The present invention generally relates to a novel combination of surfactants and asphalt rheology modifiers that influence the adhesion and cohesion properties of asphalt to significantly improve the moisture resistance properties of hot-mixes containing difficult aggregates.
Asphalt mixes are widely used in road construction and maintenance and majority of asphalt mixes that are used currently are produced by the hot method which is generally known as hot-mix or HMA. This is also known as asphalt concrete which consists of asphalt binder and mineral aggregates. The aggregates could be natural aggregates or processed. Normally processed aggregates are used which have been quarried, crushed, separated into distinct size fractions, washed or otherwise processed to achieve certain performance characteristics of the finished HMA. The aggregates are usually a mixture of various sizes to give desired properties to the asphalt mix as specified in the mix design.
The strength and durability of the asphalt pavements depends on various factors such as the properties of the materials used, the interaction of various materials, the mix-design and construction practices. It is important to attain proper coating of the aggregate with asphalt with optimum binder (asphalt) film thickness and good adhesion of asphalt onto the aggregate, and good cohesive strength of the asphalt to produce a mix that will have good performance during the lifetime of the pavement. The pavements are designed to avoid the various distress types such as permanent deformation, fatigue cracking, low temperature cracking and moisture damage.
Moisture damage is also of great concern. Moisture damage in asphalt mixes can occur by two major pathways. First water will displace asphalt from the aggregate surface especially the ones containing higher amounts of silica since water has a higher affinity for the aggregate surface compared to asphalt and there is lack of chemical bonding of asphalt to the surface. This is known as stripping. Adhesion is the formation of chemical bond between asphalt and the aggregate. Secondly water over a period of time under repeated load can get inside asphalt and reduce the cohesive strength of asphalt. The results of stripping and loss of cohesive strength of the asphalt on the properties of the mix can be conveniently evaluated by the Hamburg wheel tracking test which measures deformation of the mix by a repeated load under water.
It is well known that adhesion promoters which are surface active molecules known as liquid anti-stripping additives or hydrated lime are being used in hot-mix to provide protection against water damage. This solved the problems of water damage with many conventional mixes, but some mixes are unresponsive to conventional anti-stripping additive treatments. It is also well known that the rheology of asphalt can be modified with additives of various types, but these rheology modifying treatments when used alone are not able to solve all problems of water damage.
The invention is concerned with the technical problem of providing an improved bitumen or asphalt, in particular for the production of road surfaces. More specifically, the present inventors have found that a novel combination of surfactants and asphalt rheology modifiers can influence the adhesion and cohesion properties of asphalt to significantly improve the resistance of hot-mixes to moisture damage. This results in superior asphalt or a mixture of bitumen (asphalt) with aggregates which is more resistant to water damage. This is the first instance that a unique combination of surfactants and rheology modifiers have been used as a single package, which demonstrate much improved performance compared to conventional anti-stripping additive treatment.
The present invention relates to an additive package for asphalt formulations that comprises a novel combination of a surfactant component and a rheology modifier component. Modifiers which modify the rheology (viscosity) of the asphalt, in particular increase the viscosity or “cohesive strength” of asphalt at the temperature of the road. When added to asphalt, the additive package of the invention improves the affinity and chemical bonding of the asphalt to the aggregate surface by increasing the aggregate-asphalt bond's resistance to water, as well as improving the cohesive strength of the asphalt.
The present invention relates to a bitumen or asphalt formulation for the pavement of road surfaces, said formulation comprising a mixture of bitumen and aggregates, and an additive package distributed therein.
The additive package of the invention comprises a combination of surface active components and rheology modifying components. The surfactant component preferably comprises at least one an amine or modified amine surfactant, while the rheology modifying component comprises at least one of i) a wax component, ii) a non-asphalt soluble, non-meltable component, and iii) a resin component.
The additive package of the invention positively influences both the adhesion and cohesion properties of asphalt, thereby significantly improving the moisture resistance properties of hot-mixes. The use of the combination of rheology modifiers and surfactant did not lead to problems with compaction of the mixes-compaction was readily achieved in the lab to reach the specified design densities.
Any asphalt mixture known to the skilled artisan can be employed in the context of the present invention. For example, standard asphalt wearing course typically contains about 3 to 8% of bitumen, and so-called stone mastic asphalt, which contains about 6.5 to 8.5% of bitumen, can both be readily employed. Since the effect claimed is improvement of binder adhesion and cohesion to minimize moisture damage, the concept is applicable to any paving grade asphalts such as the various grades of PG (Performance Graded) asphalts. This concept can also be extended to roofing applications where improvement in adhesion with mineral fillers and surface aggregates as well as improvement in cohesion of asphalt to extend the lifetime of the application.
As previously discussed, the additive package of the invention comprises from about 10 to 60% by weight of an amine or modified amine surfactant, and from about 20 to 90% of a rheology modifying component or components. The surfactant component preferably comprises at least one amine or modified amine surfactant, while the rheology modifying component comprises at least one of i) a wax component, ii) a non-asphalt soluble, non-meltable component, and iii) a resin component. With certain difficult asphalt mixes, mixtures of two or more rheology modifying components, which may fall into any of the groups i)-iii), can be employed. In another embodiment, the additive package of the invention comprises 20 to 40% by weight of an amine or modified amine surfactant, and from about 30 to 80% of a rheology modifying component. If the rheology modifying component comprises two rheology modifiers from separate classes i) and iii) in accordance with the invention, it is preferred that they are present in a ratio of from 30:70 to 70:30; more preferably 40:60 to 60:40, and in another embodiment, in approximately 50:50 proportions.
A more detailed description of each of the additive package and each of the component materials and properties thereof follows.
The Surfactant Component
The surfactant component of the additive package of the invention comprises at least one amine and/or modified amine surfactant or mixtures thereof. In one example, the surfactant component is selected from amines, diamines, polyamines, ethoxylated amines, ethoxylated alkyl diamines, ethoxylated alkyl polyamines, amido amines, amidopolyamines, imidazolines, and/or any of their corresponding organic and/or inorganic salts, and mixtures and combinations of same. Some examples of the amine and/or modified amine surfactants employable in the context of the invention are generally depicted by the following general formulae:
I. Amines
wherein R is a saturated or unsaturated, substituted or unsubstituted, optionally branched or cyclic, hydrocarbon radical with 8-24 carbon atoms, for example derived from tallow fatty acids, or tall oil fatty acids. R1 and R2 can be the same or different and are selected from hydrogen or hydrocarbon radical with 1-24 carbon atoms. R1 and R2 are preferably selected from hydrogen or methyl. A representative example is hydrogenated tallowamine (CAS No. 61788-45-2)
II. Diamines and Polyamines
R—(NH—R3)x—NH2
where R has the same meaning as in I., above, and R3 represents a linear or branched hydrocarbon radical with 1-6 carbon atoms. In one embodiment R3 is propylene radical (—CH2CH2CH2-) and x is a small integer of less than or equal to 6. A representative example, where R=tallow, x=1 and R3=propylene, is N-tallow propylenediamine (CAS No. 61791-55-7)
III. Ethoxylated or Propoxylated Amines
where R has the same meaning as in I., above; R4 is methyl or hydrogen; and x and y are independently selected from 0, 1 or 2. In one embodiment, x=y=1. A representative example, where R=hydrogenated tallow alkyl, x=y=1 and R4 is H, is N, N diethanol, hydrogenated tallowamine (CAS No. 90367-28-5)
IV. Ethoxylated or Propoxylated Alkyl Diamines and Ethoxylated Alkyl Polyamines e.g.
wherein R, R3 and R4 have the same meaning as in I, II. and III, above; x, y, and z are independently selected from 0, 1 or 2 and x+y+z<or =5. In one embodiment, x=y=z=1. A representative example, where R=hydrogenated tallowalkyl, x=y=z=1, and R<3>=propylene and R<4> is H, is N,N,N Tris(2-hydroxyethyl)-N-hydrogenated tallow-1,3-diaminopropane (CAS No. 90367-25-2). The ethoxylated or propoxylated alkyl diamines and ethoxylated alkyl polyamines may also have the following formula
wherein R, R3 and R4 have the same meaning as above; w=1-3; x, y, and z are independently selected from 0, 1 or 2 and x+y+z<w+4.
V. Alkyl Amido amines
wherein R, R1, R2 and R3 have the same meaning as in I-III., above. A representative example where R1═R2=methyl and R3=propylene and R═C8-C22 alkyl has the CAS No. 84082-43-9.
VI. Amidopolyamines and Imidazolines E.G.
RCO—(NH—R3)x—NH2
wherein R and R3 have the same meaning as in example I., above, and x=an integer of from 1 to 10. This group includes the reaction product of fatty acids or esters with complex mixtures of polyethylenepolyamines and related compounds which may contain also cyclic and substituted nitrogens obtained as by-products in the manufacture of diethylene triamine and ethylene diamine. Representative compounds have the CAS Nos 402591-95-1, 68910-93-0, 103213-06-3, 95-38-5.
The products listed above may be present in the mixtures described in the invention as their salts or organic or inorganic acids including but not limited to the salts of long chain fatty acids, e.g. stearic acid, salts of phosphoric acids, or substituted phosphoric acids, acetic acid, naphthenic acids, rosin acids etc.
Specific surfactants useful in the additive package of the invention include, but are not limited to ethoxylated tallow amines, fatty amines, fatty amine derivatives, tall oil amidoamines/imidazolines, bis hexamethylene triamine and higher oligomers of hexmethylediamine, other alkyl amine surfactants with a hydrocarbon chain consisting of 8 to 22 carbon atoms and mixtures combinations thereof. Specific examples of such surfactants include, but are not limited to tallow n-propylene diamine, tris-ethoxylated tallow N-propylene diamine, Redicote C-450, a mixture of imidazolines and amidopolyethylenepolyamines, Wetfix 312—a mixture of imidazolines and amidoamines available from Akzo Nobel Surface Chemistry LLC, Chicago, Ill. The surfactant component can also include hydrogenated tallow propylene diamine, ethoxylated hydrogenated tallow propylene diamine, tallow dipropylene triamine, tallow tripropylene tetramine and their derivatives, and amides resulting from the condensation of fatty acids with dimethylaminopropylamine.
Rheology Modifying Component
The rheology modifying component of the additive package of the invention comprises i) at least one wax component, ii) optionally a non-asphalt soluble, non-meltable component, iii) at least one resin component and mixtures and combinations thereof.
i) Wax Component
Wax modifiers that can be usefully employed in the context of the invention include, but are not limited to waxes of vegetable (e.g. carnuba wax), animal (e.g beeswax) mineral (e.g. Montan™ wax from coal, Fischer Tropsch wax from coal) or petroleum (e.g. paraffin wax, polyethylene wax, Fischer-Tropsch wax from gas) origin including oxidised waxes; amide waxes (e.g. ethylene bis stearamide, stearyl amide, stearylstearamide); fatty acids and soaps of waxy nature (e.g aluminum stearate, calcium stearate, fatty acids); other fatty materials of waxy nature (fatty alcohols, hydrogenated fats, fatty esters etc) with the ability to stiffen asphalt, and the like. The above products are basically soluble in the asphalt at the temperatures of the hot mix, to make a homogeneous binder, and/or will melt at the temperature of the mix and the ingredients will disperse/dissolve into the mixture. The wax and resin ingredients will generally act to improve cohesion properties of the asphalt, while the adhesion promoter will improve the adhesion of the asphalt to the aggregate. Together the ingredients provide improved resistance to water damage.
In one embodiment, the invention preferably employs a Fischer Tropsch Wax derived from coal or natural gas or any petroleum feedstock. The process entails the gasification of the above feedstock by partial oxidation to produce carbon monoxide under high temperature and pressure and reaction of the resultant carbon monoxide with hydrogen under high temperature and pressure in the presence of a suitable catalyst (such as iron compound or cobalt compound) for example as in the case of the processes currently employed by Shell and Sasol. The congealing point of the wax is between 68° C. and 120° C. with a Brookfield viscosity at 135° C. in the range of 8 to 20 cPs; in one embodiment, the congealing point of the wax is between 80° C. and 120° C.; and in another embodiment, the congealing point of the wax is between 68° C. and 105° C.
ii) Non-Asphalt Soluble, Non-Meltable Component
A second type of rheology modifier employable as the rheology modifying component of the invention are the so-called non-asphalt soluble, non-meltable modifiers. Such additives, which are also employed to increase the viscosity of the asphalt, never melt but can be dispersed into the asphalt phase where they increase the viscosity. Examples include, but are not limited to carbon black, certain clays, possibly organically modified, silica e.g fumed silica, lime, cellulose fiber and other fibers insoluble in asphalt, and the like.
iii) Resin Component
A third type of rheology modifying component comprises resins of vegetable (tall oil pitch, pine tar pitch, tall oil rosins, rosin acids, pine rosins, gum rosins including chemically modified resins like maleated and fumarated rosins and resinous by-products from tall oil processing or the processing of gum rosins.) or petroleum (petroleum resins, phenolic resins). In particular resins having a prop melt point>60° F. and a Penetration <50 at 25° C., for example Tall Oil pitch or modified tall oil pitches containing long chain and tricyclic organic acids and sterols, are useful. The tall oil resin based modifiers may also include non-resinous fractions from distillation of crude tall oil such as fatty acids, tall oil heads, and may also include chemically modified version of these fractions as a result of maleation and fumarization. Preferred rheology modifiers of this class include, but are not limited to tall oil pitch, maleated tall oil pitch, rosin acids, tall oil heads. Polymers of plastomer (polyethylene, polypropylene, ethylvinylacetate) or elastomer (natural rubber, styrene butadiene rubber, polychlorprene, crumb rubber from reclaimed tires etc) character; asphaltic materials of high softening point (e.g. asphaltenes, Gilsonite™, Trinidad Lake Asphalt, by-products from the deasphalting of oils, oxidised asphalts etc); asphaltenes such as ROSE bottoms (Residuum Oil Supercritical Extraction) and other zero penetration asphalts may also be employed either alone or in combination.
In broader terms the invention contemplates a combination of surface active agents with one or more asphalt rheology modifiers which might include Fischer Tropsch wax, other types of wax, polymers, carbon black, Gilsonite, or tall oil based modifiers, the key feature being that these types of ingredients have been combined into a single product.
The additive package of the invention can be blended into the asphalt before the asphalt is introduced to the aggregate in the hot-mix plant, it can be added to the aggregate, or a portion of the aggregate, before asphalt is added to the mixer or it can be added to the mixer in the hot-mix plant after asphalt has been added to the aggregate. It is preferably added into the mixer such as the drum mixer at the hot-mix plant. The dosage level of the additive package by the weight of the asphalt is in a range from 0.2 to 10% by weight, preferably in the range from 0.5 to 10% by weight, more preferably in the range from 0.5 to 6% by weight, and further preferably about 1 to 3% by weight, based on asphalt.
The additive package of the invention has the following advantages over current technologies:
The invention will now be illustrated by the following non-limiting examples. All tests were performed in accordance with the Tex-242-F, Hamburg Wheel Tracking test procedure issued by the Texas Department of Transportation.
Dallas APAC R&D Hamburg Test Results
Mix Composition: Ty D
TxDOT Hamburg Requirements:
Beaumont APAC R&D Hamburg Test Results
Mix Composition: Ty D
TxDOT Hamburg Requirements:
In the test method compacted samples of asphalt mixtures are subjected to repeated wheel tracking cycles under water. Failure of the sample is shown by deformation (rutting). A deformation of 12.5 mm is taken as a sign of failure. The number of cycles to 12.5 mm deformation is a measure of the performance of the mixture. The tests clearly show that mixtures containing the additive package illustrative of the invention Akzo Nobel Apr. 9, 2006 survived more cycles before reaching the limit of 12.5 mm deformation.
Failure is often the result of stripping (detachment of asphalt from the aggregate) and while the test method does not measure stripping per se, stripping can be seen by the presence of uncoated surfaces of the large aggregates and by loss of aggregate fines and asphalt into the water. The comments noted in the Tables provide qualitative evidence that the treatment with Akzo Apr. 9, 2006 showed low stripping compared to untreated mixtures, or mixture containing conventional liquid antistripping agent.
Number | Date | Country | Kind |
---|---|---|---|
07114675 | Aug 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/059685 | 7/24/2008 | WO | 00 | 3/4/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/013328 | 1/29/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1014103 | Wallbaum | Jan 1912 | A |
1373661 | Johansen | Apr 1921 | A |
1384805 | McSwiney | Jul 1921 | A |
1542626 | MacKay | Jun 1925 | A |
1640544 | Headley | Aug 1927 | A |
1674523 | Sadtler | Jun 1928 | A |
1778760 | Hay | Oct 1930 | A |
1815089 | Alsdorf | Jul 1931 | A |
1834552 | Sadtler et al. | Dec 1931 | A |
1842139 | Alsdorf | Jan 1932 | A |
1887518 | Sadtler | Nov 1932 | A |
1888295 | Smith | Nov 1932 | A |
1932648 | Taylor | Oct 1933 | A |
1948881 | Kirschbaum | Feb 1934 | A |
1988336 | Roediger | Jan 1935 | A |
1988879 | Steininger | Jan 1935 | A |
2023068 | Flood | Dec 1935 | A |
2025945 | Forrest | Dec 1935 | A |
2046902 | Kirschbaum | Jul 1936 | A |
2087401 | Fair | Jul 1937 | A |
2191295 | Dohse | Feb 1940 | A |
2243519 | Barth | May 1941 | A |
2283192 | Ditto | May 1942 | A |
2317959 | Johnson et al. | Apr 1943 | A |
2340449 | Barwell | Feb 1944 | A |
2374732 | Colburn | May 1945 | A |
2427488 | Anderson et al. | Sep 1947 | A |
2461971 | Fischer | Feb 1949 | A |
2550481 | Jense | Apr 1951 | A |
2582823 | Fowkes | Jan 1952 | A |
2766132 | Blair et al. | Oct 1956 | A |
2861787 | Csanyi | Nov 1958 | A |
2888418 | Albanese et al. | May 1959 | A |
2901369 | Pordes | Aug 1959 | A |
2917395 | Csanyi | Dec 1959 | A |
2919204 | Dybalski et al. | Dec 1959 | A |
3259513 | Dickson et al. | Jul 1966 | A |
3284388 | Stierli | Nov 1966 | A |
3855167 | Bowman | Dec 1974 | A |
3904428 | McConnaughay | Sep 1975 | A |
4197209 | Zinke et al. | Apr 1980 | A |
4198177 | Brett et al. | Apr 1980 | A |
4234346 | Latta, Jr. et al. | Nov 1980 | A |
4244747 | Leonard, Jr. et al. | Jan 1981 | A |
4348237 | Ruckel | Sep 1982 | A |
4592507 | Benedict | Jun 1986 | A |
4692350 | Clarke et al. | Sep 1987 | A |
4724003 | Treybig et al. | Feb 1988 | A |
4747880 | Berrido et al. | May 1988 | A |
4836857 | Hopkins | Jun 1989 | A |
5109041 | Matsuno et al. | Apr 1992 | A |
5539029 | Burris | Jul 1996 | A |
5622554 | Krogh et al. | Apr 1997 | A |
5721296 | Mizunuma et al. | Feb 1998 | A |
5743950 | Hendriks et al. | Apr 1998 | A |
5772749 | Schilling et al. | Jun 1998 | A |
5788755 | Salminen | Aug 1998 | A |
5827360 | Salminen | Oct 1998 | A |
5925233 | Miller et al. | Jul 1999 | A |
6136898 | Loza et al. | Oct 2000 | A |
6197837 | Hill et al. | Mar 2001 | B1 |
6451885 | Dresin et al. | Sep 2002 | B1 |
6494944 | Wates et al. | Dec 2002 | B1 |
6559206 | Durand et al. | May 2003 | B1 |
6576050 | Samanos | Jun 2003 | B1 |
6588974 | Hildebrand et al. | Jul 2003 | B2 |
6793964 | Hoad | Sep 2004 | B2 |
6846354 | Larsen et al. | Jan 2005 | B2 |
6913416 | Hildebrand et al. | Jul 2005 | B2 |
7041165 | Malot | May 2006 | B2 |
7114843 | Romier et al. | Oct 2006 | B2 |
7114875 | Romier et al. | Oct 2006 | B2 |
7160943 | Burris et al. | Jan 2007 | B2 |
7297204 | Crews et al. | Nov 2007 | B2 |
7309390 | Falkiewicz | Dec 2007 | B2 |
7732511 | Barreto et al. | Jun 2010 | B2 |
7815725 | Reinke et al. | Oct 2010 | B2 |
7968627 | Reinke et al. | Jun 2011 | B2 |
7981466 | Reinke et al. | Jul 2011 | B2 |
7981952 | Reinke et al. | Jul 2011 | B2 |
8034172 | Naidoo et al. | Oct 2011 | B2 |
20020170464 | Larsen et al. | Nov 2002 | A1 |
20040014845 | Takamura et al. | Jan 2004 | A1 |
20040223808 | Romier et al. | Nov 2004 | A1 |
20040244646 | Larsen et al. | Dec 2004 | A1 |
20050018530 | Romier et al. | Jan 2005 | A1 |
20050101701 | Stuart, Jr. et al. | May 2005 | A1 |
20050101702 | Stuart, Jr. et al. | May 2005 | A1 |
20050284333 | Falkiewicz | Dec 2005 | A1 |
20060041101 | Heinrichs et al. | Feb 2006 | A1 |
20060086288 | Bourrel et al. | Apr 2006 | A1 |
20060169173 | Dupuis et al. | Aug 2006 | A1 |
20060236614 | Antoine et al. | Oct 2006 | A1 |
20060240185 | Antoine et al. | Oct 2006 | A1 |
20060288907 | Fox | Dec 2006 | A1 |
20070039520 | Crews et al. | Feb 2007 | A1 |
20070060676 | Reinke | Mar 2007 | A1 |
20070082983 | Crews et al. | Apr 2007 | A1 |
20070191514 | Reinke et al. | Aug 2007 | A1 |
20070199476 | Bobee et al. | Aug 2007 | A1 |
20090088499 | Barreto et al. | Apr 2009 | A1 |
20090203815 | Barreto et al. | Aug 2009 | A1 |
20100055304 | Reinke et al. | Mar 2010 | A1 |
20100227954 | Naidoo et al. | Sep 2010 | A1 |
20100319577 | Naidoo et al. | Dec 2010 | A1 |
20110017096 | Reinke | Jan 2011 | A1 |
20110020537 | Reinke | Jan 2011 | A1 |
20110021673 | Reinke | Jan 2011 | A1 |
20110152410 | Reinke | Jun 2011 | A1 |
20110214589 | Reinke | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
433003 | Feb 1973 | AU |
2006231250 | Oct 2006 | AU |
10 2007 027 306 | Dec 2008 | DE |
0568021 | Nov 1993 | EP |
1 247 891 | Oct 2002 | EP |
1398351 | Mar 2004 | EP |
1469038 | Oct 2004 | EP |
429548 | May 1935 | GB |
783 015 | Sep 1957 | GB |
783015 | Sep 1957 | GB |
2234512 | Aug 1989 | GB |
2234512 | Feb 1991 | GB |
02-228363 | Sep 1990 | JP |
2002332606 | Nov 2002 | JP |
2006132131 | May 2006 | JP |
2149848 | May 2000 | RU |
2186044 | Jul 2002 | RU |
2196750 | Jan 2003 | RU |
806636 | Feb 1981 | SU |
834041 | May 1981 | SU |
9522661 | Aug 1995 | WO |
99-57199 | Nov 1999 | WO |
0116233 | Mar 2001 | WO |
WO 0116233 | Mar 2001 | WO |
0162852 | Aug 2001 | WO |
0216499 | Feb 2002 | WO |
02053645 | Jul 2002 | WO |
02103116 | Dec 2002 | WO |
2005081775 | Sep 2005 | WO |
2006106222 | Oct 2006 | WO |
2007032915 | Mar 2007 | WO |
WO 2007054503 | May 2007 | WO |
2007112335 | Oct 2007 | WO |
WO 2007112335 | Oct 2007 | WO |
2008148974 | Dec 2008 | WO |
WO 2009013328 | Jan 2009 | WO |
2009033060 | Mar 2009 | WO |
WO 2009062925 | May 2009 | WO |
Entry |
---|
International Search Report of corresponding PCT Application No. PCT/EP2008/059685, dated Dec. 2, 2008. |
Akzo Nobel Technical Bulletin, Adhesion Promoters, 1999. |
Amdor 9 bulletin (in Russian). |
Translation of Amdor 9 bulletin and application. |
Boldyrev et al., Presentation at a seminar at MADI, a technical university in Moscow, Apr. 19-22, 2005. |
Translation of Boldyrev et al., Presentation at a seminar at MADI, Apr. 19-22, 2005. |
Chiman et al., “Aspectos de Influencia de Aditivos no Polimetricos Sobre Caracteristicas de Asfaltos,” a paper presented at CILA conference, 2005. |
Translation of Chiman et al., “Aspectos de Influencia de Aditivos no Polimetricos Sobre Caracteristicas de Asfaltos,” a paper presented at CILA conference, 2005. |
Declaration of Jan Alboszta with attachments. |
Declaration of Gerald H. Reinke. |
DIN 1995, Requirements for the binders, 1989. |
Excerpt from Akzo Chemie brochure entitled “Armour Hess Products: Cationic Road Technology,” 1970. |
Russian State Standard GOST 9128-97 “Asphaltic concrete mixtures for roads and aerodromes and asphaltic concrete”, developed in 1998, brought into effect Jan. 1, 1999. |
Kosmin et al., “Compressibility of Activated Mineral Powders,” 1991. |
Redikote E-6 product bulletin, 2003. |
Redikote E-6 MSDS, 2003. |
American Association of State Highway and Transportation Officials, “Standard Method of Test for Preparing and Determining the Density of Hot-Mix Asphalt . . . ,” 2005. |
American Association of State Highway and Transportation Officials, “Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer,” 2005. |
Wasiuddin et al., “Effect of Antistrip Additives on Surface Free Energy Characteristics of Asphalt Binders for Moisture-Induced Damage Potential,” Apr. 18, 2006, Abstract. |
Shenoy, “Effect of Using Dispersants During the Mixing of Aggregates with Polymer-Modified Asphalts,” J. of Dispersion Sci. and Tech., 21(5), 589-604 (2000). |
English Machine Translation of DE 10 2007 027 306 A1. |
“Low Energy Asphalt (LEA) with the Performance of Hot-Mix Asphalt (HMA)”, European Roads Review, Special Issue, BGRA, Feb. 2004 (pp. 1-11). |
Malick, R.BN, Bradley, J.E., Bradbury, R.L., An Evaluation of Heated Reclaimed Asphalt Pavement (RAP) Material and Wax Modified Asphalt for Use in Recycled Hot Mix Asphalt (HMA), 2007. |
Modern Asphalts, “A safer future through designing for maintenance,” Autumn 2006, Issue No. 18, 4 pgs. |
Naidoo, P., “Fischer-Tropsch Hard Wax Chemistry in Warm Mix Asphalt Applications,” Petersen Asphalt Research Conference, Abstract and Presentation Slides, Jun. 20-22, 2005. |
Naidoo, P., Sasobit in Warm Mix Asphalt Applications 9 Years of Global Successes, World Asphalt Conference Presentation Slides, Mar. 14, 2006. |
Paez, R., “Production of Modifier Asphalt Additives in Equator,” 2005 International Symposium on Pavement Recycling, San Paulo, Brazil, Mar. 14-16, 2005, pp. 1-11. |
Petersen, J. Claine, “Relationships Between Asphalt Chemical Composition and Performance-Related Properties,” ISSA Meeting, Phoenix Arizona, Jan. 23-27, 1982, 10th page. |
Progress Report 2006, The German Bitumen Forum, Jun. 2006, 36 pgs. |
Prowell, Brian D., et al., “Field Performance of Warm Mix Asphalt at the NCAT Test Track,” Paper No. 07-2514, TRB 2007 Annual Meeting CD-ROM, 15 pgs. |
Sasobit Product Information 124, The Bitumen Additive for Highly Stable Easily Compactible Asphalts, 9 pgs. |
Sasobit Product Information, Roads and Trials with Sasobit, Oct. 2005, 7 pgs. |
Schwartz, Anthony M., et al., Surface Active Agents and Detergents, vol. 2, 1977, pp. 673-677. |
Tarrer, A.R., et al., “The Effect of the Physical and Chemical Characteristics of the Aggregate on Bonding,” Strategic Highway Research Program, Feb. 1991, 31 pgs. |
Transportation Research Board of the National Academies, 86th Annual Meeting agenda Jan. 21-25, 2007, 37 pgs. |
Wasiuddin, Nazimuddin M., et al., “A Comparative Laboratory Study of Sasobit and Aspha-Min in Warm Mix Asphalt,” TRB 2007 Annual Meeting CD-ROM, submitted Aug. 1, 2006, pp. 1-12. |
International Search Report for related Application No. PCT/EP2008/065278; Mar. 18, 2009. |
European Search Report for related Application No. PCT/EP2008/065278; Mar. 18, 2009. |
AKZO International Highway Chemical Newsletter, Chemical Division, Spring 1989, pp. 1-9. |
Anderson, David A., et al, “The Effect of Antistrip Additives on the Properties of Asphalt Cement,” Asphalt Paving Technology 1982, Proceedings Association of Asphalt Paving Technologists Technical Sessions, Kansas City, Missouri, vol. 51, Feb. 22, 23 & 24, 1982, pp. 298-317. |
Barreto, “Warm Asphalt Mixes Containing Dispersed Water,” ARKEMA-CECA France, Abstract No. 658, 2006, 7 pgs. |
Bonola et al., “Technologies for the Production of Asphalt Mixes with Low Temperature Processes,” World Road Association Italian National Committee, Dec. 2005, 31 pgs. |
Butz, Thorsten, et al., “Modification of Road Bitumens with the Fischer-Tropsch Paraffin Sasobit,” Journal of Applied Asphalt Binder Technology, vol. 1, Issue 2, Oct. 2001, pp. 70-86. |
Caillot et al., “Warm Mix Asphalts and Cold Recycling for Controlled Use of Effective Road Techniques Reducing Nuisances,” Technical Department for Transport, Roads, and Bridges, Engineering for Road Safety, Ministry for Transport, Infrastructure, Tourism and the Sea, France, 12 pgs. |
Ceca Arkema Group, “Green Road Formulation—Warm Asphalt Mix. 2007 Innovation: helping to lower our planet's temperature,” www.siliporite.com, accessed Nov. 21, 2007, 1 pg. |
Cervarich, “Cooling Down the Mix” NAPA Explores New “Warm Mix Asphalt” Technologies Developed in Europe, Hot Mix Asphalt Technology, Mar./Apr. 2003, pp. 13-16. |
Choi, Y., Warm Asphalt Review, Austroads Report, Arrb Research, RETT220B, Publication No. AP-T91/07, Nov. 2007. |
D'Angelo, John, et al., “Warm-Mix Asphalt: European Practice,” International Technology Scanning Program, Feb. 2008, 62 pgs. |
Damm, K., Abraham, J., Butz, T., Hildebrand, G., Riebesehl, G., “Asphalt Flow Improvers as Intelligent Fillers for Hot Asphalts—A New Chapter in Asphalt Technology,” Journal of Applied Asphalt Binder, vol. 2, Issue 1, p. 36-70, Apr. 2002. |
Declaration of Patrick Lavin, Jun. 6, 2011. |
Diefenderfer et al., “Research Report: Installation of Warm Mix Asphalt Projects in Virginia,” Virginia Transportation Research Council, Apr. 2007, 34 pgs. |
Florida Department of Transporation, Standard Specifications for Road and Bridge Construction, 2007, pp. 244-252 and 772-784. |
Gaudefroy, Vincent, et al., “Laboratory Investigations on the Mechanical Performances of Foamed Bitumen Mixes Using Half-Warm Aggregates,” TRB 2007 Annual Meeting CD-ROM, submitted Aug. 1, 2006, 20 pgs. |
Giannattasio, Allessandro, “To improve the quality of road bitumen,” Reprint from the Italian Building and Construction Issue No. 69/1998-19th Year; pp. 2, 3, 7. |
Gibson, Nelson, Modified Asphalt Research Activities at FHWA's Turner-Fairbank Highway Research Center (TFHRC), Pavement Materials and Construction Team, AMAP Conference, Feb. 2005, Orlando, FL, 18 pgs. |
Goh et al., “Laboratory Evaluation and Pavement Design for Warm Mix Asphalt,” Proceedings of the 2007 Mid-Continent Transportation Research Symposium, Ames, IA, Aug. 2007, 11 pgs. |
Gudimettla, Jagan M., et al., “Workability of Hot Mix Asphalt,” National Center for Asphalt Technology, Apr. 2003, 66 pgs. |
Hurley et al., “Evaluation of Aspha-Min™ Zeolite for Use in Warm Mix Asphalt,” National Center for Asphalt Technology Report, Auburn University, 30 pgs., Jun. 2005. |
Hurley et al., “Evaluation of Evotherm™ for Use in Warm Mix Asphalt,” National Center for Asphalt Technology Report, Auburn University, Jun. 2006, 49 pgs. |
Hurley et al., “Evaluation of Potential Processes for Use in Warm Mix Asphalt,” National Center for Asphalt Technology, 2006, 46 pgs. |
Hurley, Graham C., et al., “Evaluation of Sasobit™ for Use in Warm Mix Asphalt,” National Center for Asphalt Technology Report, Auburn University, Jun. 2005, 32 pgs. |
International Search Report issued in PCT/US/2006/33907, mailed Sep. 24, 2007, 4 pgs. |
International Search Report issued in PCT/US2009/052830, mailed Sep. 16, 2010, 2 pages. |
International Search Report issued in PCT/US2008/075452, mailed Feb. 13, 2009, 3 pages. |
International Search Report for PCT/US2009/034742, mailed May 26, 2009, 4 pages. |
Iterchimica Company; “Abstract of the 2005 production categories and applications,” Iterchimica Brochure, p. 2 (2005). |
James, A.D., et al., “Adhesion Agents for Use in Hot Mixes and Cut-Back Bituments,” presented at the 3rd IRF Middle East Regional Meeting, Riyadh, Saudi Arabia, 1988, 10 pgs. |
Jenkins et al., “Half-Warm Foamed Bitumen Treatment, A New Process,” 7th Conference on Asphalt Pavements for Southern Africa, 1999, 7 pgs. |
Jones, “Warm Mix Asphalt Pavements: Technology of the Future?” Asphalt, Fall 2004, pp. 8-11. |
Kanitpong, Kunnawee, et al., “Laboratory Study on Warm Mix Asphalt Additives,” Paper No. 07-1364, TRB 2007 Annual Meeting CD-ROM, 20 pgs. |
Koenders et al., “Innovative process in asphalt production and application to obtain lower operating temperatures,” 2nd Eurasphalt & Eurobitume Congress Barcelona 2000, Book II, pp. 830-840. |
Kristjansdottir, Olof, “Warm Mix Asphalt for Cold Weather Paving,” a thesis, University of Washington, 2006, 127 pgs. |
Kristjansdottir, Olof, et al., “Assessing the Potential for Warm Mix Asphalt Technology Adoption,” TRB 2007 Annual Meeting CD-ROM, 19 pgs. |
LaPointe, Dennis G., E-mail correspondence, May 2011, 4 pgs. |
Lavin, Patrick, “Asphalt Pavements: A practical guide to design, production and maintenance for engineers and architects,” 2003, pp. 347. |
Logaraj, Sundaram, et al., “Surface-active bitumen additive for warm mix asphalt with adhesion promoting properties,” 2009, 12 pgs. |
Number | Date | Country | |
---|---|---|---|
20100199885 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
60951995 | Jul 2007 | US |