1. Technical Field
The present invention relates to adhesive applicators for applying bookbinding adhesive to a side edge of a sheet bundle, wherein sheets sequentially conveyed out from an image forming device or other printing machine are registered into a set and stacked into a bundle; in particular the invention relates to an adhesive applicator rendered to charge into a tub-shaped container hot-melt adhesive in solid form and, with a heater fitted on the container, to melt the adhesive to a predetermined temperature in a brief time interval.
2. Description of the Related Art
Bookbinding apparatuses are widely employed as terminal devices on printers and similar image forming apparatuses, wherein they stack printed sheets in page order and align them into bundles, and then apply adhesive to an endface of the bundle and bind it into a cover sheet. Adhesive application devices (adhesive applicators) incorporated into such bookbinding apparatuses apply adhesive in liquid form to a side edge of sheet bundles with a container storing glue or other adhesive, and an applicator roller provided inside the container. And a heater is built into the container interior, where it melts solid adhesive that the container has been charged with and maintains the adhesive at a temperature at which it exhibits viscosity suited to adhesion.
This method of thus supplying the solid adhesive into the device interior and then heating the adhesive to melt it is characterized by ease of handling the adhesive. However, close attention must be paid to controlling the temperature of the adhesive after it has melted in the container. For example, the melting point of ordinarily employed solid adhesives is on the order of from 60° C. to 80° C., and onto material such as sheets to be glued, the adhesive must be kept at a temperature between 140° C. and 150° C. Should the adhesive temperature happen to be lower than its optimum temperature, clumps in the form of solids that have not melted completely may be included in the container, or strongly viscid (high-viscosity) adhesive may be applied to the sheet bundle. This situation can lead to trouble such as leaves missing from a glued booklet, owing to the adhesive not having permeated the sheet bundle between its pages.
Also, if the temperature of the adhesive is higher than the optimum temperature mentioned above, viscosity will become lower (or weaker) and this will cause a problem of droplets of adhesive being splattered in the process of applying the adhesive to a sheet bundle. This can cause the cover sheet to become soiled or stained. Concurrent with these problems, the melting parameters after a hot-melt adhesive is charged into a container differ depending on whether the fill quantity is a large-volume or small-volume. The melted adhesive in the container re-solidifies when the apparatus is in disuse for an extended period. Moreover, the degree of solidification is also affected by the ambient temperature. Therefore, when starting the bookbinding apparatus, it is necessary to quickly melt new, solid adhesive or adhesive that has re-solidified, and to maintain the adhesive at a predetermined temperature.
To date, in managing the temperature of solid adhesive of this sort, a warming mode, such as that disclosed in Japanese Unexamined Pat. App. Pub. No. 2005-238526, is provided so that the liquefied adhesive in the container does not re-solidify when the apparatus is in disuse for an extended period and adhesive is not being applied to sheets. This document discloses warming modes that when adhesive is not being applied to sheet bundles in the bookbinding apparatus, or when the apparatus is idle, maintain the adhesive container at a temperature lower than the application temperature.
Pub. No. 2005-238526 also discloses providing a glue-storing container with an induction heating coil, and melting the adhesive in the container with the Joule heat from eddy currents due to the high-frequency magnetic flux generated in the coil. Also disclosed is adjusting the current supplied to the coil according to the adhesive temperature detected by a sensor (thermistor) provided in the container. The same publication discloses providing mixing means to keep adhesive melted in the container at a uniform temperature.
As described above, when applying an adhesive inside a container to a sheet bundle in a bookbinding apparatus or similar device, employing a hot-melt adhesive that becomes solid at ordinary temperatures facilitates handling. Drawbacks with such adhesives are that when the apparatus is in non-operational or on standby, the liquefied adhesive solidifies, and that when the apparatus is started up, solidified adhesive, or freshly replenished adhesive, must in a short period of time be dissolved and brought to a temperature appropriate for its application. Liquefying (bringing to the appropriate temperature) solid adhesive is time-consuming. This causes the problem of having to wait to operate the machine until the adhesive has sufficiently melted.
To address such problems, to date it has been proposed, as disclosed in Japanese Unexamined Pat. App. Pub. No. 2005-238526 to maintain a heating means for the container in an operational state when the apparatus is idle. Specifically, current continues to energize the heating elements of a heater while the apparatus is idle, but this results in wasted energy consumption. There is also the danger of causing a fire if current is continually supplied to the heating elements while the machine is not in use. An additional drawback is that preparation time for the adhesive to melt is required when starting up the apparatus. Furthermore, as disclosed in Japanese Unexamined Pat. App. Pub. No. 2003-010748, attempts have been made to dissolve the container contents in a short time with a high-frequency heating device. This approach, however, leads to high-cost and safety issues, because ordinary high-frequency heating devices operate at frequencies appreciably higher than the frequency at which commercial power is supplied.
Thus, within bookbinding apparatuses or like machines hot-melt adhesives—solidified adhesive when starting up a machine or when restarting an idle machine—must be dissolved in a short time, but with employing large-capacity heating equipment such as a high-frequency heating device having been the common practice to date, the problems for bookbinding apparatuses made compact and all-purpose in office equipment have been increased size, higher cost, and higher power consumption. A concurrent problem has been that because liquefied adhesive in the container cannot be expected to circulate by convection, the adhesive must be stirred; and as disclosed in Pat. App. Pub. No. 2003-010748, the adhesive must be mixed at the same time it is being melted.
A problem in this regard has been that if the viscosity of the liquefied adhesive is high, the adhesive exerts excessive load on the mixing means and its drive mechanism, which proves to be a cause of mechanical failure. In other words, if a solid adhesive is stirred too early after the adhesive has been dissolved, the viscosity load produces an overload on the drive motor. This can cause faulty operation.
Accordingly, an issue taken for the present invention is to make available an adhesive applicator that, in melting adhesive in solid or semisolid (gel) form within the container, by being provided with a plurality of heating modes and heating in a mode selected according to the adhesive-state temperature, enables, with no scaling up of the heating device, warming-up to operable in a comparatively short time period.
A further issue taken for the present invention is to make available an adhesive applicator that, in stirring adhesive, having been melted and simultaneously liquefied, inside the container into a uniform state for application, enables reliable melting/stirring without hindering the stirring means or its drive source. A still further issue taken for the present invention is to make available a bookbinding apparatus that, in aligning sheets conveyed out from an image-forming or like apparatus and binding them together into bundles to form booklets, makes it possible for warm-up when the apparatus is started to take place efficiently.
The present invention, in order to address the aforementioned issues, affords an adhesive applicator comprising: a container for storing hot-melt adhesive; a heating means for heating and melting adhesive, in solid form, inside said container; a sensor means for detecting the temperature of the adhesive inside said container; application means for applying the adhesive inside said container to a sheet bundle; a stirring rotor for stirring the adhesive inside said container; and a control means for starting rotation of said stirring rotor according to said sensor means detecting that the adhesive inside said container has been heated by said heating means and has reached a predetermined temperature.
In a further aspect, the present invention affords an adhesive applicator comprising: a container for storing hot-melt adhesive; a heating means for heating and melting adhesive, in solid form, inside said container; a timer means for detecting the period of time that said heating means heats the adhesive; application means for applying the adhesive inside said container to a sheet bundle; a stirring rotor for stirring the adhesive inside said container; and a control means for starting rotation of said stirring rotor according to said timer means detecting that said heating means has heated the adhesive for a predetermined time period.
An adhesive applicator involving the present invention, by means of the configuration described above, establishes the warm-up time in accordance with the state of the adhesive: if the adhesive has solidified, it is heated and melted in a mode in which supply power and supply time are maximum; if the adhesive has liquefied at a low temperature, it is heated and melted in a mode in which the supply power and supply time are a second magnitude; and if the adhesive temperature is in a high state, the adhesive is heated and melted in a mode in which the supply power and supply time are minimum.
Accordingly, in the present adhesive applicator, in situations in which the adhesive has completely solidified, the warm-up time can be lengthened, and if the adhesive temperature is high, the warm-up time can be shortened. That is, in starting the apparatus in a low-temperature state, initialization time is required, but in starting the apparatus from a high-temperature state, such as when restarting the apparatus, initialization time is shorter, such that the power consumption that the initialization requires is reduced. Also, the above-described heating modes vary the supply power and supply time in stages until the adhesive in the container reaches a predetermined temperature. For example, power and time functions are controlled so as to have, in a first stage, a first supply time at a first supply power and, in a second stage, a second supply time at a second supply power. That is, owing to the tendency of the adhesive temperature inside the container to lag considerably behind the temperature of the heating means, based on advance tests, power supplied (supply current etc.) and supply time periods are prearranged into a control table to avert overheating (excessive heating) and under-heating (insufficient heating).
In other words, in an instance in which the temperature of an adhesive at 70° C. is to be adjusted to 150° C., if the heating means is set to 170° C., the adhesive temperature, lagging timewise, will gradually approach 150° C., wherein even if the heating means is halted, due to the high temperature of the container, the adhesive temperature will surpass 150° C. and overheat to 160° C., for example. Conversely, if the heating means is set to 150° C., and is to be halted when the adhesive temperature is 150° C. or less, it will take a longer amount of time to reach 150° C. In order to shorten the warming-up time, controlling the heating means according to a preestablished heating pattern is advantageous.
A sensor means such as a thermistor detects the adhesive temperature, but the heating processes of the adhesive and the container are different. A liquid temperature sensor that directly detects the adhesive temperature and a heating unit temperature sensor that detects the temperature of the container heating unit are provided. One of the heating modes described above is selected according to the temperature detected by either sensor. Also, the power supply is controlled to change gradually when the heating unit sensor detects a predetermined temperature in the process to execute the heating mode. This makes it possible to control the adhesive temperature to an appropriate temperature.
Next, because the viscosity of the adhesive is high and its fluidity is low when it is near its melting temperature in the container, the adhesive must be stirred in the container. Carrying out the stirring by rotating an applicator roller provided inside the container makes for a simple configuration. Also, after the sensor means detects the predetermined temperature, the applicator roller is controlled to start rotating. For example, when the heating unit temperature sensor that detects the temperature of the container heating unit has reached a predetermined temperature, this is configured to start rotating after an estimated amount of time for the adhesive in the container to become liquefied and to take on the predetermined fluidity. Also, the applicator roller does not rotate in a single direction, but reverse-rotates in the direction opposite to the application direction, and then forward-rotates in the application direction. Note that the estimated time mentioned above is set to different times for the plurality of heating modes.
The bookbinding apparatus of the present invention is provided with stacking means that aligns sheets sequentially discharged from an image forming apparatus or the like, into a sheet bundle, and sheet bundle conveyance means that conveys a sheet bundle from the stacking means to a predetermined binding position. Also, an adhesive applicator is provided that applies adhesive to an edge of the sheet bundle in the binding position and this adhesive applicator employs the configuration described above. The container storing adhesive is supported on an apparatus frame to move along an edge of the sheet bundle, and is reciprocatingly moved by a drive motor, which makes the container comparatively more compact.
The present invention provides a plurality of heating modes that have different supplied power and supply times for heating means arranged at the container that stores adhesive. By selecting and executing one of the heating modes according to the temperature of the adhesive detected by sensor means when starting up the apparatus, it is possible to warm up the apparatus and enable operation in a comparatively short amount of time using a heating mode that is preset according to a status of the temperature of the adhesive when starting up the apparatus. At the same time as this, a stirring rotor such as an applicator roller is disposed on the container to rotate when the adhesive in the container has reached a predetermined viscosity to attain a uniform temperature status of the adhesive, without inviting the problems of operational problems or breakdowns of the drive system, such as the applicator roller.
Particularly, the heating modes can accurately control the temperature of adhesive that is delayed after the charging of power, in a short amount of time by varying the power, for example the current, applied to the heating means and the charging time, according to estimates obtained by experiment and other means. By setting these heating modes to a plurality of patterns that differ according to the initial temperature status of the adhesive (such as the temperature of the apparatus at startup), it is possible to warm up the apparatus at startup even more efficiently.
From the following detailed description in conjunction with the accompanying drawings, the foregoing and other objects, features, aspects and advantages of the present invention will become readily apparent to those skilled in the art.
A preferred embodiment of the present invention will be explained based on the drawings provided. The adhesive applicator B of the present invention will be explained first with reference to
In
An applicator roller 30 is rotatably supported on a bearing inside the liquid tank 10a. This applicator roller 30 is formed by a heat-resistant rubber material that has superior impregnating ability, and is arranged so that an upper half thereof projects upward of the liquid tank 10a, and a bottom half dips inside of the liquid tank 10a. The rotation of the applicator roller 30 dips the bottom half of the roller into liquefied adhesive, and the upper half that projects upward applies the adhesive to the sheet bundle. A rotating shaft 31 of the applicator roller 30 is longitudinally arranged at the filler chamber 10b via communication holes, and a stirring gear 32 that stirs the adhesive in the filler chamber 10b is mounted to this rotating shaft 31.
A stirring motor M1 that is capable of both forward and reverse rotation is connected to this rotating shaft 31. Therefore, the rotational drive of the stirring motor M1 rotates the applicator roller 30 and the stirring gear 32 so the applicator roller 30 stirs the adhesive inside the liquid tank 10a and the stirring gear 32 stirs the adhesive in the filler chamber 10b. Therefore, the stirring gear 32 and applicator roller 30 compose a stirring rotor, and the stirring motor M1 composes their drive means. 10d in the drawings is an adhesive liquid storage unit. This forms a basin for supplying adhesive to the applicator roller 30 at a stable temperature without the adhesive becoming insufficient.
A liquid temperature sensor 22a is provided to detect a temperature of liquefied adhesive in the adhesive liquid storage unit 10d. This liquid temperature sensor 22a is composed of a bar-shaped thermistor and is arranged at the adhesive liquid storage unit 10d separated from the applicator roller 30. This thermistor is composed of a sintered fine-ceramic semiconductor heat-sensitive element made of several types of transition metal oxides such as Mn, Co, Ni, Fe and Cu.
The liquid temperature sensor 22a shown in the drawing detects the liquid surface (the remaining amount of adhesive) of the adhesive at the same time as detecting the temperature. Specifically, this determines the liquid amount from the temperature changes using the liquid surface of the adhesive heated to a temperature higher than room temperature, and detects the residual amount of the adhesive. In that case, the liquid temperature sensor 22a is arranged at the adhesive liquid storage unit 10d separated from the applicator roller 30 so that the detection of the liquid surface is unaffected by the rotation of the applicator roller 30.
Also, the symbol 34 in the drawings is the control bar. This is arranged along a circumference of the applicator roller 30 in a machine direction of the container, and at a predetermined distance along the circumference of the applicator roller 30 to apply adhesive uniformly to the circumference of the roller. This control bar 34 adjusts the gap with the roller according to the position of the sheet bundle. In the drawings the symbol 36 is a plate-shaped blade arranged to form a predetermined distance (doctor gap) to the circumference of the applicator roller 30 to sweep away excess adhesive adhering to the roller circumference.
Heating means consisting of an electric heater 20 is equipped on such a container 10. This electric heater 20 is built into the bottom side of the liquid tank 10a of the container 10. It is acceptable to arrange the electric heater 20 on either the liquid tank 10a or the filler chamber 10b, or on both. In the drawings the filler chamber 10b and liquid tank 10a are separated by a wall to prevent the temperature of the adhesive saturated on the applicator roller 30 from dropping when solid adhesive is filled. It is acceptable to preheat the solid adhesive by arrange an electric heater inside the filler chamber 10b.
The following will explain the control of the heating means (electric heater 20) arranged inside the liquid tank 10a.
The liquid temperature sensor 22a, and a heater unit temperature sensor 22b that detects the temperature of the container heater unit are arranged in the container explained above. Also, an error temperature detection sensor, not shown, is provided in the container 10. The liquid temperature sensor 22a directly detects the adhesive temperature inside the container 10 as described above, and the heater unit temperature sensor 22b is arranged to detect the temperature of the container heater unit when the container 10 temperature is raised by the electric heater (embedded in the liquid tank 10a) embedded in the container 10. The error temperature detection sensor is arranged, for example, in the container 10 and executes safety measures such as turning off the heater electricity when it detects that the adhesive and container are overheated. These sensors are each connected to a control CPU 26 (see
This control CPU 26 is prepared as a controller of the bookbinding apparatus A, described below, or the adhesive applicator B. It is recorded with a heating control execution program (for example ROM 28) as shown in
With this configuration, the heating means (electric heater 20) is controlled to generate heat in the following three heating modes. Power to the bookbinding apparatus A is turned on, and when a temperature control starting command is issued, the adhesive applicator B receives this command. Then, the adhesive applicator B first detects the adhesive temperature in the container 10. This adhesive temperature is detected by using either the liquid temperature sensor 22a or the heating unit temperature sensor 22b. (When the apparatus is started up normally, they are both the same temperature.)
As shown in
The following will explain temperature control for the apparatus shown in the drawings, presuming the adhesive temperature is not above 130° C. when the temperature control command is issued, and that the melting point of the adhesive is 70° C. and the adhesive temperature at the optimum condition to apply to sheets is 150° C.
The first heating mode is composed of the following primary heating step and secondary heating step.
Electric power is supplied to the heating means 20 at full power until the heating unit temperature sensor 22b reaches 90° C. Full power means to supply electric power at maximum output (251 watts) of the tolerance of the electric circuit mentioned above. The pulse current supplied from the pulse generator 23, explained above, to the electric heater 20 is adjusted by command from the temperature control means (control CPU) 26 when heating at full power. When the heating unit temperature sensor 22b equipped at the container 10, detects the container temperature to be 90° C., the target temperature is set to 170° C., and electric power that corresponds to that target temperature is applied to the electric heater 20.
When the heating unit temperature sensor 22b detects the container temperature to be 120° C., the target temperature is set to 150° C. after a delay time Tal (270 seconds) after this detection signal, and electric power that corresponds to this target temperature is applied to the electric heater 20. Note that the temperature of 150° C. is the final temperature setting to adjust the final temperature of the adhesive. At the same time as that temperature adjustment, the applicator roller 30 is rotated by the stirring motor M1. The rotation of the applicator roller 30 stirs the adhesive whose temperature has risen to the melting point in the liquid tank 10a of the container 10.
When the heating unit temperature sensor 22b detects the temperature of 120° C., the applicator roller 30 is rotated in the opposite direction (reverse rotation to the application direction) for five seconds after a delay time Tb1 (255 seconds) after this detection signal. The circumference speed at this time is set to 82.5 mm/sec (low speed). The reason for causing the applicator roller 30 to rotate in reverse is to sweep away solidified adhesive on the circumference of the roller using the control bar 34. The reason for limiting the reverse rotation to five seconds is because adhesive will overflow if rotated in that way, and the fluidity of the adhesive is better in the forward rotation than the opposite rotation.
The applicator roller 30 is rotated at the low speed. When five seconds have passed, the applicator roller 30 is rotated in the forward direction at 200 mm/sec (high speed). After this high speed rotation is continued for 20 seconds, the applicator roller 30 is rotated in the forward direction for 30 seconds at 82.5 mm/sec (low speed). 280 seconds are required after the container temperature reaches 120° C. for the adhesive in the container to reach its final temperature setting of 150° C., then the warming up time is ended. After this waiting time, a warming up end signal is issued.
The second heating mode is composed of the following primary heating step and secondary heating step.
In the same way as the first heating mode, electric power is supplied to the heating means 20 at full power until the heating unit temperature sensor 22b reaches 90° C. Next, when the heating unit temperature sensor 22b equipped at the container 10 detects the container heater temperature to be 90° C., the target temperature is set to 170° C., and electric power that corresponds to this target temperature is applied to the electric heater 20.
When the heating unit temperature sensor 22b detects the container heater temperature to be 120° C., the target temperature is set to 150° C. after a delay time Ta2 (130 seconds) after a detection signal, and electric power that corresponds to this target temperature is applied to the electric heater 20. At the same time as that temperature adjustment, the applicator roller 30 is rotated by the stirring motor M1. The rotation of the applicator roller 30 stirs the adhesive whose temperature has risen to the melting point in the liquid tank 10a of the container 10. When the heating unit temperature sensor 22b detects the temperature of 120° C., the applicator roller 30 is rotated in the opposite direction (reverse rotation to the application direction) for five seconds after a delay time Tb2 (40 seconds) after this detection signal. The circumference speed at this time is set to 82.5 mm/sec (low speed).
The applicator roller 30 is rotated at the low speed. When five seconds have passed, the applicator roller 30 is rotated in the forward direction at 200 mm/sec (high speed). After this high speed rotation is continued for 160 seconds, the applicator roller 30 is rotated in the forward direction for 30 seconds at 82.5 mm/sec (low speed). 235 seconds are needed after the container heater unit temperature reaches 120° C. for the adhesive in the container 10 to reach its final temperature setting of 150° C., then the warming up time is ended. After this waiting time, a warming up end signal is issued.
The third heating mode is composed of the following primary heating step and secondary heating step.
Electric power is supplied to the heating means 20. The power supply is set to the target temperature of 170° C., and electric power that corresponds to that target temperature is applied to the electric heater 20.
When the heating unit temperature sensor 22b detects the container heater temperature to be 120° C., the target temperature is set to 150° C. after a delay time Ta3 (90 seconds) after a detection signal, and electric power that corresponds to this target temperature is applied to the electric heater 20. At the same time as that temperature adjustment, the applicator roller 30 is rotated by the stirring motor M1. The rotation of the applicator roller 30 stirs the adhesive whose temperature has risen to the melting point in the liquid tank 10a of the container 10. When the heating unit temperature sensor 22b detects the temperature of 120° C., the applicator roller 30 is rotated in the opposite direction (reverse rotation to the application direction) for five seconds after a delay time Tb3 (20 seconds) after this detection signal. The circumference speed at this time is set to 82.5 mm/sec (low speed).
The applicator roller 30 is rotated at the low speed. When five seconds have passed, the applicator roller 30 is rotated in the forward direction at 200 mm/sec (high speed). After this high speed rotation is continued for 130 seconds, the applicator roller 30 is rotated in the forward direction for 30 seconds at 82.5 mm/sec (low speed). 185 seconds are needed after the container heater unit temperature reaches 120° C. for the adhesive in the container 10 to reach its final temperature setting of 150° C., then the warming up time is ended. After this waiting time, a warming up end signal is issued.
The temperature settings of 90° C. and 120° C. in each of the first to the third heating modes are set with consideration to the following. First, the temperatures settings near the electric heater, and adhesive near to and far from this heater are different. Particularly, the temperature distribution in solid or gelatinous adhesives varies greatly because the adhesives are not convective. Therefore, the differences are big because if the temperature of the heater itself is detected, the set temperature is quickly reached, and if the temperature of the adhesive itself is detected, the temperature rises slowly, and because of the amount of adhesive amount. Because there are many unstable elements in detecting the temperatures of the heater and the adhesive, the temperature of the container heater arranged with a heater is detected.
The temperature setting of 90° C. is suitable so that the adhesive temperature from the melting point (70° C. in the drawings) does not overheat the target of 150° C. If this is set low, it takes time to reach the target temperature, and if it is set high, there is the possibility of exceeding the target temperature. In the same way, the temperature setting of 120° C. is a standard temperature for controlling at the delay time Ta (Ta1=270 seconds in the first heating mode; Ta2=103 seconds in the second heating mode; Ta3=90 seconds in the third heating mode) found through experimentation of the heater.
This temperature is not limited to 120° C. and can be set to any degree. These three heating modes charge electric power to the heating means as a primary heating step that corresponds to the initial temperature of the adhesive until the temperature of the container heating unit equipped with heating means 20 reaches the predetermined temperature (set to 120° C. in the drawing). After the container heating unit reaches a predetermined temperature, the second stop supplies electric power to the heating means varying the target temperature gradually after the delay time Ta set by experimentation, such as by using a timer, has passed. Because the adhesive temperature, container temperature (container heating unit temperature), and heater temperature differences and fluctuations are great due to the conditions (desired temperature, container volume) of the adhesive for the reasons described above, the heater is controlled according to a time set (the Ta time described above) by experimentation after the temperature of the container heater reaches a predetermined temperature.
Therefore, the temperature settings of 90° C. and 120° C. must be set according to the configuration of the heating device. For example, these settings must be set according to the heater capacity. Depending on the configuration, there is room for more than three settings, or to raise the set temperature. The power supply for each mode and the supply times are each set to values gained from experience and through testing. Also, the primary heating step supplies electric power until the temperature of the container heater unit reaches the predetermined temperature, and the secondary step supplies predetermined amount of electric power for a preset amount of time.
As is clear from the chart of
Next,
The following will explain the bookbinding apparatus with the adhesive applicator described above is incorporated.
As shown in
Next, the bookbinding apparatus A aligns printed sheets sequentially discharged from the discharge outlet 43 at a stacking tray 44 for a predetermined number of sheets. The symbol 45 in the drawing is a sheet conveyance-in path that guides printed sheets from the discharge outlet 43 to the stacking tray 44. A sheet bundle aligned and organized on the stacking tray 44 is conveyed to an adhesive application position E (see the arrow in
Also, a cover sheet conveyance path 48 that feeds a cover sheet is branchingly connected at this sheet conveyance path 45. A sheet conveyance out path 49 is connected to this cover sheet conveyance path 48. Specifically, printed sheets from the discharge outlet 43 of the printing apparatus C are fed from the sheet conveyance in path 45 to the stacking tray 44, and a cover sheet conveyed out from the discharge outlet 43 is supplied to the cover sheet conveyance path 48 that branches from there. At the same time, printed sheets that will not undergo the bookbinding process are conveyed through the bookbinding apparatus A to the stacker apparatus D from the sheet conveyance out path 49 from the discharge outlet 43 via the sheet conveyance in path 45 and the cover sheet conveyance path 48.
The bookbinding path 47 and the cover sheet conveyance path 48 are arranged to mutually intersect. The sheet bundle conveyed from the bookbinding path 47, and the cover sheet conveyed from the cover sheet conveyance path 48 are joined at the intersection F (see the arrow in
The sheet bundle gripped by the gripping conveyance means 46 and held at an upright posture at the adhesive application position E is applied with a predetermined amount of adhesive (glue) at a bottom edge. The container 10 explained in relation to
The container 10 is supported to move on a guide rail along a length direction of the sheet bundle held by the gripping conveyance means 46, and is reciprocatingly moved by a reciprocating motor M2. In this way, the container 10 is supported to move in a length direction (a direction perpendicular to the bundle thickness) along the backside of the sheet bundle, and is reciprocatingly moved by a reciprocating motor M2. At that time, the applicator roller 30 of the container 10 is rotated by the stirring motor M1 in a predetermined direction, for example a moving direction of the container and an opposite direction. When it is rotated, the adhesive impregnated on the applicator roller 30 is applied to the back of the sheet bundle. After the application process is completed, the container 10 retracts to the outside from the conveyance path. The solid adhesive is supplied to the filler chamber 10b from a hopper 38 shown in
On the other hand, the sheet bundle applied with adhesive is sent to the intersection F by the gripping conveyance means 46, and joined to the covers sheet HS supplied from the cover sheet conveyance path 48. After two are joined, the sheet bundle is bound into a booklet by the folding rollers 53, and if required, a cutting unit 50 arranged at a downstream side of the folding rollers 53 can cut the peripheral edges. The sheet bundle bound with the cover sheet in this way is then stacked and stored in the booklet sheet storing stacker 51.
Note that the cover sheet HS in the embodiment can be printed with a title, etc., at the printing apparatus C and then conveyed out in the same way from the discharge outlet 43, but it is also acceptable to provide an inserter between the printing apparatus C and the bookbinding apparatus A to supply the cover sheet HS from the inserter to the sheet conveyance in path 45. The inserter apparatus can also be composed of a one or a plurality of stacking trays, kick rollers for separating sheets on a tray to single sheets, and of feeding paths that lead sheets from the kick rollers to the sheet conveyance in path 45.
Also, the stacker apparatus D is composed of a discharge tray that sequentially stacks and stores sheets conveyed out from the conveyance outlet 52 of the sheet conveyance out path 49 connected the cover sheet conveyance path 48. In this apparatus, it is acceptable to provide a finishing unit that finishes sheets from the conveyance outlet 52 by stapling, punching holes or by applying a mark. Any known mechanism can be applied as the finishing unit.
This application claims priority rights from Japanese Pat. App. No. 2006-40077, which is herein incorporated by reference.
Only selected embodiments have been chosen to illustrate the present invention. To those skilled in the art, however, it will be apparent from the foregoing disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing description of the embodiments according to the present invention is provided for illustration only, and not for limiting the invention as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
JP-2006-040077 | Feb 2006 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 11676510 | Feb 2007 | US |
Child | 13211263 | US |