Embodiments of the invention may relate generally to data storage devices and more particularly to use of an adhesive cover seal for hermetically sealing a data storage device.
A hard-disk drive (HDD) is a non-volatile storage device that is housed in a protective enclosure and stores digitally encoded data on one or more circular disks having magnetic surfaces. When an HDD is in operation, each magnetic-recording disk is rapidly rotated by a spindle system. Data is read from and written to a magnetic-recording disk using a read-write head that is positioned over a specific location of a disk by an actuator. A read-write head uses a magnetic field to read data from and write data to the surface of a magnetic-recording disk. A write head makes use of the electricity flowing through a coil, which produces a magnetic field. Electrical pulses are sent to the write head, with different patterns of positive and negative currents. The current in the coil of the write head induces a magnetic field across the gap between the head and the magnetic disk, which in turn magnetizes a small area on the recording medium.
HDDs are being manufactured which are hermetically sealed with helium inside.
Further, other gases that are lighter than air have been contemplated for use as a replacement for air in sealed HDDs. There are various benefits to sealing and operating an HDD in helium ambient, for example, because the density of helium is one-seventh that of air. Hence, operating an HDD in helium reduces the drag force acting on the spinning disk stack and the mechanical power used by the disk spindle motor. Further, operating in helium reduces the flutter of the disks and the suspension, allowing for disks to be placed closer together and increasing the areal density (a measure of the quantity of information bits that can be stored on a given area of disk surface) by enabling a smaller, narrower data track pitch. The lower shear forces and more efficient thermal conduction of helium also mean the HDD will run cooler and will emit less acoustic noise. The reliability of the HDD is also increased due to low humidity, less sensitivity to altitude and external pressure variations, and the relative absence of corrosive gases or contaminants.
Electronic systems that require a hermetically-sealed internal volume (e.g., a lighter-than-air gas-filled, sealed HDD) need a way of preventing the occurrence of leakage through the interface between the cover and the corresponding enclosure base to which the cover is coupled. One approach is to utilize two covers: (1) one (a “first cover”) being the typical HDD cover coupled to the base with fasteners and with a gasket seal therebetween, but not hermetically-sealed, with (2) another cover (a “second cover”) being welded to the base over the first cover, such as by laser welding. However, sealing approaches involving laser welding secondary covers to the base are a relatively costly process in the context of the mass production of HDDs, with strict surface finish requirements and the cost of the welding equipment being main contributors to the cost. Furthermore, the welded seam is often a weak point, which may be damaged in the field by rough handling of the devices, whereby consequent leaks may result in an increased drive failure rate as compared to non-sealed products. Based at least on the foregoing, challenges remain with welded covers for hermetically-sealed HDDs.
Any approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
Embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Approaches to an adhesive seal for a hermetically-sealed data storage device are described. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the invention described herein. It will be apparent, however, that the embodiments of the invention described herein may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the embodiments of the invention described herein.
Embodiments may be used in the context of a hermetic seal for a hard disk drive (HDD) storage device. Thus, in accordance with an embodiment, a plan view illustrating an HDD 100 is shown in
The HDD 100 further includes an arm 132 attached to the HGA 110, a carriage 134, a voice-coil motor (VCM) that includes an armature 136 including a voice coil 140 attached to the carriage 134 and a stator 144 including a voice-coil magnet (not visible). The armature 136 of the VCM is attached to the carriage 134 and is configured to move the arm 132 and the HGA 110 to access portions of the medium 120, all collectively mounted on a pivot shaft 148 with an interposed pivot bearing assembly 152. In the case of an HDD having multiple disks, the carriage 134 may be referred to as an “E-block,” or comb, because the carriage is arranged to carry a ganged array of arms that gives it the appearance of a comb.
An assembly comprising a head gimbal assembly (e.g., HGA 110) including a flexure to which the head slider is coupled, an actuator arm (e.g., arm 132) and/or load beam to which the flexure is coupled, and an actuator (e.g., the VCM) to which the actuator arm is coupled, may be collectively referred to as a head stack assembly (HSA). An HSA may, however, include more or fewer components than those described. For example, an HSA may refer to an assembly that further includes electrical interconnection components. Generally, an HSA is the assembly configured to move the head slider to access portions of the medium 120 for read and write operations.
With further reference to
Other electronic components, including a disk controller and servo electronics including a digital-signal processor (DSP), provide electrical signals to the drive motor, the voice coil 140 of the VCM and the head 110a of the HGA 110. The electrical signal provided to the drive motor enables the drive motor to spin providing a torque to the spindle 124 which is in turn transmitted to the medium 120 that is affixed to the spindle 124. As a result, the medium 120 spins in a direction 172. The spinning medium 120 creates a cushion of air that acts as an air-bearing on which the air-bearing surface (ABS) of the slider 110b rides so that the slider 110b flies above the surface of the medium 120 without making contact with a thin magnetic-recording layer in which information is recorded. Similarly in an HDD in which a lighter-than-air gas is utilized, such as helium for a non-limiting example, the spinning medium 120 creates a cushion of gas that acts as a gas or fluid bearing on which the slider 110b rides.
The electrical signal provided to the voice coil 140 of the VCM enables the head 110a of the HGA 110 to access a track 176 on which information is recorded. Thus, the armature 136 of the VCM swings through an arc 180, which enables the head 110a of the HGA 110 to access various tracks on the medium 120. Information is stored on the medium 120 in a plurality of radially nested tracks arranged in sectors on the medium 120, such as sector 184. Correspondingly, each track is composed of a plurality of sectored track portions (or “track sector”) such as sectored track portion 188. Each sectored track portion 188 may include recorded information, and a header containing error correction code information and a servo-burst-signal pattern, such as an ABCD-servo-burst-signal pattern, which is information that identifies the track 176. In accessing the track 176, the read element of the head 110a of the HGA 110 reads the servo-burst-signal pattern, which provides a position-error-signal (PES) to the servo electronics, which controls the electrical signal provided to the voice coil 140 of the VCM, thereby enabling the head 110a to follow the track 176. Upon finding the track 176 and identifying a particular sectored track portion 188, the head 110a either reads information from the track 176 or writes information to the track 176 depending on instructions received by the disk controller from an external agent, for example, a microprocessor of a computer system.
An HDD's electronic architecture comprises numerous electronic components for performing their respective functions for operation of an HDD, such as a hard disk controller (“HDC”), an interface controller, an arm electronics module, a data channel, a motor driver, a servo processor, buffer memory, etc. Two or more of such components may be combined on a single integrated circuit board referred to as a “system on a chip” (“SOC”). Several, if not all, of such electronic components are typically arranged on a printed circuit board that is coupled to the bottom side of an HDD, such as to HDD housing 168.
References herein to a hard disk drive, such as HDD 100 illustrated and described in reference to
The term “hermetic” will be understood to describe a sealing arrangement designed to have nominally no (or negligible) gaseous leakage or permeation paths. While terms such as “hermetic”, “negligible leakage”, “no leakage”, etc. may be used herein, note that such a system would often still have a certain amount of permeability and, therefore, not be absolutely leak-free. Hence, the concept of a desired or target “leak rate” may be used herein.
The term “substantially” will be understood to describe a feature that is largely or nearly structured, configured, dimensioned, etc., but with which manufacturing tolerances and the like may in practice result in a situation in which the structure, configuration, dimension, etc. is not always or necessarily precisely as stated. For example, describing a sidewall as “substantially vertical” would assign that term its plain meaning, such that the sidewall is vertical for all practical purposes but may not be precisely at 90 degrees.
Recall that electronic systems that require a hermetically-sealed internal volume (e.g., a lighter-than-air gas-filled, sealed HDD) need a way of preventing the occurrence of leakage through the cover-to-base interface, with one approach being to utilize two covers, the second of which may be laser welded to the base, over the first cover.
Consider for example that a 3.5″ form factor HDD has an enclosure perimeter approximately 500 mm long. If a simple flat metal cover is attached to the tops of the vertical sidewalls of a tub-style base, the width of the joint might typically be around 1 mm, or perhaps 2 mm at most. The sidewalls of the base are typically 5 mm thick or less, to provide room for internal components. In particular, the regions where the sidewalls pass by the outer diameter (OD) of the disk stack must be especially thin (at most 3 mm thick) simply because of the size of the disks (e.g., 95 mm diameter), the width of the form factor (101.6 mm) and provisioning for minimal clearance between the base sidewalls and the rotating disks. Furthermore, the full width of a sidewall generally cannot be used to create a sealing face for the cover. The assembly process for sealed drives may involve first attaching an inner cover with a preliminary gasket seal, followed by servo-writing and manufacturing test (which has imperfect yield, so performing these while the second cover is not in place allows reworkability), followed by attaching a hermetically-sealed second cover (after second cover attachment, the drive is no longer reworkable because the second cover seal/attachment is not reversible). Because the preliminary gasket seal of the first cover generally requires some sidewall top face width to achieve a seal, the amount of remaining sidewall top face width is reduced to around only 1 mm or less at the narrowest points next to the outer diameter of the disks.
While laser welding of the second cover to the base can successfully create a permanent hermetic seal with very little top face width on the base sidewall, laser welding is a relatively expensive process. A lower cost approach than laser welding, for joining and sealing the cover-to-base interface, may be to use an epoxy adhesive. Adhesive sealing methods described herein can serve as less expensive and a physically more robust alternatives to laser welding, and may contribute to achieving epoxy seals that meet the leak and form-factor requirements while being suitable for cost-effective mass manufacturing.
An adhesive seal uses an adhesive material, such as an epoxy or a pressure sensitive adhesive (PSA), to fill gaps between two parts. For example, an adhesive seal may be used to fill gaps between a second cover and a base casting of an HDD, which are individually largely impermeable to helium, to create a seal between the two parts that meets a certain leak requirement.
Achieving a low enough leak rate for a cover seal using epoxy generally may or should consider the following: (a) the type of epoxy adhesive used, for a non-limiting example, a low permeability epoxy adhesive such as alumina-filled H72 epoxy from Epoxy Technology (EpoTek) is considered suitable; (b) the bond line thickness between the cover and the base, with a preference for a thin bond line, for a non-limiting example, around 0.1 mm or less is considered suitable; and (c) the width (or height) of the seal, which is the overlap region between the cover and the base, with a preference for a wide (or long) seal, for a non-limiting example, around 5-10 mm or more is considered suitable.
The need for a wide seal [e.g., (c) above] presents a challenge to achieving an adequate seal with a simple horizontal bond line between a base sidewall and a cover. Although reducing the width of the bond could be compensated for by reducing the thickness of the bond, consistently achieving such a thin bond line would rely on, for example, an exceptionally good surface finish (e.g., low roughness) and extremely tight geometric tolerances (e.g., planarity, or flatness) on the mating surfaces and/or very small or no filler particles within the epoxy (which, by the way, are useful for achieving low permeability of the epoxy in the first place). However, achieving a bond line having a thickness of approximately 0.05-0.1 mm is considered achievable with typical machined surfaces and commercially available epoxy.
A hermetically-sealed HDD (or, throughout this description, other types of data storage devices) enclosure may comprise a base and one or more covers, recalling that one approach is to employ a conventional first cover with a second cover affixed (e.g., welded) thereover. Herein throughout, unless otherwise indicated the term “cover” is used to refer to the second cover. The base is typically thicker than the cover and has more features for component attachments and customer mounts. The cover is simpler and mostly used for creating a closed, hermetically-sealed enclosure.
A quality laser weld has almost no permeability to helium, thus a thin laser weld can satisfy the typical leak requirement. However, adhesives are relatively more permeable, and require a longer seal. To enable a longer seal within the common drive form factor, a more complex cover design may be beneficial. As mentioned, near the disk OD, the top edge of the base wall is narrow and, as a result, a long seal can only be created between the cover and the vertical sidewalls of the base.
According to an embodiment, the cover 204 is fabricated by bending a metallic sheet. Related embodiments include (a) pre-forming the cover 204, by bending a metallic sheet prior to assembly with the base 202, and (b) forming a “shape-in-place” cover 204, by bending a metallic sheet while assembling with the base 202, thereby effectively utilizing the base 202 as a shaping mold.
According to an alternative embodiment, the cover may be pre-formed into a bath tub-shaped (or simply “tub”) cover, which is pre-formed into a 3-dimensional shape having the main planar portion and the continuous sidewalls prior to assembly with the base. A tub cover is described in more detail elsewhere herein, such as with reference to
As a variety of adhesives exist, one fundamental characteristic to consider in selecting a suitable adhesive for forming a hermetic seal between or among a cover 204 and base 202 in a helium-filled HDD is for the adhesive to have a low permeability to helium. Likewise, if some other lighter-than-air gas is used for filling an HDD, the adhesive's permeability to that gas would be a characteristic to consider.
With a proper joint design, epoxies have a sufficient permeability to helium to create an effective helium seal. Epoxies can be applied in liquid form, or as a tacky film pre-applied or slathered onto a part (i.e., “B-staged”). In the liquid form, the epoxy can be applied to a part before the parts are assembled together if a high viscosity formulation is used. Alternatively, a low viscosity liquid epoxy can be dispensed and drawn into the seal using capillary action (or “capillary flow”), referring to the tendency of a liquid to flow or be drawn into narrow spaces without the assistance of external forces, i.e., as a result of the intermolecular attraction within and between the liquid and solid materials. While other adhesives, such as PSAs, generally have a higher permeability than epoxies, at least one type (Adhesive Research PSA EL-92734) can still meet the application requirements. Such adhesives can be applied prior to mating the parts. These adhesive generally do not require a curing step after joining of the mating parts, and are preferred in that sense.
For embodiments in which a liquid epoxy seal is used, the flow of the epoxy should preferably be managed. According to an embodiment, one technique for controlling the liquid epoxy flow is to have a limited number of fill points, where a sufficient amount of epoxy is injected or dispensed and is then transferred into the joint by capillary action. According to a related embodiment, one or more channels connected to one or more fill points are provided, which help spread the epoxy along the seal periphery, thereby shortening the capillary flow length. Such channels may be formed constituent to the cover 204 (
For embodiments in which a PSA seal is used, the HDD assembly may comprise a shape-in-place sheet metal cover (e.g., cover 204 of
According to an embodiment, a hybrid of the foregoing embodiments may be implemented. For example, a PSA may be used to fixture and/or set a gap between a base (e.g., base 202 of
Generally, the path of an adhesive seal can take multiple forms. For example, an epoxy seal between a tub cover and a base may follow a simple path around the perimeter of the sidewalls of the base and the tub cover. In such an adhesive seal configuration, it is preferable that the tub cover has a complete tub shape (i.e., having continuous sidewalls, including corners) and a suitable seal all the way around the perimeter, including the corners. For another example and with reference to
One approach to assembling and sealing a cover onto a base is to use an interference fit, whereby the cover 204 sidewalls 204a are deflected outward, thus exerting inward force to the base 202 sidewalls 202a while pushing the cover 204 down onto the base 202. However, a simple interference fit can risk tearing or cracking the cover 204 material, especially with a tub cover. Such risk is due, at least in part, to limitations on the manufacturing tolerances associated with both the cover 204 and the base 202. Thus, the precise amount of interference and the corresponding amount of stretching and cover perimeter increase may cause sufficient stress on the cover 204 to introduce risk of tearing or cracking the cover 204.
With a permeable material, naturally the leak rate increases with the seal thickness because a thicker seal provides a wider leak channel. Therefore, in practice there is a maximum limit on the seal thickness that would correspond with a given allowable leak rate for the seal. Furthermore, the thickness of the adhesive seal should be controlled in view of the mating part tolerances. A suitable epoxy adhesive seal width in on the order of around 0.1 mm, for a non-limiting example.
With continuing reference to
As depicted in
According to an alternative embodiment, dimples 308 may be formed onto the cover 304 in order to set the gap between the base 302 and the cover 304. For example, an array of dimples 308 (e.g., with a height of approximately 0.05-0.1 mm) may be formed into the cover 304 sidewalls 304a (thereby creating a form of controlled roughness) to set the gap width but to allow a suitable flow of epoxy throughout the seal area. While, for purposes of simplicity and clarity, dimples 308 are depicted on only one sidewall 304a of the cover 304, the dimples 308 may be implemented on each sidewall 304a. Furthermore, a combination of protrusions 306 on the base 302 and dimples 308 on the cover 304, possibly in an alternating pattern, may be used to set the desired gap between the base 302 and the cover 304, whereby such a configuration could contribute to a more desirable leak path, for example.
According to an embodiment, the sidewalls 304a of the cover 304 are bent in past vertical, such that the sidewalls 304a are preloaded against the base 302 as the cover 304 is assembled onto the base 302.
Whereas the protrusions 306 or dimples 308 set the gap between the respective sidewalls 304a of the cover 304 and the sidewalls 302a of the base 302 at the perimeter edge 311 of the sidewalls 304a, a bend 310 at the edge 311 of the cover 304 may be used to add rigidity to the sidewall 304a, according to an embodiment. With a cover 304 configuration in which a bend 310 is implemented, a fewer number of protrusions 306 may be used to set the desired uniform gap along the whole edge 311. The bend 310 at the edge 311 can also serve as a chamfer to guide the insertion of an over-bent cover 304 onto the base 302. The bend 310 can be pressed to flat or machined off at the end of the assembly process, if desired.
According to an embodiment, an alternative method for setting the gap between a base (e.g., base 202 of
If setting a gap as close as possible is desired, the cover 204 can be bent and formed onto the base 202 directly (i.e., a shape-in-place cover), according to an embodiment. To minimize the amount the sidewalls 204a may spring back after formation, a thicker sheet and/or a softer material for the cover 204 may be considered for use. If the shape-in-place forming process forces are too significant for the base 202 to handle, then a mostly pre-formed cover 204 can be pressed onto the base 202 to take the exact shape of the base, with minimal application of force(s) to the base 202. According to an embodiment, an alternative way of setting a close gap would be to use a pre-formed cover 204 that has been pre-stressed and shaped, such that its interference and spring-action results in the cover 204 conforming onto the sidewalls 202a of the base 202.
With an interference fit with a tub cover, the cover 204 sidewalls 204a are deflected outward, thus exerting inward force to the base 202 sidewalls 202a while pushing the cover 204 down onto the base 202. However, a simple interference fit can risk tearing or cracking the cover 204 material. Such risk is due, at least in part, to limitations on the manufacturing tolerances associated with both the cover 204 and the base 202. Thus, the precise amount of interference and the corresponding amount of stretching of the tub cover perimeter may fall within a range that introduces risk of tearing or cracking the cover 204.
When bonding the base 202 (
A suitable surface treatment of one or both of the mating parts (i.e., base 202 and cover 204 of
In the scenarios in which liquid epoxy is used, adequate filling of the joint interface by epoxy is needed to provide the required sealing performance. Although a proper design (e.g., surface treatment for enhanced capillary flow, or seal joint gap control, as described elsewhere herein) can ensure complete epoxy flow coverage, inspection and monitoring techniques may still be necessary for quality control and yield improvement.
The foregoing design alternatives can be combined in numerous ways to implement a detailed hard disk drive adhesive seal design. Several non-limiting example embodiments, suitable for sealing a hard disk drive and combining features described elsewhere herein, are described as follows.
With a pre-formed bent cover, tight gap control can be achieved, where the bend-to-bend tolerances can be controlled by bending the cover onto a master die. Any bend angle tolerance can be absorbed by the flexibility of the part, and the cover may be over-bent such that it is preloaded on the base when assembled. While the first example HDD adhesive seal configuration shown and described in reference to
As an aside, a possible advantage of a tub cover over a bent sheet metal cover is that there is considerably less possibility of epoxy leakage from the corners of a cover while the drive is upside down because the tub shape contains the epoxy around the entire perimeter interface. Regardless, care should still be taken to dispense an appropriate amount of epoxy into each adhesive filling feature 606 to avoid overflow. If each adhesive filling feature 606 has an adequate volume to serve as a source for enough epoxy to fill the entire perimeter seal, then a single injection of epoxy can be performed quickly, and the capillary spreading can take place without further dispensing of epoxy. On the other hand, if the adhesive filling features 606 do not have enough volume to provide for the full amount of a given epoxy (with a corresponding viscosity) needed to fill the complete seal, then multiple injections may be used, or a slower-rate single injection that allows some spreading while the filling process is being performed. To cure the epoxy, the HDD assembly 600 may be placed upside down in an oven, for example, where the weight of the HDD assembly 600 maintains the base 602 and the tub cover 604 together while the epoxy solidifies and bonds the parts together.
A challenge associated with a deep-drawn tub cover, such as tub cover 604, is that tight tolerances would be preferable for both the sloped chamfer on the base (if used) and the sidewalls of the tub cover (if used), in order to achieve a small, well-controlled gap all the way around the perimeter for the epoxy to fill by capillary action. In such a scenario, in lieu of or in addition to such tight tolerances, protrusions such as protrusions 306 (
While capillary filling works well for low-viscosity epoxy, a disadvantage of low-viscosity epoxy is that it tends to have higher gas permeability in the cured state than a higher-viscosity epoxy. A higher-viscosity epoxy filled with solid particles may have too high a viscosity for capillary filling, but shows significantly lower gas permeability in the cured state. Thus, a sealing approach directed at a high-viscosity epoxy is as follows.
According to an embodiment, the sidewall 904a of tub cover 904 has a sloped section 904a-1, where the epoxy seal is formed, and an alignment skirt 904a-2, which may have a lower slope or which may be completely vertical (as depicted in this example). The alignment skirt 904a-2 serves to self-align the cover 904 as it is lowered onto the base 902 in order to prevent accidental smearing of the epoxy bead 906 by unwanted contact.
At block 1102, a first cover is attached to an enclosure base having a plurality of sidewalls. For example, a conventional HDD cover may be attached to the base with fasteners and with a gasket seal therebetween, whereby servo-writing and manufacturing test may follow.
At block 1104, each of a plurality of sidewalls extending from a top portion of a bent sheet metal cover is positioned to overlap at least in part with a corresponding sidewall of the base. For example, each sidewall 204a (
At block 1106, an epoxy adhesive is applied at an interface of each sidewall of the bent sheet metal cover and each corresponding sidewall of the base to form a hermetic seal between (or “among” the parts, as the adhesive could be applied at or near where the bottom edge of the cover meets the base) the bent sheet metal cover and the base. For example, an epoxy adhesive is applied between each sidewall 204a of the cover 204 and each corresponding sidewall 202a of the base 202 to form a hermetic seal between the bent sheet metal cover 204 and the base 202. As described in reference to
Additional embodiments may include setting a gap between the sidewalls based on a plurality of protrusions (e.g., protrusions 306 of
At block 1202, a first cover is attached to an enclosure base having a plurality of sidewalls. For example, a conventional HDD cover may be attached to the base with fasteners and with a gasket seal therebetween, whereby servo-writing and manufacturing test may follow.
At block 1204, a flat metal sheet is positioned over the first cover, and at block 1206, the metal sheet is bent over the base to form a bent sheet metal cover comprising a plurality of sidewalls extending at an angle from a top portion such that each sidewall of the bent sheet metal cover overlaps at least in part with a corresponding sidewall of the base. For example, in
At block 1208, a hermetic seal is formed between the bent sheet metal cover 1304 and the base 1302 by applying pressure to a pressure-sensitive adhesive (PSA). For example, and according to embodiments, with a PSA-attached cover seal the PSA material (not visible) may be fixed to the underside of portions of the original flat metal sheet 1303, or the PSA material may be fixed to top portions of the base 1304. PSA has relatively high permeability, therefore the adhesive layer thickness should be limited (e.g., ˜25 μm). On the other hand, use of PSA can lead to a significantly narrower gap (e.g., ˜25 μm) with less concern for tolerances because the seal thickness is set by the PSA film thickness rather than by parts tolerances.
An additional embodiment may include, prior to forming the hermetic seal, applying a PSA tape 1305 (shown dashed in
Tub Cover with Tapered Radius Corners
With the tapered radius corner of
Base For Tub Cover with Tapered Radius Corners
According to an embodiment, at the top of the base 1602 sidewall 1602a, the width of the cover 1414 matches the width of the base 1602 (to within close tolerances), and there is no intentional interference created between the two parts. However, further down the sidewall 1602a, because there is a difference in slopes between the cover 1414 sidewall 1414a (vertical, in the embodiment depicted) and the base 1602 sidewall 1602a (depicted as 1.7 degrees off vertical), there is interference, as depicted in
However, as the sidewalls 1414a of the cover 1414 are forced outward by the slope on the sidewalls 1602a of the base 1602, “extra” material is needed to provide for this apparent increase in perimeter. Such “extra” material is effectively available in the corners 1413 of the cover 1414, because of the tapered radius (1413a relative to 1413b) of the corners 1413a. That is, if the cover had a constant corner radius (e.g., 4.75 mm), the cover corners would fit tightly over the base corner radius (e.g., 4.75 mm). However, since the corner radius 1413 of the cover 1414 gradually decreases (for a non-limiting example, from a top radius 1413b of 4.75 mm at the top of the cover corner 1413 to a bottom radius 1413a of 1 mm at the bottom of the cover corner 1413), there is some extra material in the corners 1413. Thus, as the cover 1414 sidewalls 1414a are pushed outward (as depicted by the arrow in
If fabrication tolerances are well controlled, the final state of the installed cover 1414 should have the cover sidewalls 1414a biased against the base 1602, with minimal excess material remaining in the corners 1413. Such corners 1413 may not necessarily form a very narrow bond line, so the leak rate in the corners 1413 could be higher than along the sidewalls 1414a. However, since the corners 1413 only occupy a small fraction of the total perimeter seal, a somewhat higher leak rate per unit length at the corners 1413 can be tolerated while keeping the entire cover seal within a specified leak budget.
With HDD configurations in which a tub cover is used (e.g., in lieu of a bent metal sheet cover), a similar process to the process described in reference to
At block 1802, a first cover is attached to an enclosure base having a plurality of sidewalls interposed between corners each having a substantially constant-radius outer surface. For example, a conventional HDD cover may be attached to a base 1602 with fasteners and with a gasket seal therebetween, where the base 1602 comprises constant-radius corners, and whereby servo-writing and manufacturing test may follow.
At block 1804, each of a plurality of sidewalls of a tub cover is positioned to overlap at least in part with a corresponding sidewall of the base, wherein each of a plurality of corners of the tub cover has a tapered radius that decreases from a top portion of the tub cover in the direction of the bottom edge of the tub cover. Further, the positioning includes forming an interference fit between the base and the tub cover at areas where the corners of the base and tub cover mate, by forcing outward each sidewall of the tub cover while forcing inward at least a portion of each corner of the tub cover. For example, each sidewall 1414a (
At block 1806, an epoxy adhesive is applied at an interface of each sidewall of the tub cover and each corresponding sidewall of the base to form a hermetic seal between (or among) the tub cover and the base. For example, an epoxy adhesive is applied between each sidewall 1414a (
Note that the adhesive sealant does not have to be epoxy, as other polymeric adhesives may be used. Furthermore, a heat-sealing material may be used by applying the material to one of the mating parts, and then heating the cover and base assembly after assembly to reflow the heat-seal material. Soldering may also be an option.
At block 1902, an enclosure is formed by positioning each of a plurality of sidewalls extending from a top portion of a cover to overlap at least in part with a corresponding sidewall of a base part. For example, form an enclosure by positioning the sidewalls of the cover 604 (
At block 1904, a liquid adhesive is dispensed between each sidewall of the cover and the corresponding sidewall of the base part, in such a quantity at each of a plurality of locations, to promote capillary flow of the liquid adhesive to form a continuous film of the liquid adhesive between the sidewalls around the entire perimeter of the enclosure. For example, a liquid adhesive (e.g., a liquid epoxy) is dispensed between the respective sidewalls of the cover 604 and the base 602, via the plurality of filling features 606 (
In this context, a “substantially” continuous film of liquid adhesive may be sufficient, where minute discontinuities in the adhesive could be present while the effectiveness of the seal still falls within the desired leak budget.
At block 1906, the continuous film of liquid adhesive is cured, to form a hermetic seal between the cover and the base part. According to embodiments, the surface treatment and gap control techniques described elsewhere herein, for example, may be applied to this assembly method for enhancing the capillary flow and controlling the seal thickness (i.e., by controlling the gap), respectively.
Implementation and use of embodiments described herein are not limited solely to individual HDDs. Rather, embodiments involving the use of particular cover and base configurations/geometries to provide a sufficiently low-permeable cover-to-base perimeter seal, may also be applied to a system level sealed tray or box of multiple HDDs enclosed in a box containing gas like He or N2, as well as to hermetically-sealed electronic devices, generally (e.g., optical systems, optical data storage devices, and the like).
In the foregoing description, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. Therefore, various modifications and changes may be made thereto without departing from the broader spirit and scope of the embodiments. Thus, the sole and exclusive indicator of what is the invention, and is intended by the applicants to be the invention, is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Any definitions expressly set forth herein for terms contained in such claims shall govern the meaning of such terms as used in the claims. Hence, no limitation, element, property, feature, advantage or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
In addition, in this description certain process steps may be set forth in a particular order, and alphabetic and alphanumeric labels may be used to identify certain steps. Unless specifically stated in the description, embodiments are not necessarily limited to any particular order of carrying out such steps. In particular, the labels are used merely for convenient identification of steps, and are not intended to specify or require a particular order of carrying out such steps.
This application is a divisional of and claims the benefit of priority to U.S. patent application Ser. No. 15/168,895 filed on May 31, 2016, which claims the benefit of priority to U.S. Provisional Patent Application No. 62/207,888 filed on Aug. 20, 2015, the entire content of all of which is incorporated by reference for all purposes as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4624752 | Arrowsmith et al. | Nov 1986 | A |
5084123 | Curtis | Jan 1992 | A |
5233491 | Kadonaga et al. | Aug 1993 | A |
5454157 | Ananth et al. | Oct 1995 | A |
5600509 | Kawakami | Feb 1997 | A |
5696648 | Jeong et al. | Dec 1997 | A |
5793566 | Scura et al. | Aug 1998 | A |
6226143 | Stefansky | May 2001 | B1 |
6266207 | Iwahara et al. | Jul 2001 | B1 |
6271985 | Ishikawa | Aug 2001 | B1 |
6525899 | Hearn et al. | Feb 2003 | B2 |
6693767 | Butler | Feb 2004 | B1 |
6721128 | Koizumi et al. | Apr 2004 | B1 |
6762909 | Albrecht et al. | Jul 2004 | B2 |
6820272 | Wang | Nov 2004 | B2 |
7119984 | Macleod et al. | Oct 2006 | B2 |
7218473 | Bernett et al. | May 2007 | B2 |
7362541 | Bernett et al. | Apr 2008 | B2 |
7522375 | Tsuda et al. | Apr 2009 | B2 |
7692891 | Hatchett et al. | Apr 2010 | B2 |
7876528 | Uefune et al. | Jan 2011 | B2 |
7957092 | Ichikawa et al. | Jun 2011 | B2 |
8094408 | Uefune et al. | Jan 2012 | B2 |
8205220 | Kim et al. | Jun 2012 | B2 |
8279552 | Stipe | Oct 2012 | B2 |
8451559 | Berding et al. | May 2013 | B1 |
8533934 | McGuire, Jr. et al. | Sep 2013 | B2 |
8659849 | Hayakawa et al. | Feb 2014 | B2 |
8753093 | Liotta | Jun 2014 | B2 |
8854766 | Gustafson et al. | Oct 2014 | B1 |
9147436 | Watson et al. | Sep 2015 | B2 |
9429494 | Gustafson | Aug 2016 | B1 |
20030081348 | Watanabe et al. | May 2003 | A1 |
20050094312 | Sato | May 2005 | A1 |
20060002005 | Miyazaki et al. | Jan 2006 | A1 |
20060034010 | Abe et al. | Feb 2006 | A1 |
20070035872 | Hayakawa et al. | Feb 2007 | A1 |
20070171567 | Choi et al. | Jul 2007 | A1 |
20070177308 | Kimura | Aug 2007 | A1 |
20070183085 | Hatchett et al. | Aug 2007 | A1 |
20090241322 | Uefune et al. | Oct 2009 | A1 |
20110212281 | Jacoby et al. | Sep 2011 | A1 |
20120275287 | McGuire, Jr. et al. | Nov 2012 | A1 |
20140301043 | Onishi et al. | Oct 2014 | A1 |
20150282362 | Nuriya et al. | Oct 2015 | A1 |
20160376473 | Furuta et al. | Dec 2016 | A1 |
Entry |
---|
Anonymous, Top cover sealing structure, The IP.com Prior Art Database, Jan. 23, 2014, 4 pages, IPCOM000234620D, ip.com, downloaded from https://priorart.ip.com/IPCOM/000234620. |
S. Fujio et al., Hard Disk Drive Enclosure Sealing for Electromagnetic Noise Immunity, IP.com Prior Art Database, Original Publication Date: Jun. 1, 1994 in IBM Technical Disclosure Bulletin vol. 37 No. 06A, Included in the Prior Art Database: Mar. 27, 2005, IP.com Disclosure No. IPCOM000112786D, IBM, US. |
Number | Date | Country | |
---|---|---|---|
20180114547 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62207888 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15168895 | May 2016 | US |
Child | 15849598 | US |