevent heart failure hospitalization”, Curr Heart Fail Rep., vol. 3 (3), Sep. 2006, pp. 136-142.
American Heart Association, , “Heart Disease and Stroke Statistics—2006 Update”, 2006, 43 pages.
American Heart Association, “Heart Disease and Stroke Statistics—2007 Update”, A Report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee; Circulation, 115, 2007, pp. e69-e171.
Amurthur et al., U.S. Appl. No. 60/972,359, filed Sep. 14, 2007.
Amurthur et al., U.S. Appl. No. 60/972,363, filed Sep. 14, 2007.
Belalcazar et al., “Monitoring lung edema using the pacemaker pulse and skin electrodes”, Physiol. Meas., vol. 26, 2005, pp. S153-S163.
Bennett, “Development of implantable devices for continuous ambulatory monitoring of central hemodynamic values in heart failure patients”, PACE, vol. 28, Jun. 2005, pp. 573-584.
Bly et al., U.S. Appl. No. 60/972,333, filed Sep. 14, 2007.
Bly et al., U.S. Appl. No. 60/972,629, filed Sep. 14, 2007.
Bly et al., U.S. Appl. No. 61/055,645, filed May 23, 2008.
Bly, U.S. Appl. No. 61/084,567, filed Jul. 29, 2008.
Bourge, “Case studies in advanced monitoring with the chronicle device”, Rev Cardiovasc Med., vol. 7 Suppl 1, 2006, pp. S56-S61.
Braunschweig, “Continuous hemodynamic monitoring during withdrawal of diuretics in patients with congestive heart failure”, European Heart Journal, vol. 23 (1), 2002, pp. 59-69.
Braunschweig, “Dynamic changes in right ventricular pressures during hemodialysis recorded with an implantable hemodynamic monitor”, Nephrol Dial Transplant, vol. 21, 2006, pp. 176-183.
Buono et al., “The effect of ambient air temperature on whole-body bioelectrical impedance”, Physiol. Meas., vol. 25, 2004, pp. 119-123.
Burkhoff et al., “Heart failure with a normal ejection fraction: Is it really a disorder of diastolic function?”, Circulation, vol. 107, 2003, pp. 656-658.
Burr et al., “Heart rate variability and 24-hour minimum heart rate”, Biological Research for Nursing, vol. 7 (4), 2006, pp. 256-267.
Cardionet, “CardioNet Mobile Cardiac Outpatient Telemetry: Addendum to Patient Education Guide”, CardioNet, Inc., 2007, 2 pages.
Cardionet, “Patient Education Guide”, CardioNet, Inc., 2007, 7 pages.
Charach et al., “Transthoracic monitoring of the impedance of the right lung in patients with cardiogenic pulmonary edema”, Crit Care Med, vol. 29 (6), 2001, pp. 1137-1144.
Charlson et al., “Can disease management target patients most likely to generate high costs? The Impact of Comorbidity”, Journal of General Internal Medicine, vol. 22 (4), 2007, pp. 464-469.
Chaudhry et al., “Telemonitoring for patients with chronic heart failure: a systematic review”, J Card Fail., vol. 13 (1), Feb. 2007, pp. 56-62.
Chung et al., “White coat hypertension: Not so benign after all?”, Journal of Human Hypertension, vol. 17, 2003, pp. 807-809.
Cleland et al., “The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe—Part 1: patient characteristics and diagnosis”, European Heart Journal, vol. 24 (5), 2003, pp. 442-463.
Cooley, “The Parameters of Transthoracic Electrical Conduction”, Annals of the New York Academy of Sciences, vol. 170 (2), 1970, pp. 702-713.
Cowie et al., “Hospitalization of patients with heart failure. A population-based study”, European Heart Journal, vol. 23 (11), 2002, pp. 877-885.
Dimri, “Chapter 1: Fractals in geophysics and semiology: an introduction”, Fractal Behaviour of the Earth System, Springer Berlin Heidelberg, Summary and 1st page Only, 2005, pp. 1-22.
El-Dawlatly et al., “Impedance cardiography: noninvasive assessment of hemodynamics and thoracic fluid content during bariatric surgery”, Obesity Surgery, vol. 15 (5), May 2005, pp. 655-658.
EM Microelectronic, Marin SA, “Plastic Flexible LCD”, Product Brochure, retrieved from http://www.emmicroelectronic.com/Line.asp?IdLine=48, 2009, 2 pages.
Erdmann, “Editorials: The value of diuretics in chronic heart failure demonstrated by an implanted hemodynamic monitor”, European Heart Journal, vol. 23 (1),2002, pp. 7-9.
FDA—Draft questions for Chronicle Advisory Panel Meeting, retrieved from http://www.fda.gov/ohrms/dockets/ac/07/questions/2007-4284q1—draft.pdf, 2007, 3 pages.
FDA—Medtronic Chronicle Implantable Hemodynamic Monitoring System P050032, Panel Package Section 11: Chronicle IHM Summary of Safety and Effectiveness, 2007, 77 pages.
FDA—References for Circulatory System Devices Panel, retrieved from http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284bib1—01.pdf, Mar. 1, 2007, 1 page.
FDA Executive Summary Memorandum, meeting of the Circulatory Systems Devices Advisory Panel, P050032 Medtronic, Inc. Chronicle Implantable Hemodynamic Monitor (IHM) System, retrieved from http://www.fda.gov.ohrms/dockets/ac/07/briefing/2007-4284b1—02.pdf, Mar. 1, 2007, 23 pages.
FDA Executive Summary, Medtronic Chronicle Implantable Hemodynamic Monitoring System P050032: Executive Summary, Panel Package Sponsor Executive Summary, vol. 1, Sec. 4, retrieved from http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284b1—03.pdf, 2007, 12 pages.
FDA Panel Recommendation, Chronicle Analysis, Mar. 1, 2007, 14 pages.
FDA—Medtronic Inc., “Chronicle 9520B Implantable Hemodynamic Monitor Reference Manual”, 2007, 112 pages.
Flach, U.S. Appl. No. 60/006,600, filed Nov. 13, 1995.
Fonarow, “How well are chronic heart failure patients being managed”, Rev Cardiovasc Med., vol. 7 Suppl 1, 2006, pp. S3-S11.
Fonarow, “Proactive monitoring and management of the chronic heart failure patient”, Rev Cardiovasc Med., vol. 7 Suppl 1, 2006, pp. S1-S2.
Fonarow et al., “Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis”, JAMA, vol. 293 (5), Feb. 2, 2005, pp. 572-580.
Fonarow, “The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure”, Rev Cardiovasc Med., vol. 4 Suppl 7, 2003, pp. S21-S30.
Ganion et al., “Intrathoracic impedance to monitor heart failure status: a comparison of two methods in a chronic heart failure dog model”, Congest Heart Fail., vol. 11 (4), 2005, pp. 177-181, 211.
Gass et al., “Critical pathways in the management of acute decompensated heart failure: A CME-Accredited monograph”, Mount Sinai School of Medicine, 2004, 32 pages.
Gheorghiade et al., “Congestion is an important diagnostic and therapeutic target in heart failure”, Rev Cardiovasc Med., vol. 7 Suppl 1, 2006, pp. 12-24.
Gilliam, III et al., “Changes in heart rate variability, quality of life, and activity in cardiac resynchronization therapy patients: results of the HF-HRV registry”, Pacing and Clinical Electrophysiology, vol. 30 (1), Jan. 18, 2007, pp. 56-64.
Gilliam, III et al., “Prognostic value of heart rate variability footprint and standard deviation of average 5-minute intrinsic R-R intervals for mortality in cardiac resynchronization therapy patients”, J Electrocardiol., vol. 40 (4), Oct. 2007, pp. 336-342.
Gniadecka et al., “Localization of dermal edema in lipodermatosclerosis, lymphedema, and cardiac insufficiency high-frequency ultrasound examination of intradermal echogenicity”, J Am Acad oDermatol, vol. 35 (1), Jul. 1996, pp. 37-41.
Goldberg et al., “Randomized trial of a daily electronic home monitoring system in patients with advanced heart failure: The Weight Monitoring in Heart Failure (WHARF) Trial”, American Heart Journal, vol. 416 (4), Oct. 2003, pp. 705-712.
Grap et al., “Actigraphy in the Critically III: Correlation with Activity, Agitation, and Sedation”, American Journal of Critical Care, vol. 14, 2005, pp. 52-60.
Gudivaka et al., “Single and multifrequency models for bioelectrical impedance analysis of body water compartments”, J Appl Physiol, vol. 87 (3), 1999, pp. 1087-1096.
Guyton et al., “Unit V: The Body Fluids and Kidneys, Chapter 25: The Body Fluid Compartments: Extracellular and Intracellular Fluids; Interstitial Fluid and Edema”, Guyton and Hall Textbook of Medical Physiology 11th Edition, Saunders, 2005, pp. 291-306.
Hadase et al., “Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure”, Circ J., vol. 68 (4), 2004, pp. 343-347.
Hallstrom et al., “Structural relationships between measures based on heart beat intervals: potential for improved risk assessment”, IEEE Biomedical Engineering, vol. 51 (8), 2004, pp. 1414-1420.
Heart Failure, Wikipedia Entry, downloaded from http://en.wikipedia.org/wiki/Heart—failure, downloaded Feb. 11, 2011, 17 pages.
HFSA Comprehensive Heart Failure Practice Guideline—Executive Summary: HFSA Comprehensive Heart Failure Practice Guideline, Journal of Cardiac Failure, vol. 12 (1), 2006, pp. E86-E103.
HFSA Comprehensive Heart Failure Practice Guideline—Section 12: Evaluation and Management of Patients with Acute Decompensated Heart Failure, Journal of Cardiac Failure, vol. 12 (1), 2006, pp. E86-E103.
HFSA Comprehensive Heart Failure Practice Guideline—Section 2: Conceptualization and Working Definition of Heart Failure, Journal of Cardiac Failure, vol. 12 (1), 2006, pp. E10-E11.
HFSA Comprehensive Heart Failure Practice Guideline—Section 4: Evaluation of Patients for Ventricular Dysfunction and Heart Failure, Journal of Cardiac Failure, vol. 12 (1), 2006, pp. E16-E25.
HFSA Comprehensive Heart Failure Practice Guideline—Section 8: Disease Management in Heart Failure Education and Counseling, Journal of Cardiac Failure, vol. 12 (1), 2006, pp. E58-E68.
HFSA Comprehensive Heart Failure Practice Guideline—Section 3: Prevention of Ventricular Remodeling Cardiac Dysfunction, and Heart Failure Overview, Journal of Cardiac Failure, vol. 12 (1), 2006, pp. E12-E15.
HRV Enterprises LLC, “Heart Rate Variability Seminars”, downloaded from http://hrventerprise.com, downloaded Apr. 24, 2008, 3 pages.
HRV Enterprises LLC, “LoggerPro HRV Biosignal Analysis”, downloaded from http://hrventerprise.com/products.html, downloaded Apr. 24, 2008, 3 pages.
Hunt et al., “ACC/AHA Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines:”, Developed in Collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Rhythm Society, Circulation, vol. 112, 2005, E154-E235.
Hunt et al., “ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary a Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines”, Circulation, vol. 104, 2001, pp. 2996-3007.
Imhoff et al., “Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients”, Critical Care Medicine, vol. 28 (8), 2000, pp. 21812-2818.
Jaeger et al., “Evidence for Increased Intrathoracic Fluid Volume in Man at High Altitude”, J Appl Physiol., vol. 47 (6), 1979, pp. 670-676.
Jaio et al., “Variance fractal dimension analysis of seismic refraction signals”, WESCANEX 97: Communications, Power and Computing, IEEE Conference Proceedings, May 22-23, 1997, pp. 163-167.
Jerant et al., “Reducing the cost of frequent hospital admissions for congestive heart failure: a randomized trial of a home telecare intervention”, Medical Care, vol. 39 (11), 2001, pp. 1234-1245.
Kasper et al., “A randomized trial of the efficacy of multidisciplinary care in heart failure outpatients at high risk of hospital readmission”, J Am Coll Cardiol, vol. 39, 2002, pp. 471-480.
Kaukinen, “Cardiac output measurement after coronary artery bypass grafting using bolus thermodilution, continuous thermodilution, and whole-body impedance cardiography”, Journal of Cardiothoracic and Vascular Anesthesia, vol. 17 (2), 2003, pp. 199-203.
Kawaguchi et al., “Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations”, Circulation, vol. 107, 2003, pp. 714-720.
Kawasaki et al., “Heart rate turbulence and clinical prognosis in hypertrophic cardiomyopathy and myocardial infarction”, Circ J., vol. 67 (7), 2003, pp. 601-604.
Kearney et al., “Predicting death due to progressive heart failure in patients with mild-to-moderate chronic heart failure”, J Am Coll Cardiol, vol. 40 (10), 2002, pp. 1801-1808.
Kitzman et al., “Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure”, JAMA, vol. 288 (17), Nov. 2002, pp. 2144-2150.
Koobi et al., “Non-invasive measurement of cardiac output: whole-body impedance cardiography in simultaneous comparison with thermodilution and direct oxygen Fick methods”, Intensive Care Medicine, vol. 23 (11), 1997, pp. 1132-1137.
Koyama et al., “Evaluation of heart-rate turbulence as a new prognostic marker in patients with chronic heart failure”, Circ J, vol. 66 (10), 2002, pp. 902-907.
Kristofer et al., U.S. Appl. No. 60/972,336, filed Sep. 14, 2007.
Kristofer et al., U.S. Appl. No. 60/972,340, filed Sep. 14, 2007.
Kristofer et al., U.S. Appl. No. 60/972,343, filed Sep. 14, 2007.
Krumholz et al., “Predictors of readmission among elderly survivors of admission with heart failure”, American Heart Journal, vol. 139 (1), 2000, pp. 72-77.
Kyle et al., “Bioelectrical Impedance Analysis—part I: review of principles and methods”, Clin Nutr., vol. 23 (5), Oct. 2004, pp. 1226-1243.
Kyle et al., “Bioelectrical Impedance Analysis—part II: utilization in clinical practice”, Clin Nutr., vol. 23 (5), Oct. 2004, pp. 1430-1453.
Landrum, U.S. Appl. No. 61/079,746, filed Jul. 10, 2008.
Lee et al., “Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model”, JAMA, vol. 290 (19), 2003, pp. 2581-2587.
Leier, “The Physical Examination in Heart Failure—Part I”, Congest Hear Fail., vol. 13 (1), Jan.-Feb. 2007, pp. 41-47.
Libbus et al., U.S. Appl. No. 60/972,316, filed Sep. 12, 2008.
Libbus et al., U.S. Appl. No. 60/972,512, filed Sep. 14, 2007.
Libbus et al., U.S. Appl. No. 60/972,581, filed Sep. 14, 2007.
Libbus et al., U.S. Appl. No. 60/972,616, filed Sep. 14, 2007.
Libbus et al., U.S. Appl. No. 61/035,970, filed Mar. 12, 2008.
Libbus et al., U.S. Appl. No. 61/047,875, filed Apr. 25, 2008.
Libbus et al., U.S. Appl. No. 61/055,656, filed May 23, 2008.
Liu et al., “Fractal analysis with applications to seismological pattern recognition of underground nuclear explosions”, Signal Processing, vol. 80 (9), Sep. 2000, pp. 1849-1861.
Lozano-Nieto, “Impedance ratio in bioelectrical impedance measurements for body fluid shift determination”, Proceedings of the IEEE 24th Annual Northeast Bioengineering Conference, Apr. 9-10, 1998, pp. 24-25.
Lucreziotti et al., “Five-minute recording of heart rate variability in severe chronic heart failure: Correlates with right ventricular function and prognostic implications”, American Heart Journal, vol. 139 (6), 2000, pp. 1088-1095.
Luthje et al., “Detection of heart failure decompensation using intrathoracic impedance monitoring by a triple-chamber implantable defibrillator”, Heart Rhythm, vol. 2 (9), Sep. 2005, pp. 997-999.
Magalski et al., “Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: a multicenter, 12-Month Follow-Up Study of Patients with Chronic Heart Failure”, J Card Fail, vol. 8 (2), 2002, pp. 63-70.
Mahlberg et al., “Actigraphy in agitated patients with dementia: Monitoring treatment outcomes”, Zeitschrift fur Gerontologie und Geriatrie, vol. 40 (3), Jun. 2007, pp. 178-184.
Manicka et al., U.S. Appl. No. 60/972,329, filed Sep. 14, 2007.
Manicka et al., U.S. Appl. No. 60/972,537, filed Sep. 14, 2007.
Manicka, et al., “U.S. Appl. No. 61/055,666”, filed May 23, 2008.
Matthie et al., “Analytic assessment of the various bioimpedance methods used to estimate body water”, Appl Physiol, vol. 84 (5), 1998, pp. 1801-1816.
Matthie et al., “Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy”, J Appl Physiol, vol. 99, 2005, pp. 780-781.
Mazar et al., U.S. Appl. No. 60/972,354, filed Sep. 14, 2007.
Mazar, U.S. Appl. No. 61/046,196, filed Apr. 18, 2008.
McMurray et al., “Heart Failure: Epidemiology, Aetiology, and Prognosis of Heart Failure”, Heart, vol. 83, 2000, pp. 596-602.
Miller, “Home monitoring for congestive heart failure patients”, Caring Magazine, Aug. 1995, pp. 53-54.
Moser et al., “Improving outcomes in heart failure: it's not unusual beyond usual Care”, Circulation, vol. 105, 2002, pp. 2810-2812.
Nagels et al., “Actigraphic measurement of agitated behaviour in dementia”, International Journal of Geriatric Psychiatry, vol. 21 (4), 2009, pp. 388-393.
Nakamura et al., “Universal scaling law in human behavioral organization”, Physical Review Letters, vol. 99 (13), Sep. 28, 2007, 4 pages.
Nakaya, “Fractal properties of seismicity in regions affected by large, shallow earthquakes in western Japan: Implications for fault formation processes based on a binary fractal fracture network model”, Journal of Geophysical Research, vol. 11 (B1), Jan. 2005, pp. B01310.1-B01310.15.
Naylor et al., “Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial”, Amer. College Physicians, vol. 120 (12), 1994, pp. 999-1006.
Nesiritide (Natrecor), “Acutely Decompensated Congestive Heart Failure: Burden of Disease”, Presentation, downloaded from http://www.huntsvillehospital.org/foundation/events/cardiologyupdate/CHF.ppt, date unknown, 39 pages.
Nieminen et al., “EuroHeart Failure Survey II (EHFSII): a survey on hospitalized acute heart failure patients: description of population”, European Heart Journal, vol. 27 (22), 2006, pp. 2725-2736.
Nijsen et al., “The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy”, Epilepsy Behav., vol. 7 (1), Aug. 2005, pp. 74-84.
Noble et al., “Diuretic induced change in lung water assessed by electrical impedance tomography”, Physiol. Meas., vol. 21 (1), 2000, pp. 155-163.
Noble et al., “Monitoring patients with left ventricular failure by electrical impedance tomography”, Eur J Heart Fail., vol. 1 (4), Dec. 1999, pp. 379-384.
O'Connell et al., “Economic impact of heart failure in the United States: time for a different approach”, J Heart Lung Transplant., vol. 13 (4), Jul.-Aug. 1994, p. S107-S112.
Ohlsson et al., “Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors”, Eur J Heart Fail., vol. 5 (3), Jun. 2003, pp. 253-259.
Ohlsson et al., “Continuous ambulatory monitoring of absolute right ventricular pressure and mixed venous oxygen saturation in patients with heart failure using an implantable hemodynamic monitor”, European Heart Journal, vol. 22 (11), 2001, pp. 942-954.
Packer et al., “Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure”, J. Am. Coll Cardiol, vol. 47 (11), 2006, pp. 2245-2252.
Palatini et al., “Predictive value of clinic and ambulatory heart rate for mortality in elderly subjects with systolic hypertension”, Arch Intern Med., vol. 162, 2002, pp. 2313-2321.
Piiria et al., “Crackles in patients with fibrosing alveolitis bronchiectasis, COPD, and Heart Failure”, Chest, vol. 99 (5), May 1991, pp. 1076-1083.
Pocock et al., “Predictors of mortality in patients with chronic heart failure”, Eur Heart J, vol. 27, 2006, pp. 65-75.
Poole-Wilson et al., “Importance of control of fluid volumes in heart failure”, European Heart Journal, vol. 22 (11), 2000, pp. 893-894.
Raj et al., Letter Regarding Article by Adamson et al. “Continuous Autonomic Assessment in Patients with Symptomatic Heart Failure: Prognostic Value of Heart Rate Variability Measured by an Implanted Cardiac Resynchronization Device”, Circulation, vol. 112, 2005, pp. E37-E38.
Ramirez et al., “Prognostic value of hemodynamic findings from impedance cardiography in hypertensive stroke”, AJH, vol. 18 (20), 2005, pp. 65-72.
Rich et al., “A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure”, New Engl. J. Med., vol. 333, 1995, pp. 1190-1195.
Roglieri et al., “Disease management interventions to improve outcomes in congestive heart failure”, Am J. Manag Care., vol. 3 (12), Dec. 1997, pp. 1831-1839.
Sahalos et al., “The electrical impedance of the human thorax as a guide in evaluation of intrathoracic fluid volume”, Phys. Med. Biol., vol. 31, 1986, pp. 425-439.
Saxon et al., “Remote active monitoring in patients with heart failure (rapid-rf): design and rationale”, Journal of Cardiac Failure, vol. 13 (4), 2007, pp. 241-246.
Scapa Medical product listing and descriptions, retrieved from http://www.caapana.com/productlist.jsp and http://www.metplus.co.rs/pdf/prospekti/Samolepljivemedicinsketrake.pdf, retrieved on Aug. 29, 2013.
Scharf et al., “Direct digital capture of pulse oximetry waveforms”, Proceedings of the Twelfth Southern Biomedical Engineering Conference, 1993, pp. 230-232.
Shabetai, “Monitoring heart failure hemodynamics with an implanted device: its potential to improve outcome”, J Am Coll Cardiol, vol. 41, 2003, pp. 572-573.
Small, “Integrating monitoring into the infrastructure and workflow of routine practice: OptiVol”, Rev Cardiovasc Med., vol. 7 Supp 1, 2006, pp. S47-S55.
Smith et al., “Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline”, J Am Coll Cardiol, vol. 41, 2003, pp. 1510-1518.
Starling, “Improving care of chronic heart failure: advances from drugs to devices”, Cleveland Clinic Journal of Medicine, vol. 70 (2), Feb. 2003, pp. 141-146.
Steijaert et al., “The use of multi-frequency impedance to determine total body water and extracellular water in obese and lean female individuals”, International Journal of Obesity, vol. 21 (10), Oct. 1997, pp. 930-934.
Stewart et al., “Effects of a home-based intervention among patients with congestive heart failure discharged from acute hospital care”, Arch Intern Med., vol. 158, 1998, pp. 1067-1072.
Stewart et al., “Effects of a multidisciplinary, home-based intervention on planned readmissions and survival among patients with chronic congestive heart failure: a randomized controlled study”, The Lancet, vol. 354 (9184), Sep. 1999, pp. 1077-1083.
Stewart et al., “Home-based intervention in congestive heart failure: long-term implications on readmission and survival”, Circulation, vol. 105, 2002, pp. 2861-2866.
Stewart et al., “Prolonged beneficial effects of a home-based intervention on unplanned readmissions and mortality among patients with congestive heart failure”, Arch Intern Med., vol. 159, 1999, pp. 257-261.
Stewart et al., “Trends in Hospitalization for Heart Failure in Scotland. An Epidemic that has Reached Its Peak?”, European Heart Journal, vol. 22 (3), 2001, pp. 209-217.
Swedberg et al., “Guidelines for the diagnosis and treatment of chronic heart failure: executive summary: The task force for the diagnosis and treatment of chronic heart failure of the European Society of Cardiology”, Eur Heart J., vol. 26 (11), Jun. 2005, pp. 1115-1140.
Tang, “Case studies in advanced monitoring: OptiVol”, Rev Cardiovasc Med., vol. 7 Suppl 1, 2006, pp. S62-S66.
The Economist, “Something in the way he moves”, retrieved from http://www.economist.com/science/printerFriendly.cfm?storyid=9861412, 2007.
The Escape Investigators, and Escapte Study Coordinators, “Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness”, JAMA, vol. 294, 2005, pp. 1625-1633.
Tosi et al., “Seismic signal detection by fractal dimension analysis”, Bulletin of the Seismological Society of America, vol. 89 (4), Aug. 1999, pp. 970-977.
Van De Ven et al., “The Potential of Umbilical Cord Blood multipotent stem cells for Nonhematopoietic Tissue and Cell Regeneration”, Exp Hematol., vol. 35, 2007, pp. 1753-1765.
Van De Water et al., “Monitoring the chest with impedance”, Chest, vol. 64, 1973, pp. 597-603.
Van Someren, “Actigraphic monitoring of movement and rest-activity rhythms in aging, Alzheimer's disease, and Parkinson's disease”, IEEE Transactions on Rehabilitation Engineering, vol. 5 (4), Dec. 1997, pp. 394-398.
Vasan et al., “Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction”, J Am Coll Cardiol, vol. 33, 1999, pp. 1948-1955.
Verdecchia et al., “Adverse prognostic value of an blunted circadian rhythm of heart rate in essential hypertension”, Journal of Hypertension, vol. 16 (9), 1998, pp. 1335-1343.
Verdecchia et al., “Ambulatory pulse pressure: a potent predictor of total cardiovascular risk in hypertension”, Hypertension, vol. 32, 1998, pp. 983-988.
Vollmann et al., “Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure”, European Heart Journal Advance Access, downloaded from http://eurheartj.oxfordjournals.org/cgi/content/full/eh1506v1, Feb. 19, 2007, 6 pages.
Vuksanovic et al., “Effect of posture on heart rate variability spectral measures in children and young adults with heart disease”, International Journal of Cardiology, vol. 101 (2), 2005, pp. 273-278.
Wang et al., “Feasibility of using an implantable system to measure thoracic congestion in an ambulatory chronic heart failure canine model”, PACE, vol. 28 (5), 2005, pp. 404-411.
Wickemeyer et al., “Association between atrial and ventricular tachyarrhythmias, intrathoracic impedance and heart failure decompensation in CRT-D Patients”, Journal of Cardiac Failure, vol. 13 (6), 2007, pp. S131-S132.
Wonisch et al., “Continuous hemodynamic monitoring during exercise in patients with pulmonary hypertension”, Int J Cardiol., vol. 101 (3), Jun. 8, 2005, pp. 415-420.
Wynne et al., “Impedance cardiography: a potential monitor for hemodialysis”, Journal of Surgical Research, vol. 133 (1), 2006, pp. 55-60.
Yancy, “Current approaches to monitoring and management of heart failure”, Rev Cardiovasc Med., vol. 7 Suppl 1, 2006, pp. S25-S32.
Ypenburg et al., “Intrathoracic Impedance Monitoring of Predict Decompensated Heart Failure”, Am J Cardiol, vol. 99 (4), 2007, pp. 554-557.
Yu et al., “Intrathoracic Impedance Monitoring in Patients with Heart Failure: Correlation with Fluid Status and Feasibility of Early Warning Preceding Hospitalization”, Circulation, vol. 112, 2005, pp. 841-848.
Zannad et al., “Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure: The EPICAL Study”, J Am Coll Cardiol, vol. 33 (3), 1999, pp. 734-742.
Zile, “Heart failure with preserved ejection fraction: is this diastolic heart failure?”, J Am Coll Cardiol., vol. 41 (9), 2003, pp. 1519-1522.
3M Corporation, “3M Surgical Tapes—Choose the Correct Tape”, quicksheet, 2004.
Related Publications (1)
Number Date Country
20150005589 A1 Jan 2015 US
Provisional Applications (4)
Number Date Country
61055645 May 2008 US
61055666 May 2008 US
60972537 Sep 2007 US
60972629 Sep 2007 US
Continuations (3)
Number Date Country
Parent 13647284 Oct 2012 US
Child 14322435 US
Parent 13347238 Jan 2012 US
Child 13647284 US
Parent 12209273 Sep 2008 US
Child 13347238 US