Adhesive label with grid for microscope slide

Abstract
An adhesive label 3 for attaching to a microscope slide 1 is disclosed. The label 3 may have one or more grids or arrays 2 provided on it to help an operator to manually spot a microscope slide 1.
Description




The present invention relates to a microscope slide in combination with a self-adhesive label for use in manual microarraying.




Microarraying involves the transfer of e.g. biological DNA material from a source e.g. a microtitre plate to a target e.g. a glass microscope or microarray slide. Microtitre plates holding 96, 384 or 1534 different DNA samples are known, and conventionally it is desired to accurately transfer the samples from the source onto the target in the form of small distinct and separate micro spots. Once the material has been deposited in the form of micro spots the individual samples can then be analysed.




The accurate transfer of material from a source to a target can be achieved by either robotic or manual spotting. For robotic transfer the configuration of the material on the source can be easily monitored and controlled by setting the robotic system to spot in pre-defined areas and in a pre-defined configuration.




However, for manual transfer of material, the placement of the material from the source onto the target tends to be more difficult to monitor and control. The material being transferred is often clear and thus once it is dry it can be very difficult to know where a spot has already been placed and therefore exactly where the next spot should be placed on the target.




It is therefore desired to overcome the problems associated with conventional manual spotting techniques.




According to a first aspect of the present invention there is provided the combination of a microscope slide and an adhesive label as claimed in claim 1.




According to a second aspect of the present invention there is provided an adhesive label as claimed in claim 5.




According to a third aspect of the present invention there is provided a method of transferring DNA samples.




According to a fourth aspect of the present invention there is provided a method of spotting a microscope slide.




According to a preferred embodiment a pre-gridded microscope slide is provided which has a pre-printed alpha-numeric grid attached to the underside of the slide. The alpha-numeric grid appears through the glass slide with the numbers and letters in the correct configuration i.e. write read up.











Various embodiments of the present invention will now be described, by way of example only, and with reference to the accompanying drawings in which:





FIG. 1

shows a microscope slide with a label attached thereto; and




FIGS.


2


(


a


) and


2


(


b


) show two different labels.











With reference to

FIG. 1

, transfer of material onto a target microscope slide


1


is carried out from a source plate to pre-defined positions on the top surface of the glass slide


1


, using a pre-printed grid


2


, preferably printed on a label


3


, as a guide for placement of material to be spotted. Knowing which box or cell of the grid


2


has previously been spotted enables a user to safely spot the next sample in the next available empty box or cell of the grid or array


2


.




The format of the pre-printed grid


2


may vary, but a 8×12 array or grid corresponding with a 96 well microtitre plate format is preferred. According to such an embodiment, 96 different DNA samples can be transferred from the source microtitre plate to the target microscope slide


1


with a one to one correspondence between the two of them.




Two different embodiments of label design are shown in FIGS.


2


(


a


) and


2


(


b


). The labels are shown enlarged. In the embodiment shown in FIG.


2


(


a


) each array


2


is approximately 6 mm×4 mm i.e. each cell is approximately 0.5 mm×0.5 mm. In the embodiment shown in FIG.


2


(


b


) each array


2


is approximately 12 mm×8 mm i.e. each cell is approximately 1 mm×1 mm. The size and number of grids


2


on a single microscope slide


1


may vary depending on the amount of material that needs to be transferred. For the transfer of relatively large sample amounts, the grids


2


can be made correspondingly larger so that the individual cells of the grid


2


can hold sufficient material.




After spotting, the pre-gridded slides


1


can be used in further analysis stages which may require the slides


1


to withstand extreme temperatures. The pre-gridded slides


1


can preferably withstand repeated freezing, including temperatures down to −2° C. and repeated heating, up to 96° C. over prolonged periods of time. The slides


1


are also preferably resistant to corrosive chemicals and reagents.




The grids


2


have also been shown not to interfere with scanning of the glass slides


1


to detect fluorescent dyes, which is usually one of the final stages of spotted material analysis.




Preferably, the printed grids can be removed from the glass microscope/arraying slides


1


, after transfer of material has occurred.



Claims
  • 1. A microscope slide in combination with a self-adhesive label comprising:a microscope slide having a front face upon which, in use, a sample to be analysed is deposited, and a rear face; and a label including indicia means comprising at least one alpha-numeric grid wherein, when said label is attached, in use, to the rear face of said microscope slide, said at least one alpha-numeric grid is visible when viewed through said front face of said microscope slide and wherein said at least one alpha-numeric grid comprises an 8×12 array.
  • 2. The combination as claimed in claim 1, wherein characters forming said at least one alpha-numeric grid are printed as a mirror image of conventional alpha-numerics so that, when viewed in a mirror, numbers will appear as 0, 1, 2, 3 . . . n and characters will appear as A, B, C . . . Z.
  • 3. An adhesive label for assisting the spotting of a microscope slide, said label having on one side an adhesive layer and on an opposed side a grid together with mirror images of alpha-numeric characters, wherein said grid comprises an 8×12 array.
  • 4. A method of transferring DNA samples from a microtitre plate to a microscope slide, comprising the steps of:providing a microtitre plate with a plurality of DNA samples arranged in an array of samples; providing a microscope slide having front and rear faces; attaching a pre-printed label having at least one alpha-numeric grid to the rear face of said microscope slide, said alpha-numeric grid comprising an 8×12 array; and transferring DNA material from said microtitre plate to the front face of said microscope slide using the grid on said label as a guide.
  • 5. A method of manually spotting a microscope slide, comprising the steps of:attaching an adhesive gridded indicia means comprising an alpha-numeric grid comprising an 8×12 array to an underside of said microscope slide; and spotting said microscope slide using said indicia means as a guide, with the indicia means being viewed through the microscope slide.
Priority Claims (1)
Number Date Country Kind
9927590 Nov 1999 GB
US Referenced Citations (12)
Number Name Date Kind
3951512 Tolles Apr 1976 A
4039247 Lawman et al. Aug 1977 A
4183614 Feldman Jan 1980 A
4327661 Boeckel May 1982 A
4447140 Campbell et al. May 1984 A
5349436 Fisch Sep 1994 A
5415060 DeStefano, Jr. May 1995 A
5512343 Shaw Apr 1996 A
5784193 Ferguson Jul 1998 A
5807522 Brown et al. Sep 1998 A
5812692 Rosenlof et al. Sep 1998 A
5866241 Xiang Feb 1999 A
Foreign Referenced Citations (12)
Number Date Country
37 38 982 Nov 1988 DE
4209460 Sep 1993 DE
199 52 139 Dec 2000 DE
326349 Aug 1989 EP
813086 Dec 1997 EP
443934 Mar 1936 GB
2125183 Feb 1984 GB
2163866 Mar 1986 GB
9203865 Aug 1997 JP
9-203865 Sep 1997 JP
9912057 Mar 1999 WO
0131383 May 2001 WO