The present disclosure relates generally to adhesion to surfaces, and more particularly, to the formation of nano-structures on a surface to promote adhesion.
Adhesive bonding is an alternative to the more traditional mechanical fastening methods of joining materials, such as nails, rivets, and screws. One of the major differences between an adhesive joint and mechanical fastening is that, generally, in mechanical fastening one or both of the parts or materials being held together is pierced by a mechanical fastener, whereas an adhesive joint may be formed without the piercing the materials. This leads to one of the advantages of adhesives over mechanical fastening, namely the ability to, not only fasten different materials, but to also to form a seal between components in a single step. Mechanical fastening typically requires separate sealing and fastening steps to create a sealed part.
For example, in the area of microfluidics, the utilization of separate mechanical fasteners and sealants or gaskets would result in larger, more expensive, and less efficient devices compared to that obtainable using an adhesive. Adhesives also provide an advantage in fastening dissimilar materials together, from the standpoint of fastening materials such as glasses, ceramics, and silicon devices, in which forming the holes to allow fasteners to be utilized is difficult and expensive.
In an inkjet printing system, a printhead structure may include a number of discrete components connected via adhesive joints to define a printing fluid path. The adhesive joints may be exposed to potentially corrosive printing fluids which, over time, may tend to weaken the adhesive joints, particularly at the interface between the adhesive and the surface. Where an adhesive joint fails, printing fluids may penetrate into regions where there is active circuitry, leading to corrosion or electrical shorting, or both.
Features and advantages of embodiments of the present disclosure will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to similar, though perhaps not identical, components. For the sake of brevity, reference numerals or features having a previously described function may or may not be described in connection with other drawings in which they appear.
Referring initially to
As shown in
Nano-structures 30 extend substantially orthogonally from the substrate surface 22. More particularly, a first set of nano-structures 30a extend substantially orthogonally from first surface region 22a in a first direction (A) and a second set of nano-structures 30b extend substantially orthogonally from second surface region 22a in a second direction (B). Nano-structures may be formed on substantially all of respective surface regions, or may be formed on only a portion (or portions) of the surface regions, depending on the particular adhesion requirements. In the present example, because the angle between first surface region 22a and second surface region 22b is less than 180 degrees, it will be understood that first direction (A) intersects second direction (B).
As indicated, a cover layer 35 may be applied to at least a portion of substrate surface 22, the cover layer typically being applied as a flowable material that substantially envelops nano-structures 30. In some embodiments, cover layer 35 may take the form of an adhesive such as SU-8, which is an epoxy-based negative photoresist manufactured by MicroChem Corporation. SU-8 is commonly used in the fabrication of microfluidic devices such as printer printheads. Once applied, the SU-8 may be solidified (e.g., by curing), securing the cover layer to the substrate surface 22 though chemical and/or mechanical means. Although an SU-8 cover layer is described in the present examples, cover layers formed of other materials may similarly be employed.
A variety of factors may contribute to securement of cover layer 35 to the substrate 20. For example, because substrate surface 22 includes nano-structures 30, the surface area of the substrate surface is increased relative to the surface area of a smooth substrate surface (e.g., an otherwise identical substrate surface without nano-structures 30 formed thereon). The taller the nano-structures, the greater the surface area of substrate surface 22 that will be exposed to contact with cover layer 35. This increased surface area may provide a greater area for chemical bonding between the cover layer 35 and the substrate surface 22. Also, the chemistry of the nano-structures may be changed to accommodate chemical bonding by, for example, applying a thin layer of a suitable adhesion-promoting material to the nano-structures by techniques such as atomic layer deposition, adsorption, impregnation-sintering, etc.
Where the substrate includes intersecting surface regions (as shown in
Methods disclosed herein may be used to control various properties of the nano-structures so as to promote adhesion through chemical bonding and/or mechanical anchoring. For example, nano-structures may be reliably formed orthogonal to the substrate surface, regardless of the morphology, geometry and/or orientation of the substrate. Nano-structures also may be reliably formed with geometries and/or dimensions (e.g., height, shape, etc.) that promote adhesion of the cover layer to the substrate. Even placement of the nano-structures may be controlled using the methods disclosed herein.
The geometry of the nano-structures may be controlled so that the nano-structures have substantially uniform shape. Similarly, as shown in
Referring to
In the depicted example, the stem diameters (d1) are less than the cap diameters (d2), giving the nano-structures a generally “T” shape. Such T-shaped nano-structures may enhance adhesive properties of the substrate, the broader caps serving to mechanically anchor cover layer 35 to substrate 20. Although the example nano-structures have stem heights (h1) that are greater than cap heights (h2), cap height (h2) may be greater than stem height (h1). The nano-structures similarly may have other geometries, which may be determined at least in part by parameters of the fabrication process described below.
Referring initially to
Substrate 20 similarly may be formed from other materials, e.g., glass, quartz, alumina, stainless steel, plastic, and/or the like, and may take any of a variety of forms, including a multilayer structure and/or a structure with a non-planar surface (as shown in
As shown, a first oxidizable material is deposited on substrate 20 to form a layer of first oxidizable material 50. The first oxidizable material layer 50 may be formed using any suitable deposition technique known in the art. Some non-limiting examples of suitable deposition techniques include physical vapor deposition (PVD) (such as sputtering, thermal evaporation and pulsed laser deposition), atomic layer deposition (ALD), or, in some instances, chemical vapor deposition (CVD).
In some examples, the first oxidizable material layer 50 may be formed of a metal or metal alloy that forms a dense metal oxide after electrochemical oxidation. Suitable oxidizable materials include oxidizable refractory metals such as tantalum (Ta), niobium (Nb), titanium (Ti), tungsten (W), or their alloys. Such oxidizable materials all can be electrochemically and/or thermally oxidized, and all have expansion coefficients (the ratio between thickness of the grown oxide and thickness of the consumed material) that are greater than 1.
In the present example, first oxidizable material layer 50 is formed of tantalum (Ta), which has been found suitable for use in the methods described herein. The example first oxidizable material layer also is referred to herein as the “Ta layer”. The Ta layer may have any suitable thickness that will produce (during electrochemical oxidation) enough oxide to form the nano-structures (which will be described in further detail below). In some examples, the thickness of the Ta layer may be approximately 100 to 1000 nanometers.
Referring still to
Deposition of the second oxidizable material layer on the first oxidizable material layer may be accomplished using any suitable deposition technique known in the art. Some non-limiting examples of suitable deposition techniques include physical vapor deposition (PVD) (such as sputtering, thermal evaporation and pulsed laser deposition.
As shown generally in
In some examples, further processing includes a first anodization process whereby second oxidizable material layer 60 (
Anodization (i.e., electrochemical oxidation) is a process of forming an oxide layer on a material by making the material the anode in an electrolytic cell and passing an electric current through the cell. Nano-pores are formed by field-assisted dissolving of the anode material (e.g., aluminum). Because field-assistant dissolving of anodic alumina starts from the alumina-aluminum interface, the resulting pores are reliably orthogonal to the substrate surface, regardless of the morphology, geometry and/or orientation of the substrate surface. For anodization of aluminum, as in the present example, applied voltage may be kept constant at voltage within a range of about 10V to 200V. In some examples, the first anodization process may occur at a voltage of about 30V.
Geometry of the nano-structure template 80 may be adjusted by varying one or more of anodization voltage, current density and electrolyte. Such adjustments to the first anodization process may alter nano-pore pitch (Dp) and/or nano-pore diameter (dp1), which characteristics are illustrated in
Anodization can be performed at constant current (galvanostatic regime), at constant voltage (potentiostatic regime) or at some combination of these regimes. Nano-pore diameter (dp1) is proportional to anodization voltage. Accordingly, a potentiostatic regime may be employed to produce a porous substrate with nano-pores having substantially uniform nano-pore diameter (dp1). Substantially uniform nano-pores 82, in turn, will yield substantially uniform nano-structures 40, as will be described below.
The first anodization process may be carried out by exposing Al layer 60 to an electrolytic bath containing an oxidizing acid such as sulfuric acid (H2SO4), phosphoric acid (H3PO4) oxalic acid (C2H2O4) and/or chromic acid (H2CrO4). The electrolyte may be present, for example, in a water-based solution. The voltage applied during the first anodization process may be selected based on the electrolyte composition. For example, the voltage may range from 5-25V for an electrolyte based on sulfuric acid, 10-80V for an electrolyte based on oxalic acid, and 50-150V for an electrolyte based on phosphoric acid. The particular voltage used will depend on the desired pore diameter (and the suitability of such voltage for the electrolyte).
Aano-pore diameter (dp1) also is related to the nature of the electrolyte used. Accordingly, an electrolyte may be selected to achieve a particular desired nano-pore diameter (dp1). As non-limiting examples, nano-pores 82 of the following sizes may be obtained using the following electrolytes: nano-pore diameters (dp1) of about 20 nanometers may be obtained using H2SO4 (in a water-based solution) as the electrolyte; nano-pores diameters (dp1) of about 40 nanometers may be obtained using C2H2O4(in a water-based solution) as the electrolyte; and nano-pores diameters (dp1) of about 120 nanometers may be obtained using H3PO4 (in a water-based solution) as the electrolyte.
In one example, nano-structure template 80 is formed by anodization of the second oxidizable material layer 60 in a 4% solution of oxalic acid (C2H2O4), at a voltage of 30 Volts until substantially the entire Al layer is consumed. For a suitably thick Al layer, the resulting nano-structure template 80 will define nano-pores 82 that are approximately 30 nanometers wide, and that will allow oxidation of underlying first oxidizable material layer 50. The nano-structure template should have a template height (hT) sufficient to allow complete growth of a nano-pillars 40 (including both stem portions 42 and cap portions 44) within the nano-pores, as described below.
After the first anodization process, the nano-pore diameter (dp1) may be further tuned to a target nano-pore diameter by anisotropic etching, or other suitable process. Anisotropic etching may be performed using diluted phosphoric acid (5 vol. %). The time for etching may vary, depending, at least in part, upon the desirable average diameter for the final pores. The temperature for etching may also depend upon the process, the etching rate, and the etchant used.
In some examples, prior to performing the first anodization process, the first oxidizable material layer may be patterned to precisely define locations of nano-pores 82 in the resulting nano-structure template 80. Patterning may be accomplished via any suitable technique. The patterned layer (not shown) is then anodized, for example, by employing the patterned layer as the anode of an electrolytic cell. A suitable amount of voltage and current is then applied to the electrolytic cell for an amount of time to completely anodize the patterned layer in accordance with the first anodization process described above. This can result in substantially uniformly spaced nano-structures where the variance in spacing between nano-structures differs by less than 1% (for nanometer scale dimensions).
Referring now to
The second anodization process may be accomplished, for example, using a process similar to the first anodization process described above. More specifically, the first oxidizable material layer 50 is anodized by employing the first oxidizable material layer as the anode of an electrolytic cell to achieve a desired oxidation of the first oxidizable material.
For oxidation of tantalum, non-limiting examples of electrolyte may include solutions containing citric acid (C6H8O7), oxalic acid (C2H2O4), boric acid (H3BO3), ammonium pentaborate ((NH4)2B10O16×8H2O), and/or ammonium tartrate (H4NO2CCH(OH)CH(OH)CO2NH4). It is to be understood that this type of anodization forms a dense oxide, where both the interface between the remaining first oxidizable material and the formed oxide, and the interface between the formed oxide and the electrolyte are planarized.
During anodization of the first oxidizable material layer 50 (in this example, a tantalum layer), the formed oxide (in this example, tantalum pentoxide (Ta2O5)) grows through the individual nano-pores 82 defined in nano-structure template 80 to form a nano-pillar stem portion 42 in each nano-pore. The orientation of nano-pillar stem portions 42 is generally controlled by the orientation of the nano-pores 82. In the present example, the nano-pillar stem portions 42 are substantially orthogonal to the surface 22 of substrate 20.
The expansion coefficient of a material to be oxidized is defined as the ratio of oxide volume to consumed material volume. The expansion coefficient for oxidation of tantalum (Ta) is approximately 2.3. Accordingly, in the present example, due to the significant expansion of tantalum pentoxide (Ta2O5), and the fact that the resulting oxide (Ta2O5) is dense, the nano-pores 82 are filled from the bottom up. It will be understood that although the first oxidizable material is tantalum (Ta) in the present example, other materials with an expansion coefficient greater than 1 would similarly allow the oxidizable material to squeeze into the nano-pores 82 of template 80.
As indicated, the grown oxide will partially fill nano-pores 82 of nano-structure template 80 to define nano-pillar stem portions 42. The geometries of the nano-pillar stem portions 42 will substantially conform to the geometries of corresponding nano-pores 82, within which the nano-pillar stem portions are growing. Nano-pillar stem portions 42 thus may take the form of substantially uniform cylindrical columns, substantially orthogonal to substrate surface 22, and substantially uniformly spaced across the substrate surface.
In the present example, each nano-pillar stem portion has a substantially uniform stem thickness (indicated as stem diameter (d1)) that corresponds to the nano-pore diameter (dp1). Nano-pillar stem portions 42 are grown to a stem height (h1) that is less than template height (hT) so as to allow subsequent growth of nano-pillar cap portions 44. As shown, some residual first oxidizable material will remain beneath the grown oxide after the second anodization process (
The geometry and/or dimensions of the nano-pillar stem portions 42 may further be controlled by adjusting one or more parameters of the anodization process. For example, the stem height (h1) will depend on the anodization voltage applied to the first oxidizable material layer 50 during its anodization. In some examples, nano-pillar stem portions are formed by anodizing the first oxidizable material at a first voltage corresponding to a target nano-pillar stem portion height.
In one example, nano-pillar stem portions having a stem height (h1) of 90 nanometers (at a stem diameter of approximately 30 nanometers) may be formed by anodization of Ta layer 50 in a 0.1% solution of citric acid (C6H8O7), at a current density of 2 mA/cm2 until voltage reaches 55V, and for 5 minutes more at 55V. It will be appreciated that stem height (h1) may be tuned to a target stem height by selecting a corresponding anodization voltage. For example, nano-pillar stem portions having a stem height of 155 nanometers may be formed by anodization of Ta layer 50 in a 0.1% solution of citric acid (C6H8O7 at a current density of 2 mA/cm2 until voltage reaches 100V, and for 5 minutes more at 100V.
As indicated in
In some examples, nano-pillars 82 are re-shaped by broadening unfilled sections of the nano-pores 82 (the sections of the nano-pores above the formed stem portions 42). Such broadening may be achieved by selective etching of the nano-structure template 80. Selective etching may be accomplished by employing an etchant solution configured to etch the exposed areas of porous oxide forming the nano-structure template 80 (e.g., anodic porous alumina, Al2O3) at a rate that is substantially higher than the etch rate for the oxide of the first oxidizable material (e.g., anodic tantalum pentoxide (Ta2O5)).
In one example, porous alumina nano-structure template 80 (with nano-pores that are approximately 30 nanometers wide) is etched in a 5% solution of phosphoric acid (H3PO4) at a temperature of 30° C. for approximately 15 minutes to broaden the nano-pores to a modified nano-pore diameter (dp2) of approximately 60 nanometers. In another example, the porous alumina nano-structure template 80 is etched in a 5% solution of phosphoric acid (H3PO4) at a temperature of 30° C. for approximately 30 minutes to broaden the nano-pores to a modified nano-pore diameter (dp2) of approximately 80 nanometers. It thus will be appreciated that the width of the broadened sections (cap-forming sections 82b) may be tuned to a target width by selecting an etch duration corresponding to the target width. The target width may be selected to accommodate formation of nano-pillar cap portions suitable to serve as anchors for mechanically securing a cover layer to the substrate 20, as will be described further below.
Referring now to
As described generally above, the third anodization process will grow oxide into the re-shaped nano-pores 82′ from the bottom up. The resulting oxide thus will cause previously formed oxide to grow from the stem-forming sections 82a into the cap-forming sections 82b. The third anodization process may be substantially the same as the second anodization process, but at an anodization voltage corresponding to a target nano-pillar cap portion height.
More specifically, the first oxidizable material layer 50 is again anodized by employing the first oxidizable material layer as the anode of an electrolytic cell, and applying a suitable amount of an anodization voltage and current to the first oxidizable material layer to achieve a desired oxidation. As described above, non-limiting examples of electrolyte for oxidation of tantalum (Ta) include solutions containing citric acid (C6H8O7), oxalic acid (C2H2O4), boric acid (H3BO3), ammonium pentaborate ((NH4)2B10O16×8H2O), and/or ammonium tartrate (H4NO2CCH(OH)CH(OH)CO2NH4). The electrolyte may be present, for example, in a water-based solution.
Again, anodization of the Ta layer will be understood to form a dense oxide (in this example, tantalum pentoxide (Ta2O5)), where both the interface between the remaining first oxidizable material and the formed oxide, and the interface between the dense oxide and the electrolyte are planarized.
Because orientation of nano-pillars is generally controlled by the orientation of the re-shaped nano-pores 82′, where the re-shaped nano-pores are orthogonal to surface 22 of substrate 20, the fully grown nano-pillar stem portions 42 and nano-pillar cap portions 44 are substantially orthogonal to surface 22 of substrate 20 (shown in
In the present example, each nano-pillar cap portion 44 has a substantially uniform cap thickness (indicated as cap diameter (d2)) that corresponds to the nano-pore diameter (dp2). Nano-pillar cap portions 42 are grown to a cap height (h2), providing nano-pillars of overall height (H), where H=h1+h2. As shown, some residual first oxidizable material will remain beneath the grown oxide after the second anodization process (
Nano-pillar cap portions having a cap height (h2) of approximately 100 nanometers (at a cap diameter (d2) of approximately 60 nanometers) may be formed by anodization of Ta layer 50 in a 0.1% solution of citric acid (C6H8O7), at a current density of 2 mA/cm2 until voltage reaches 200V, and for 5 minutes more at 200V. Cap height (h2) may be tuned to a different target cap height by selecting a different final anodization voltage.
In
As indicated in
Once applied, the flowable material (e.g., SU-8) is solidified, establishing a cover layer 35 that may chemically bond to the surface of substrate 20. The increased surface area of the nano-structured surface provides for enhanced chemical bonding between cover layer 35 and substrate 20. As indicated, the nanostructures also provide a mechanical anchor between the cover layer and the substrate, an interface region 36 of the cover layer being interwoven with the nano-structured surface of the substrate. The projecting nano-structures (both stem portions and cap portions) will oppose shear forces (indicated by arrow F1) between the cover layer and the substrate. The cap portions will oppose forces normal to the substrate (indicated by arrow F2).
Nano-structured surfaces such as those described herein provide excellent adhesive properties, particularly in wet environments, where interfaces are more inclined to fail. For example, shear strength of an interface between an adhesive cover layer (EMS 357-243-2 manufactured by Engineered Materials Systems, Inc.) and an LCP/PPS plastic substrate with tantalum pentoxide (Ta2O5) nano-structures will not be appreciably affected by ink soak (at 70° C.) for 2 weeks, or even 4 weeks. For a surface coated with tantalum, but without tantalum pentoxide nano-structures, shear strength of the SU-8/tantalum interface may decrease by as much as 70% or more after ink soak (at 70 degrees) for 2 weeks.
More particularly, at 510, a template is formed on the substrate, the template defining nano-pores having a first width. The template may be formed by anodizing a layer of oxidizable material on the substrate. At 520, the nano-pores are partially filled to define nano-pillar stem portions having a first thickness corresponding to the first width of the nano-pores. The nano-pillar stem portions may be formed by anodizing a layer of another oxidizable material disposed on the substrate, beneath the template, to grow an oxide into the nano-pores of the template.
At 530, the nano-pores are re-shaped to define re-shaped nano-pore sections having a second width greater than the first width. Re-shaping the nano-pores may include selective etching of nano-pores sections that do not include nano-pillar stem portions. At 540, the re-shaped nano-pores are at least partially filled to define nano-pillar cap portions on the stem portions, the cap portions having a second thickness corresponding to the second width of the re-shaped nano-pore sections. The nano-pillar cap portions may be formed by further anodizing the layer of another oxidizable material disposed beneath the template, to grow oxide into the re-shaped nano-pore sections. At 550, the template is removed. Removal of the template will reveal fully formed integral nano-pillars including stem portions and cap portions.
At 560, a flowable material is applied to the substrate, the flowable material flowing between the nanostructures, and substantially enveloping the nano-structures on the substrate. At 570, the flowable material is solidified (e.g., by curing) to form a cover layer on the substrate, the cover layer being mechanically anchored to the substrate via the nano-structures. In some embodiments the cover layer also may be chemically anchored to the substrate via chemical bond between the flowable material and the nano-structures upon solidifying the flowable material.
Anodizing the first oxidizable material may include anodizing the first oxidizable material at a first voltage corresponding to a target nano-pillar stem portion height. Similarly, further anodizing the first oxidizable material may include further anodizing the first oxidizable material at a second voltage corresponding to a target nano-pillar cap portion height. Broadening unfilled sections of the nano-pores may include etching of the substrate in an etchant solution configured to etch the porous oxide at a substantially higher etch rate than the oxide of the first oxidizable material.
Although the present invention has been described with reference to certain representative examples, various modifications may be made to these representative examples without departing from the scope of the appended claims.
This application is a divisional of co-pending U.S. application Ser. No. 13/878,204, filed Apr. 6, 2013, which is itself a 371 national stage filing of International application S.N. PCT/US2010/053517, filed Oct. 21, 2010, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4197135 | Bailey | Apr 1980 | A |
5013383 | Chapman | May 1991 | A |
5485185 | Sueoka | Jan 1996 | A |
5980682 | Gibson et al. | Nov 1999 | A |
6358354 | Patil | Mar 2002 | B1 |
6770353 | Mardilovich | Aug 2004 | B1 |
7175723 | Jones et al. | Feb 2007 | B2 |
7229685 | Full et al. | Jun 2007 | B2 |
7691307 | Fearing et al. | Apr 2010 | B2 |
7695811 | Northen et al. | Apr 2010 | B2 |
20020021339 | Higuma et al. | Feb 2002 | A1 |
20030136505 | Wimmer | Jul 2003 | A1 |
20040032468 | Killmeier | Feb 2004 | A1 |
20050133910 | Riedl et al. | Jun 2005 | A1 |
20060202355 | Majidi et al. | Sep 2006 | A1 |
20070251570 | Eckert et al. | Nov 2007 | A1 |
20080035943 | Slutsky et al. | Feb 2008 | A1 |
20080236659 | Monden et al. | Oct 2008 | A1 |
20080292840 | Majumdar et al. | Nov 2008 | A1 |
20090034122 | Ichihara | Feb 2009 | A1 |
20100132772 | Asano et al. | Jun 2010 | A1 |
20100291385 | Greer | Nov 2010 | A1 |
20110021965 | Karp | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
200173166 | Mar 2001 | JP |
WO-2009053714 | Apr 2009 | WO |
WO-2010022107 | Feb 2010 | WO |
Entry |
---|
Mozalev, A., et al. (2003), Nucleation and growth of the nanostructured anodic oxides on tantalum and niobium under the porous alumina film. Electrochimica Acta, 48(Electrochemistry in Molecular and Microscopic Dimensions), 3155-3170. doi:10.1016/S0013-4686(03)00345-1. |
Shreir, L.L. Jarman, R.A. Burstein, G.T.. (1994). Corrosion (3rd Edition) vols. 1-2-5.5 Tantalum. Elsevier. Online version available at: app.knovel.com/hotlink/pdf/id:kt002ZB3Q3/corrosion-3rd-edition/tantalum. |
Number | Date | Country | |
---|---|---|---|
20170342580 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13878204 | US | |
Child | 15674618 | US |