Adhesion and cohesion modifiers for asphalt

Information

  • Patent Grant
  • 8404037
  • Patent Number
    8,404,037
  • Date Filed
    Thursday, July 24, 2008
    16 years ago
  • Date Issued
    Tuesday, March 26, 2013
    12 years ago
Abstract
The present invention relates to a bitumen or asphalt formulation for the pavement of road surfaces, said formulation comprising a mixture of bitumen and aggregates, and an additive package evenly distributed therein, said additive package comprising from about i) 10 to 60% by weight of an amine or modified amine surfactant, ii) from about 20 to 90% of an asphalt rheology modifying component.
Description
FIELD OF THE INVENTION

The present invention generally relates to a novel combination of surfactants and asphalt rheology modifiers that influence the adhesion and cohesion properties of asphalt to significantly improve the moisture resistance properties of hot-mixes containing difficult aggregates.


BACKGROUND OF THE INVENTION

Asphalt mixes are widely used in road construction and maintenance and majority of asphalt mixes that are used currently are produced by the hot method which is generally known as hot-mix or HMA. This is also known as asphalt concrete which consists of asphalt binder and mineral aggregates. The aggregates could be natural aggregates or processed. Normally processed aggregates are used which have been quarried, crushed, separated into distinct size fractions, washed or otherwise processed to achieve certain performance characteristics of the finished HMA. The aggregates are usually a mixture of various sizes to give desired properties to the asphalt mix as specified in the mix design.


The strength and durability of the asphalt pavements depends on various factors such as the properties of the materials used, the interaction of various materials, the mix-design and construction practices. It is important to attain proper coating of the aggregate with asphalt with optimum binder (asphalt) film thickness and good adhesion of asphalt onto the aggregate, and good cohesive strength of the asphalt to produce a mix that will have good performance during the lifetime of the pavement. The pavements are designed to avoid the various distress types such as permanent deformation, fatigue cracking, low temperature cracking and moisture damage.


Moisture damage is also of great concern. Moisture damage in asphalt mixes can occur by two major pathways. First water will displace asphalt from the aggregate surface especially the ones containing higher amounts of silica since water has a higher affinity for the aggregate surface compared to asphalt and there is lack of chemical bonding of asphalt to the surface. This is known as stripping. Adhesion is the formation of chemical bond between asphalt and the aggregate. Secondly water over a period of time under repeated load can get inside asphalt and reduce the cohesive strength of asphalt. The results of stripping and loss of cohesive strength of the asphalt on the properties of the mix can be conveniently evaluated by the Hamburg wheel tracking test which measures deformation of the mix by a repeated load under water.


It is well known that adhesion promoters which are surface active molecules known as liquid anti-stripping additives or hydrated lime are being used in hot-mix to provide protection against water damage. This solved the problems of water damage with many conventional mixes, but some mixes are unresponsive to conventional anti-stripping additive treatments. It is also well known that the rheology of asphalt can be modified with additives of various types, but these rheology modifying treatments when used alone are not able to solve all problems of water damage.


The invention is concerned with the technical problem of providing an improved bitumen or asphalt, in particular for the production of road surfaces. More specifically, the present inventors have found that a novel combination of surfactants and asphalt rheology modifiers can influence the adhesion and cohesion properties of asphalt to significantly improve the resistance of hot-mixes to moisture damage. This results in superior asphalt or a mixture of bitumen (asphalt) with aggregates which is more resistant to water damage. This is the first instance that a unique combination of surfactants and rheology modifiers have been used as a single package, which demonstrate much improved performance compared to conventional anti-stripping additive treatment.


SUMMARY OF THE INVENTION

The present invention relates to an additive package for asphalt formulations that comprises a novel combination of a surfactant component and a rheology modifier component. Modifiers which modify the rheology (viscosity) of the asphalt, in particular increase the viscosity or “cohesive strength” of asphalt at the temperature of the road. When added to asphalt, the additive package of the invention improves the affinity and chemical bonding of the asphalt to the aggregate surface by increasing the aggregate-asphalt bond's resistance to water, as well as improving the cohesive strength of the asphalt.







DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a bitumen or asphalt formulation for the pavement of road surfaces, said formulation comprising a mixture of bitumen and aggregates, and an additive package distributed therein.


The additive package of the invention comprises a combination of surface active components and rheology modifying components. The surfactant component preferably comprises at least one an amine or modified amine surfactant, while the rheology modifying component comprises at least one of i) a wax component, ii) a non-asphalt soluble, non-meltable component, and iii) a resin component.


The additive package of the invention positively influences both the adhesion and cohesion properties of asphalt, thereby significantly improving the moisture resistance properties of hot-mixes. The use of the combination of rheology modifiers and surfactant did not lead to problems with compaction of the mixes-compaction was readily achieved in the lab to reach the specified design densities.


Any asphalt mixture known to the skilled artisan can be employed in the context of the present invention. For example, standard asphalt wearing course typically contains about 3 to 8% of bitumen, and so-called stone mastic asphalt, which contains about 6.5 to 8.5% of bitumen, can both be readily employed. Since the effect claimed is improvement of binder adhesion and cohesion to minimize moisture damage, the concept is applicable to any paving grade asphalts such as the various grades of PG (Performance Graded) asphalts. This concept can also be extended to roofing applications where improvement in adhesion with mineral fillers and surface aggregates as well as improvement in cohesion of asphalt to extend the lifetime of the application.


As previously discussed, the additive package of the invention comprises from about 10 to 60% by weight of an amine or modified amine surfactant, and from about 20 to 90% of a rheology modifying component or components. The surfactant component preferably comprises at least one amine or modified amine surfactant, while the rheology modifying component comprises at least one of i) a wax component, ii) a non-asphalt soluble, non-meltable component, and iii) a resin component. With certain difficult asphalt mixes, mixtures of two or more rheology modifying components, which may fall into any of the groups i)-iii), can be employed. In another embodiment, the additive package of the invention comprises 20 to 40% by weight of an amine or modified amine surfactant, and from about 30 to 80% of a rheology modifying component. If the rheology modifying component comprises two rheology modifiers from separate classes i) and iii) in accordance with the invention, it is preferred that they are present in a ratio of from 30:70 to 70:30; more preferably 40:60 to 60:40, and in another embodiment, in approximately 50:50 proportions.


A more detailed description of each of the additive package and each of the component materials and properties thereof follows.


The Surfactant Component


The surfactant component of the additive package of the invention comprises at least one amine and/or modified amine surfactant or mixtures thereof. In one example, the surfactant component is selected from amines, diamines, polyamines, ethoxylated amines, ethoxylated alkyl diamines, ethoxylated alkyl polyamines, amido amines, amidopolyamines, imidazolines, and/or any of their corresponding organic and/or inorganic salts, and mixtures and combinations of same. Some examples of the amine and/or modified amine surfactants employable in the context of the invention are generally depicted by the following general formulae:


I. Amines




embedded image



wherein R is a saturated or unsaturated, substituted or unsubstituted, optionally branched or cyclic, hydrocarbon radical with 8-24 carbon atoms, for example derived from tallow fatty acids, or tall oil fatty acids. R1 and R2 can be the same or different and are selected from hydrogen or hydrocarbon radical with 1-24 carbon atoms. R1 and R2 are preferably selected from hydrogen or methyl. A representative example is hydrogenated tallowamine (CAS No. 61788-45-2)


II. Diamines and Polyamines

R—(NH—R3)x—NH2

where R has the same meaning as in I., above, and R3 represents a linear or branched hydrocarbon radical with 1-6 carbon atoms. In one embodiment R3 is propylene radical (—CH2CH2CH2-) and x is a small integer of less than or equal to 6. A representative example, where R=tallow, x=1 and R3=propylene, is N-tallow propylenediamine (CAS No. 61791-55-7)


III. Ethoxylated or Propoxylated Amines




embedded image



where R has the same meaning as in I., above; R4 is methyl or hydrogen; and x and y are independently selected from 0, 1 or 2. In one embodiment, x=y=1. A representative example, where R=hydrogenated tallow alkyl, x=y=1 and R4 is H, is N, N diethanol, hydrogenated tallowamine (CAS No. 90367-28-5)


IV. Ethoxylated or Propoxylated Alkyl Diamines and Ethoxylated Alkyl Polyamines e.g.




embedded image



wherein R, R3 and R4 have the same meaning as in I, II. and III, above; x, y, and z are independently selected from 0, 1 or 2 and x+y+z<or =5. In one embodiment, x=y=z=1. A representative example, where R=hydrogenated tallowalkyl, x=y=z=1, and R<3>=propylene and R<4> is H, is N,N,N Tris(2-hydroxyethyl)-N-hydrogenated tallow-1,3-diaminopropane (CAS No. 90367-25-2). The ethoxylated or propoxylated alkyl diamines and ethoxylated alkyl polyamines may also have the following formula




embedded image



wherein R, R3 and R4 have the same meaning as above; w=1-3; x, y, and z are independently selected from 0, 1 or 2 and x+y+z<w+4.


V. Alkyl Amido amines




embedded image



wherein R, R1, R2 and R3 have the same meaning as in I-III., above. A representative example where R1═R2=methyl and R3=propylene and R═C8-C22 alkyl has the CAS No. 84082-43-9.


VI. Amidopolyamines and Imidazolines E.G.

RCO—(NH—R3)x—NH2

wherein R and R3 have the same meaning as in example I., above, and x=an integer of from 1 to 10. This group includes the reaction product of fatty acids or esters with complex mixtures of polyethylenepolyamines and related compounds which may contain also cyclic and substituted nitrogens obtained as by-products in the manufacture of diethylene triamine and ethylene diamine. Representative compounds have the CAS Nos 402591-95-1, 68910-93-0, 103213-06-3, 95-38-5.


The products listed above may be present in the mixtures described in the invention as their salts or organic or inorganic acids including but not limited to the salts of long chain fatty acids, e.g. stearic acid, salts of phosphoric acids, or substituted phosphoric acids, acetic acid, naphthenic acids, rosin acids etc.


Specific surfactants useful in the additive package of the invention include, but are not limited to ethoxylated tallow amines, fatty amines, fatty amine derivatives, tall oil amidoamines/imidazolines, bis hexamethylene triamine and higher oligomers of hexmethylediamine, other alkyl amine surfactants with a hydrocarbon chain consisting of 8 to 22 carbon atoms and mixtures combinations thereof. Specific examples of such surfactants include, but are not limited to tallow n-propylene diamine, tris-ethoxylated tallow N-propylene diamine, Redicote C-450, a mixture of imidazolines and amidopolyethylenepolyamines, Wetfix 312—a mixture of imidazolines and amidoamines available from Akzo Nobel Surface Chemistry LLC, Chicago, Ill. The surfactant component can also include hydrogenated tallow propylene diamine, ethoxylated hydrogenated tallow propylene diamine, tallow dipropylene triamine, tallow tripropylene tetramine and their derivatives, and amides resulting from the condensation of fatty acids with dimethylaminopropylamine.


Rheology Modifying Component


The rheology modifying component of the additive package of the invention comprises i) at least one wax component, ii) optionally a non-asphalt soluble, non-meltable component, iii) at least one resin component and mixtures and combinations thereof.


i) Wax Component


Wax modifiers that can be usefully employed in the context of the invention include, but are not limited to waxes of vegetable (e.g. carnuba wax), animal (e.g beeswax) mineral (e.g. Montan™ wax from coal, Fischer Tropsch wax from coal) or petroleum (e.g. paraffin wax, polyethylene wax, Fischer-Tropsch wax from gas) origin including oxidised waxes; amide waxes (e.g. ethylene bis stearamide, stearyl amide, stearylstearamide); fatty acids and soaps of waxy nature (e.g aluminum stearate, calcium stearate, fatty acids); other fatty materials of waxy nature (fatty alcohols, hydrogenated fats, fatty esters etc) with the ability to stiffen asphalt, and the like. The above products are basically soluble in the asphalt at the temperatures of the hot mix, to make a homogeneous binder, and/or will melt at the temperature of the mix and the ingredients will disperse/dissolve into the mixture. The wax and resin ingredients will generally act to improve cohesion properties of the asphalt, while the adhesion promoter will improve the adhesion of the asphalt to the aggregate. Together the ingredients provide improved resistance to water damage.


In one embodiment, the invention preferably employs a Fischer Tropsch Wax derived from coal or natural gas or any petroleum feedstock. The process entails the gasification of the above feedstock by partial oxidation to produce carbon monoxide under high temperature and pressure and reaction of the resultant carbon monoxide with hydrogen under high temperature and pressure in the presence of a suitable catalyst (such as iron compound or cobalt compound) for example as in the case of the processes currently employed by Shell and Sasol. The congealing point of the wax is between 68° C. and 120° C. with a Brookfield viscosity at 135° C. in the range of 8 to 20 cPs; in one embodiment, the congealing point of the wax is between 80° C. and 120° C.; and in another embodiment, the congealing point of the wax is between 68° C. and 105° C.


ii) Non-Asphalt Soluble, Non-Meltable Component


A second type of rheology modifier employable as the rheology modifying component of the invention are the so-called non-asphalt soluble, non-meltable modifiers. Such additives, which are also employed to increase the viscosity of the asphalt, never melt but can be dispersed into the asphalt phase where they increase the viscosity. Examples include, but are not limited to carbon black, certain clays, possibly organically modified, silica e.g fumed silica, lime, cellulose fiber and other fibers insoluble in asphalt, and the like.


iii) Resin Component


A third type of rheology modifying component comprises resins of vegetable (tall oil pitch, pine tar pitch, tall oil rosins, rosin acids, pine rosins, gum rosins including chemically modified resins like maleated and fumarated rosins and resinous by-products from tall oil processing or the processing of gum rosins.) or petroleum (petroleum resins, phenolic resins). In particular resins having a prop melt point>60° F. and a Penetration <50 at 25° C., for example Tall Oil pitch or modified tall oil pitches containing long chain and tricyclic organic acids and sterols, are useful. The tall oil resin based modifiers may also include non-resinous fractions from distillation of crude tall oil such as fatty acids, tall oil heads, and may also include chemically modified version of these fractions as a result of maleation and fumarization. Preferred rheology modifiers of this class include, but are not limited to tall oil pitch, maleated tall oil pitch, rosin acids, tall oil heads. Polymers of plastomer (polyethylene, polypropylene, ethylvinylacetate) or elastomer (natural rubber, styrene butadiene rubber, polychlorprene, crumb rubber from reclaimed tires etc) character; asphaltic materials of high softening point (e.g. asphaltenes, Gilsonite™, Trinidad Lake Asphalt, by-products from the deasphalting of oils, oxidised asphalts etc); asphaltenes such as ROSE bottoms (Residuum Oil Supercritical Extraction) and other zero penetration asphalts may also be employed either alone or in combination.


In broader terms the invention contemplates a combination of surface active agents with one or more asphalt rheology modifiers which might include Fischer Tropsch wax, other types of wax, polymers, carbon black, Gilsonite, or tall oil based modifiers, the key feature being that these types of ingredients have been combined into a single product.


The additive package of the invention can be blended into the asphalt before the asphalt is introduced to the aggregate in the hot-mix plant, it can be added to the aggregate, or a portion of the aggregate, before asphalt is added to the mixer or it can be added to the mixer in the hot-mix plant after asphalt has been added to the aggregate. It is preferably added into the mixer such as the drum mixer at the hot-mix plant. The dosage level of the additive package by the weight of the asphalt is in a range from 0.2 to 10% by weight, preferably in the range from 0.5 to 10% by weight, more preferably in the range from 0.5 to 6% by weight, and further preferably about 1 to 3% by weight, based on asphalt.


The additive package of the invention has the following advantages over current technologies:

    • (a) It improves the moisture resistance of mixes when subjected to a repeated load in wet conditions as demonstrated by the Hamburg Wheel Tracking Test, compared to conventional treatments such as use of liquid anti-stripping additives or the use of hydrated lime.
    • (b) It has advantage over hydrated lime treatment for normal mixes in terms of cost and ease of use. The use level is less than 3 lbs per ton of mix compared to a typical lime treatment of about 20 to 30 lbs per ton of mix. It also lowers freight cost as less material needs to be transported compared to lime. The additive as will be described shortly can be produced in a form which is easy to use without dust problems.
    • (c) It increases the durability of the mix without compromising the properties of the flexible pavement.
    • (d) The additive package of the invention, because of melting point and physical characteristics allows it to be formulated in a physical form such as powder, pastillated, or flaked free flowing solid or in molten (hot liquid form) which can be blended into asphalt just before production of the hot-mix or could be added to the drum dryer at various stages during the production of the hot-mix, as described above.


The invention will now be illustrated by the following non-limiting examples. All tests were performed in accordance with the Tex-242-F, Hamburg Wheel Tracking test procedure issued by the Texas Department of Transportation.


Dallas APAC R&D Hamburg Test Results


Mix Composition: Ty D






    • 48% Martin Marietta Chico Type D Limestone Aggregate

    • 22% Martin Marietta Chico Limestone Screenings

    • 10% Hanson Sand, Ferris, Tex.

    • 5.6% Valero PG 64-22


























Cycles





Material
Mix
Additive
Test
To
Deform,

Test


ID
Type
%
Temp, C.°
Failure
mm
Notes
Date






















Control
D
2.0
50
3,700
12.5
Stripped
Sep.









15,









2006


AKZO
D
2.0
50
11,700
12.5
No
Oct.


Apr. 09,





evidence
11,


2006





of
2006








stripping










TxDOT Hamburg Requirements:
    • PG 64 10,000 cycles @ 12.5 mm of maximum deformation
    • PG 70 15,000 cycles @ 12.5 mm of maximum deformation
    • PG 76 20,000 cycles @ 12.5 mm of maximum deformation


Beaumont APAC R&D Hamburg Test Results


Mix Composition: Ty D






    • 46% Tower No 8 Limestone Aggregate

    • 24% MM Cave-in-Rock No 11 Limestone Aggregate

    • 15% MM Cave-in-Rock Mfg Sand Limestone Aggregate

    • 13% Kerr Materials Natural Sand Siliceous Aggregate

    • 4.5% PG 64-22 Total Port Arthur

























Test
Cycles





Material
Mix
Additive
Temp,
To
Deform,

Test


ID
Type
%
C.°
Failure
mm
Notes
Date






















Control
D
0.0
50
4,870
12.52
Stripped
Jul.









24,









2006


Kling
D
1.0
50
5,500
12.53
Stripped
Jul.


Beta






24,


2550HM*






2006


Akzo
D
2.0
50
15,600
12.53
Looked
Sep.


Nobel





Good
21,


Apr. 09,






2006


2006





*Akzo Nobel conventional liquid antistripping additive







TxDOT Hamburg Requirements:
    • PG 64 10,000 cycles @ 12.5 mm of maximum deformation
    • PG 70 15,000 cycles @ 12.5 mm of maximum deformation
    • PG 76 20,000 cycles @ 12.5 mm of maximum deformation


      “Akzo Nobel Apr. 9, 2006” is a mixture illustrating the invention and comprises:


      Toprez HM (tall oil derived resin ex Chusei)—33% by weight


      N-tallow propylene diamine—25% by weight


      Fischer Tropsch wax—42% by weight


In the test method compacted samples of asphalt mixtures are subjected to repeated wheel tracking cycles under water. Failure of the sample is shown by deformation (rutting). A deformation of 12.5 mm is taken as a sign of failure. The number of cycles to 12.5 mm deformation is a measure of the performance of the mixture. The tests clearly show that mixtures containing the additive package illustrative of the invention Akzo Nobel Apr. 9, 2006 survived more cycles before reaching the limit of 12.5 mm deformation.


Failure is often the result of stripping (detachment of asphalt from the aggregate) and while the test method does not measure stripping per se, stripping can be seen by the presence of uncoated surfaces of the large aggregates and by loss of aggregate fines and asphalt into the water. The comments noted in the Tables provide qualitative evidence that the treatment with Akzo Apr. 9, 2006 showed low stripping compared to untreated mixtures, or mixture containing conventional liquid antistripping agent.

Claims
  • 1. An asphalt formulation for the pavement of road surfaces, said formulation comprising a mixture of asphalt and aggregates, and an additive package distributed therein, said additive package comprising from about i) 10 to 60% by weight of a surfactant component, and ii) from about 20 to 90% of asphalt rheology modifying components.
  • 2. The asphalt formulation of claim 1 wherein the surfactant component comprises at least one surfactant selected from the group consisting of: (i) amines of the formula
  • 3. The asphalt formulation of claim 1 wherein said surfactant component comprises at least one amine and/or modified amine surfactant selected from the group consisting of ethoxylated tallow amines, fatty amines, fatty amine derivatives, tall oil amidoamines/imidazolines, bis hexamethylene triamine and higher oligomers, other alkyl amine surfactants with a hydrocarbon chain, saturated or unsaturated, consisting of 8 to 22 carbon atoms and mixtures combinations thereof.
  • 4. The asphalt formulation of claim 3 wherein said surfactant is selected from the group consisting of tallow diamine, ethoxylated tallow diamine, imidazoline made from tall oil fatty acids and mixture of ethyleneamines, hydrogenated tallow diamine, ethoxylated hydrogenated tallow propylene diamine, tallow dipropylene triamine, tallow tripropylene tetramine and their derivatives, ethoxylated tallow amines, fatty amines, fatty amine derivatives, tall oil amidoamines/imidazolines and mixtures and combinations thereof.
  • 5. The asphalt formulation of claim 1 wherein said asphalt rheology modifying component comprises i) at least one wax component, ii) optionally at least one non-asphalt soluble, non-meltable component, and/or iii) at least one resin component and mixtures and combinations thereof.
  • 6. The asphalt formulation of claim 5 wherein said asphalt rheology modifying component comprises i) a wax component, and said wax component is selected from the group consisting of waxes of vegetable, animal, mineral or petroleum origin.
  • 7. The asphalt formulation of claim 6 wherein said wax component is selected from the group consisting of carnuba wax, beeswax, montan wax from coal, Fischer Tropsch wax from coal, petroleum or gas origin, amide waxes, fatty acids and soaps; fatty alcohols, hydrogenated fats, fatty esters, and mixtures thereof.
  • 8. The asphalt formulation of claim 7 wherein said wax component is selected from the group consisting of paraffin wax, polyethylene wax, ethylene bis stearamide, stearyl amide, stearylstearamide; aluminum stearate, calcium stearate, fatty acids; fatty alcohols, hydrogenated fats, fatty esters and mixtures thereof.
  • 9. The asphalt formulation of claim 1 wherein said rheology modifying component is a non-asphalt soluble, non-meltable component.
  • 10. The asphalt formulation of claim 9 wherein said non-asphalt soluble, non-meltable component comprises carbon black, clay, organically modified clay, silica, fumed silica, lime, cellulose fiber, other fibers insoluble in asphalt, and mixtures and combinations thereof.
  • 11. The asphalt formulation of claim 1 wherein said rheology modifying component comprises a resin component, said resin component comprising tall oil pitch, pine tar pitch, tall oil rosins, pine rosins, gum rosins, chemically modified resins, maleated and fumarated rosins, resinous by-products from tall oil processing, chemically modified by-products from tall oil processing, resinous by-products from gum rosin processing, petroleum resins, phenolic resins, polyethylene, polypropylene, ethylvinylacetate, natural rubber, styrene butadiene rubber, polychloroprene, crumb rubber asphaltenes, uintahite, Trinidad Lake Asphalt, by-products from the deasphalting of oils, oxidised asphalts, ROSE bottoms-and mixtures thereof.
  • 12. The asphalt formulation of claim 11 wherein said resin component is selected from the group consisting of tall oil pitch, maleated tall oil pitch, rosin acids, tall oil heads and mixtures thereof.
  • 13. The asphalt formulation of claim 1 wherein said asphalt rheology modifying component comprises at least two of i) a wax component, ii) a non-asphalt soluble, non-meltable component, and/or iii) a resin component.
  • 14. The asphalt formulation of claim 1 wherein said asphalt rheology modifying component comprises i) at least one a wax component, and iii) at least one resin component.
  • 15. A bitumen or asphalt formulation for the pavement of road surfaces, said formulation comprising a mixture of bitumen and aggregates, and an additive package, said additive package comprising from about i) 10 to 60% by weight of a surfactant component, wherein said surfactant component is selected from the group consisting of N-tallowalkyl propylenediamine, ethoxylated tallow diamine, imidazoline made from tallow, hydrogenated tallow, or tall oil fatty acids and mixture of ethyleneamines, hydrogenated tallow diamine, ethoxylated hydrogenated tallow propylene diamine, tallow dipropylene triamine, tallow tripropylene tetramine and their derivatives, ethoxylated tallow amines, fatty amines, fatty amine derivatives, fatty amidoamines/imidazolines, the salts of any of the above amine derivatives with inorganic or organic acids, and mixtures and combinations thereof andii) from about 20 to 90% of an asphalt rheology modifying component, wherein said rheology modifying component comprises a) a wax component and b) a resin component, wherein said wax component is a Fischer Tropsch wax and said resin component is selected from the group consisting of tall oil pitch, maleated tall oil pitch, rosin acids, tall oil heads and mixtures thereof.
  • 16. The asphalt formulation of claim 1 wherein said additive package comprises 0.2 to 10% by weight based on the bitumen content of said formulation.
  • 17. The asphalt formulation of claim 15 wherein said rheology modifier comprises a Fischer-Tropsch wax having a congealing point from about 68 to about 105° C.
  • 18. The asphalt formulation of claim 16 wherein said additive package is admixed in form of granules, powder, flakes or pellets or in liquid form.
  • 19. A method of improving the moisture resistance properties of hot-mix asphalt containing aggregates, said method comprising adding to said asphalt an effective amount of an additive package comprising from about i) 10 to 60% by weight of an amine or modified amine surfactant, ii) from about 20 to 90% of an rheology modifying component, wherein said rheology modifying component comprises i) at least one wax component, ii) optionally one or more non-asphalt soluble, non-meltable components, iii) at least one resin component and mixtures and combinations thereof.
  • 20. The method of claim 19 wherein the surfactant component comprises at least one surfactant selected from the group consisting of: (i) amines of the formula
  • 21. The method of claim 20 wherein said surfactant is selected from the group consisting of tallow diamine, ethoxylated tallow propylene diamine, imidazoline made from tallow, hydrogenated tallow or tall oil fatty acids and mixture of ethyleneamines, hydrogenated tallow propylene diamine, ethoxylated hydrogenated tallow propylene diamine, tallow dipropylene triamine, tallow tripropylene tetramine and their derivatives, ethoxylated tallow amines, fatty amines, fatty amine derivatives, tall oil amidoamines/imidazolines and mixtures and combinations thereof, and said asphalt rheology modifying component comprises i) at least one wax component, ii) optionally a non-asphalt soluble, non-meltable component, iii) at least one resin component and mixtures and combinations thereof.
  • 22. The method of claim 21 said i) wax component is selected from the group consisting of carnuba wax, beeswax, montan wax from coal, Fischer Tropsch wax from coal, petroleum or gas origin, amide waxes, polymers of plastomer or elastomer character; asphaltic materials of high softening point; asphaltenes, other zero penetration asphalts, fatty acids and soaps; fatty alcohols, hydrogenated fats, fatty esters, and mixtures thereof, said ii) non-asphalt soluble, non-meltable component comprises carbon black, clay, organically modified clay, silica, fumed silica, lime, cellulose fiber, other fibers insoluble in asphalt, and mixtures and combinations thereof, and said iii) resin component comprising tall oil pitch, pine tar pitch, tall oil rosins, pine rosins, gum rosins, chemically modified resins, maleated and fumarated rosins, resinous by-products from tall oil processing, resinous by-products from gum rosin processing, petroleum resins, phenolic resins and mixtures thereof.
  • 23. The method of claim 22 wherein said asphalt rheology modifying component comprises at least two of i) a wax component, ii) optionally a non-asphalt soluble, non-meltable component, and iii) a resin component.
  • 24. The method of claim 22 wherein said asphalt rheology modifying component comprises i) a wax component, and iii) a resin component, wherein said wax component is a Fischer Tropsch wax and said resin component is selected from the group consisting of tall oil pitch, maleated tall oil pitch, rosin acids, tall oil heads and mixtures thereof.
  • 25. The method of claim 19 wherein an effective amount of said additive package comprises 0.5 to 10% by weight based on the bitumen content of said formulation.
  • 26. Road surface comprising the asphalt formulation of claim 1.
  • 27. The method of claim 19 wherein said asphalt and aggregates are mixed in a mixer, and wherein said additive package a) is blended into said asphalt before the aggregates are introduced to the mixer; or b) added to the aggregates, or portion of the aggregates before the asphalt is introduced to the mixer; or c) added to the mixer after the asphalt has been added to the aggregate in said mixer, or combinations of a)-c).
Priority Claims (1)
Number Date Country Kind
07114675 Aug 2007 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2008/059685 7/24/2008 WO 00 3/4/2010
Publishing Document Publishing Date Country Kind
WO2009/013328 1/29/2009 WO A
US Referenced Citations (110)
Number Name Date Kind
1014103 Wallbaum Jan 1912 A
1373661 Johansen Apr 1921 A
1384805 McSwiney Jul 1921 A
1542626 MacKay Jun 1925 A
1640544 Headley Aug 1927 A
1674523 Sadtler Jun 1928 A
1778760 Hay Oct 1930 A
1815089 Alsdorf Jul 1931 A
1834552 Sadtler et al. Dec 1931 A
1842139 Alsdorf Jan 1932 A
1887518 Sadtler Nov 1932 A
1888295 Smith Nov 1932 A
1932648 Taylor Oct 1933 A
1948881 Kirschbaum Feb 1934 A
1988336 Roediger Jan 1935 A
1988879 Steininger Jan 1935 A
2023068 Flood Dec 1935 A
2025945 Forrest Dec 1935 A
2046902 Kirschbaum Jul 1936 A
2087401 Fair Jul 1937 A
2191295 Dohse Feb 1940 A
2243519 Barth May 1941 A
2283192 Ditto May 1942 A
2317959 Johnson et al. Apr 1943 A
2340449 Barwell Feb 1944 A
2374732 Colburn May 1945 A
2427488 Anderson et al. Sep 1947 A
2461971 Fischer Feb 1949 A
2550481 Jense Apr 1951 A
2582823 Fowkes Jan 1952 A
2766132 Blair et al. Oct 1956 A
2861787 Csanyi Nov 1958 A
2888418 Albanese et al. May 1959 A
2901369 Pordes Aug 1959 A
2917395 Csanyi Dec 1959 A
2919204 Dybalski et al. Dec 1959 A
3259513 Dickson et al. Jul 1966 A
3284388 Stierli Nov 1966 A
3855167 Bowman Dec 1974 A
3904428 McConnaughay Sep 1975 A
4197209 Zinke et al. Apr 1980 A
4198177 Brett et al. Apr 1980 A
4234346 Latta, Jr. et al. Nov 1980 A
4244747 Leonard, Jr. et al. Jan 1981 A
4348237 Ruckel Sep 1982 A
4592507 Benedict Jun 1986 A
4692350 Clarke et al. Sep 1987 A
4724003 Treybig et al. Feb 1988 A
4747880 Berrido et al. May 1988 A
4836857 Hopkins Jun 1989 A
5109041 Matsuno et al. Apr 1992 A
5539029 Burris Jul 1996 A
5622554 Krogh et al. Apr 1997 A
5721296 Mizunuma et al. Feb 1998 A
5743950 Hendriks et al. Apr 1998 A
5772749 Schilling et al. Jun 1998 A
5788755 Salminen Aug 1998 A
5827360 Salminen Oct 1998 A
5925233 Miller et al. Jul 1999 A
6136898 Loza et al. Oct 2000 A
6197837 Hill et al. Mar 2001 B1
6451885 Dresin et al. Sep 2002 B1
6494944 Wates et al. Dec 2002 B1
6559206 Durand et al. May 2003 B1
6576050 Samanos Jun 2003 B1
6588974 Hildebrand et al. Jul 2003 B2
6793964 Hoad Sep 2004 B2
6846354 Larsen et al. Jan 2005 B2
6913416 Hildebrand et al. Jul 2005 B2
7041165 Malot May 2006 B2
7114843 Romier et al. Oct 2006 B2
7114875 Romier et al. Oct 2006 B2
7160943 Burris et al. Jan 2007 B2
7297204 Crews et al. Nov 2007 B2
7309390 Falkiewicz Dec 2007 B2
7732511 Barreto et al. Jun 2010 B2
7815725 Reinke et al. Oct 2010 B2
7968627 Reinke et al. Jun 2011 B2
7981466 Reinke et al. Jul 2011 B2
7981952 Reinke et al. Jul 2011 B2
8034172 Naidoo et al. Oct 2011 B2
20020170464 Larsen et al. Nov 2002 A1
20040014845 Takamura et al. Jan 2004 A1
20040223808 Romier et al. Nov 2004 A1
20040244646 Larsen et al. Dec 2004 A1
20050018530 Romier et al. Jan 2005 A1
20050101701 Stuart, Jr. et al. May 2005 A1
20050101702 Stuart, Jr. et al. May 2005 A1
20050284333 Falkiewicz Dec 2005 A1
20060041101 Heinrichs et al. Feb 2006 A1
20060086288 Bourrel et al. Apr 2006 A1
20060169173 Dupuis et al. Aug 2006 A1
20060236614 Antoine et al. Oct 2006 A1
20060240185 Antoine et al. Oct 2006 A1
20060288907 Fox Dec 2006 A1
20070039520 Crews et al. Feb 2007 A1
20070060676 Reinke Mar 2007 A1
20070082983 Crews et al. Apr 2007 A1
20070191514 Reinke et al. Aug 2007 A1
20070199476 Bobee et al. Aug 2007 A1
20090088499 Barreto et al. Apr 2009 A1
20090203815 Barreto et al. Aug 2009 A1
20100055304 Reinke et al. Mar 2010 A1
20100227954 Naidoo et al. Sep 2010 A1
20100319577 Naidoo et al. Dec 2010 A1
20110017096 Reinke Jan 2011 A1
20110020537 Reinke Jan 2011 A1
20110021673 Reinke Jan 2011 A1
20110152410 Reinke Jun 2011 A1
20110214589 Reinke Sep 2011 A1
Foreign Referenced Citations (38)
Number Date Country
433003 Feb 1973 AU
2006231250 Oct 2006 AU
10 2007 027 306 Dec 2008 DE
0568021 Nov 1993 EP
1 247 891 Oct 2002 EP
1398351 Mar 2004 EP
1469038 Oct 2004 EP
429548 May 1935 GB
783 015 Sep 1957 GB
783015 Sep 1957 GB
2234512 Aug 1989 GB
2234512 Feb 1991 GB
02-228363 Sep 1990 JP
2002332606 Nov 2002 JP
2006132131 May 2006 JP
2149848 May 2000 RU
2186044 Jul 2002 RU
2196750 Jan 2003 RU
806636 Feb 1981 SU
834041 May 1981 SU
9522661 Aug 1995 WO
99-57199 Nov 1999 WO
0116233 Mar 2001 WO
WO 0116233 Mar 2001 WO
0162852 Aug 2001 WO
0216499 Feb 2002 WO
02053645 Jul 2002 WO
02103116 Dec 2002 WO
2005081775 Sep 2005 WO
2006106222 Oct 2006 WO
2007032915 Mar 2007 WO
WO 2007054503 May 2007 WO
2007112335 Oct 2007 WO
WO 2007112335 Oct 2007 WO
2008148974 Dec 2008 WO
WO 2009013328 Jan 2009 WO
2009033060 Mar 2009 WO
WO 2009062925 May 2009 WO
Non-Patent Literature Citations (76)
Entry
International Search Report of corresponding PCT Application No. PCT/EP2008/059685, dated Dec. 2, 2008.
Akzo Nobel Technical Bulletin, Adhesion Promoters, 1999.
Amdor 9 bulletin (in Russian).
Translation of Amdor 9 bulletin and application.
Boldyrev et al., Presentation at a seminar at MADI, a technical university in Moscow, Apr. 19-22, 2005.
Translation of Boldyrev et al., Presentation at a seminar at MADI, Apr. 19-22, 2005.
Chiman et al., “Aspectos de Influencia de Aditivos no Polimetricos Sobre Caracteristicas de Asfaltos,” a paper presented at CILA conference, 2005.
Translation of Chiman et al., “Aspectos de Influencia de Aditivos no Polimetricos Sobre Caracteristicas de Asfaltos,” a paper presented at CILA conference, 2005.
Declaration of Jan Alboszta with attachments.
Declaration of Gerald H. Reinke.
DIN 1995, Requirements for the binders, 1989.
Excerpt from Akzo Chemie brochure entitled “Armour Hess Products: Cationic Road Technology,” 1970.
Russian State Standard GOST 9128-97 “Asphaltic concrete mixtures for roads and aerodromes and asphaltic concrete”, developed in 1998, brought into effect Jan. 1, 1999.
Kosmin et al., “Compressibility of Activated Mineral Powders,” 1991.
Redikote E-6 product bulletin, 2003.
Redikote E-6 MSDS, 2003.
American Association of State Highway and Transportation Officials, “Standard Method of Test for Preparing and Determining the Density of Hot-Mix Asphalt . . . ,” 2005.
American Association of State Highway and Transportation Officials, “Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer,” 2005.
Wasiuddin et al., “Effect of Antistrip Additives on Surface Free Energy Characteristics of Asphalt Binders for Moisture-Induced Damage Potential,” Apr. 18, 2006, Abstract.
Shenoy, “Effect of Using Dispersants During the Mixing of Aggregates with Polymer-Modified Asphalts,” J. of Dispersion Sci. and Tech., 21(5), 589-604 (2000).
English Machine Translation of DE 10 2007 027 306 A1.
“Low Energy Asphalt (LEA) with the Performance of Hot-Mix Asphalt (HMA)”, European Roads Review, Special Issue, BGRA, Feb. 2004 (pp. 1-11).
Malick, R.BN, Bradley, J.E., Bradbury, R.L., An Evaluation of Heated Reclaimed Asphalt Pavement (RAP) Material and Wax Modified Asphalt for Use in Recycled Hot Mix Asphalt (HMA), 2007.
Modern Asphalts, “A safer future through designing for maintenance,” Autumn 2006, Issue No. 18, 4 pgs.
Naidoo, P., “Fischer-Tropsch Hard Wax Chemistry in Warm Mix Asphalt Applications,” Petersen Asphalt Research Conference, Abstract and Presentation Slides, Jun. 20-22, 2005.
Naidoo, P., Sasobit in Warm Mix Asphalt Applications 9 Years of Global Successes, World Asphalt Conference Presentation Slides, Mar. 14, 2006.
Paez, R., “Production of Modifier Asphalt Additives in Equator,” 2005 International Symposium on Pavement Recycling, San Paulo, Brazil, Mar. 14-16, 2005, pp. 1-11.
Petersen, J. Claine, “Relationships Between Asphalt Chemical Composition and Performance-Related Properties,” ISSA Meeting, Phoenix Arizona, Jan. 23-27, 1982, 10th page.
Progress Report 2006, The German Bitumen Forum, Jun. 2006, 36 pgs.
Prowell, Brian D., et al., “Field Performance of Warm Mix Asphalt at the NCAT Test Track,” Paper No. 07-2514, TRB 2007 Annual Meeting CD-ROM, 15 pgs.
Sasobit Product Information 124, The Bitumen Additive for Highly Stable Easily Compactible Asphalts, 9 pgs.
Sasobit Product Information, Roads and Trials with Sasobit, Oct. 2005, 7 pgs.
Schwartz, Anthony M., et al., Surface Active Agents and Detergents, vol. 2, 1977, pp. 673-677.
Tarrer, A.R., et al., “The Effect of the Physical and Chemical Characteristics of the Aggregate on Bonding,” Strategic Highway Research Program, Feb. 1991, 31 pgs.
Transportation Research Board of the National Academies, 86th Annual Meeting agenda Jan. 21-25, 2007, 37 pgs.
Wasiuddin, Nazimuddin M., et al., “A Comparative Laboratory Study of Sasobit and Aspha-Min in Warm Mix Asphalt,” TRB 2007 Annual Meeting CD-ROM, submitted Aug. 1, 2006, pp. 1-12.
International Search Report for related Application No. PCT/EP2008/065278; Mar. 18, 2009.
European Search Report for related Application No. PCT/EP2008/065278; Mar. 18, 2009.
AKZO International Highway Chemical Newsletter, Chemical Division, Spring 1989, pp. 1-9.
Anderson, David A., et al, “The Effect of Antistrip Additives on the Properties of Asphalt Cement,” Asphalt Paving Technology 1982, Proceedings Association of Asphalt Paving Technologists Technical Sessions, Kansas City, Missouri, vol. 51, Feb. 22, 23 & 24, 1982, pp. 298-317.
Barreto, “Warm Asphalt Mixes Containing Dispersed Water,” ARKEMA-CECA France, Abstract No. 658, 2006, 7 pgs.
Bonola et al., “Technologies for the Production of Asphalt Mixes with Low Temperature Processes,” World Road Association Italian National Committee, Dec. 2005, 31 pgs.
Butz, Thorsten, et al., “Modification of Road Bitumens with the Fischer-Tropsch Paraffin Sasobit,” Journal of Applied Asphalt Binder Technology, vol. 1, Issue 2, Oct. 2001, pp. 70-86.
Caillot et al., “Warm Mix Asphalts and Cold Recycling for Controlled Use of Effective Road Techniques Reducing Nuisances,” Technical Department for Transport, Roads, and Bridges, Engineering for Road Safety, Ministry for Transport, Infrastructure, Tourism and the Sea, France, 12 pgs.
Ceca Arkema Group, “Green Road Formulation—Warm Asphalt Mix. 2007 Innovation: helping to lower our planet's temperature,” www.siliporite.com, accessed Nov. 21, 2007, 1 pg.
Cervarich, “Cooling Down the Mix” NAPA Explores New “Warm Mix Asphalt” Technologies Developed in Europe, Hot Mix Asphalt Technology, Mar./Apr. 2003, pp. 13-16.
Choi, Y., Warm Asphalt Review, Austroads Report, Arrb Research, RETT220B, Publication No. AP-T91/07, Nov. 2007.
D'Angelo, John, et al., “Warm-Mix Asphalt: European Practice,” International Technology Scanning Program, Feb. 2008, 62 pgs.
Damm, K., Abraham, J., Butz, T., Hildebrand, G., Riebesehl, G., “Asphalt Flow Improvers as Intelligent Fillers for Hot Asphalts—A New Chapter in Asphalt Technology,” Journal of Applied Asphalt Binder, vol. 2, Issue 1, p. 36-70, Apr. 2002.
Declaration of Patrick Lavin, Jun. 6, 2011.
Diefenderfer et al., “Research Report: Installation of Warm Mix Asphalt Projects in Virginia,” Virginia Transportation Research Council, Apr. 2007, 34 pgs.
Florida Department of Transporation, Standard Specifications for Road and Bridge Construction, 2007, pp. 244-252 and 772-784.
Gaudefroy, Vincent, et al., “Laboratory Investigations on the Mechanical Performances of Foamed Bitumen Mixes Using Half-Warm Aggregates,” TRB 2007 Annual Meeting CD-ROM, submitted Aug. 1, 2006, 20 pgs.
Giannattasio, Allessandro, “To improve the quality of road bitumen,” Reprint from the Italian Building and Construction Issue No. 69/1998-19th Year; pp. 2, 3, 7.
Gibson, Nelson, Modified Asphalt Research Activities at FHWA's Turner-Fairbank Highway Research Center (TFHRC), Pavement Materials and Construction Team, AMAP Conference, Feb. 2005, Orlando, FL, 18 pgs.
Goh et al., “Laboratory Evaluation and Pavement Design for Warm Mix Asphalt,” Proceedings of the 2007 Mid-Continent Transportation Research Symposium, Ames, IA, Aug. 2007, 11 pgs.
Gudimettla, Jagan M., et al., “Workability of Hot Mix Asphalt,” National Center for Asphalt Technology, Apr. 2003, 66 pgs.
Hurley et al., “Evaluation of Aspha-Min™ Zeolite for Use in Warm Mix Asphalt,” National Center for Asphalt Technology Report, Auburn University, 30 pgs., Jun. 2005.
Hurley et al., “Evaluation of Evotherm™ for Use in Warm Mix Asphalt,” National Center for Asphalt Technology Report, Auburn University, Jun. 2006, 49 pgs.
Hurley et al., “Evaluation of Potential Processes for Use in Warm Mix Asphalt,” National Center for Asphalt Technology, 2006, 46 pgs.
Hurley, Graham C., et al., “Evaluation of Sasobit™ for Use in Warm Mix Asphalt,” National Center for Asphalt Technology Report, Auburn University, Jun. 2005, 32 pgs.
International Search Report issued in PCT/US/2006/33907, mailed Sep. 24, 2007, 4 pgs.
International Search Report issued in PCT/US2009/052830, mailed Sep. 16, 2010, 2 pages.
International Search Report issued in PCT/US2008/075452, mailed Feb. 13, 2009, 3 pages.
International Search Report for PCT/US2009/034742, mailed May 26, 2009, 4 pages.
Iterchimica Company; “Abstract of the 2005 production categories and applications,” Iterchimica Brochure, p. 2 (2005).
James, A.D., et al., “Adhesion Agents for Use in Hot Mixes and Cut-Back Bituments,” presented at the 3rd IRF Middle East Regional Meeting, Riyadh, Saudi Arabia, 1988, 10 pgs.
Jenkins et al., “Half-Warm Foamed Bitumen Treatment, A New Process,” 7th Conference on Asphalt Pavements for Southern Africa, 1999, 7 pgs.
Jones, “Warm Mix Asphalt Pavements: Technology of the Future?” Asphalt, Fall 2004, pp. 8-11.
Kanitpong, Kunnawee, et al., “Laboratory Study on Warm Mix Asphalt Additives,” Paper No. 07-1364, TRB 2007 Annual Meeting CD-ROM, 20 pgs.
Koenders et al., “Innovative process in asphalt production and application to obtain lower operating temperatures,” 2nd Eurasphalt & Eurobitume Congress Barcelona 2000, Book II, pp. 830-840.
Kristjansdottir, Olof, “Warm Mix Asphalt for Cold Weather Paving,” a thesis, University of Washington, 2006, 127 pgs.
Kristjansdottir, Olof, et al., “Assessing the Potential for Warm Mix Asphalt Technology Adoption,” TRB 2007 Annual Meeting CD-ROM, 19 pgs.
LaPointe, Dennis G., E-mail correspondence, May 2011, 4 pgs.
Lavin, Patrick, “Asphalt Pavements: A practical guide to design, production and maintenance for engineers and architects,” 2003, pp. 347.
Logaraj, Sundaram, et al., “Surface-active bitumen additive for warm mix asphalt with adhesion promoting properties,” 2009, 12 pgs.
Related Publications (1)
Number Date Country
20100199885 A1 Aug 2010 US
Provisional Applications (1)
Number Date Country
60951995 Jul 2007 US