This application is a U.S. national stage entry under 35 U.S.C. § 371 of International Patent Application No. PCT/GB2007/050179, filed Apr. 3, 2007, which claims priority from Great Britain Patent Application No. 0606661.7, filed Apr. 3, 2006.
This invention relates to a releasably adhesive laminate suitable for use in a wide variety of applications, in particular for use against the skin and more particularly as part of a wound dressing.
Different types of wound dressing are required to meet different clinical needs. However, there are several desirable characteristics that are common to all wound dressings. Pain-free removal and the ability to remove a dressing without trauma to the wound and the surrounding skin are two of the most important characteristics. In order to prevent pain and trauma, the facing layer of a wound dressing needs to maintain a moist layer over the wound to prevent adherence to the drying wound. However, it is also desirable for a wound dressing to include some form of adhesive layer to maintain it in position. Island dressings are typically used, which comprise a so-called “non-adherent” or “low-adherent” absorbent pad with an adhesive retention layer over the top forming an adhesive border that sticks to skin surrounding the wound. However, repeated removal and replacement of such dressings can damage the peri-wound skin, ie the wound adjacent to the skin. The term “atraumatic dressing” is used in relation to products that, upon removal, do not cause trauma either to newly formed tissue or to the peri-wound skin.
Soft silicone adheres readily to dry skin but does not stick to the surface of a moist wound and does not cause damage on removal. As well as satisfying these principal requirements for use as the skin contact layer in atraumatic dressings, there are several other intrinsic properties of soft silicone that make it particularly advantageous for use in wound dressings. These properties are well-documented and include the fact that silicones are non-toxic, non-allergenic or sensitising, do not shed particles or fibres into the wound, feel soft on the skin and are conformable yet robust.
Numerous published papers describe the properties of silicone and the use of soft silicone dressings. Indeed, there are different types of soft silicone dressings currently on the market, including atraumatic wound contact layers, absorbent dressings for exuding wounds and also a dressing for the treatment of hypertrophic scars and keloids.
EP-A-0633758 discloses a wound dressing comprising a layer of hydrophobic silicone gel, a layer of carrier material and an absorbent body, wherein the carrier material and gel layer have mutually coinciding penetrating perforations at least within the region of the absorbent body.
EP-A-0855921 relates to dressings comprising a layer of absorbent foam. The surface of the foam that is applied to the wound has a pattern of pores or holes and is coated with silicone such that the walls of the holes are coated (without blocking the holes).
EP-A-0300620 describes a surgical dressing, particularly adapted to the treatment of burns, comprising a sheet of silicone gel having a wound-facing surface and laminated to the other surface a film of silicone elastomer.
EP-A-0633757 is concerned with methods by which a dressing comprising a perforated carrier coated with silicone can be manufactured. That method involves blowing cold air onto the underside of the carrier to prevent silicone clogging the perforations.
An absorbent dressing made from polyurethane foam is sold under the trade name Mepilex®. The outer surface of the foam is bonded to a vapour-permeable polyurethane membrane that acts as a barrier to liquids and micro-organisms. The inner surface of the foam is coated with a layer of soft silicone.
An absorbent, self-adhesive island dressing with a perforated soft silicone wound contact layer is sold under the trade name Mepilex Border®. The absorbent core consists of three components: a thin sheet of polyurethane foam, a piece of non-woven fabric, and a layer of super-absorbent polyacrylate fibres.
Another commercially available product, sold under the trade name Mepilex Transfer®, consists of a thin sheet of a hydrophilic open-cell polyurethane foam, coated on one surface with a layer of soft silicone and presented on a plastic film carrier.
The product sold under the trade name Mepitel® is a porous, semi-transparent wound contact layer consisting of a flexible polyamide net coated with soft silicone.
EP-A-0261167 describes an elastic, hydrophobic, knitted network coated with silicone gel.
There is an ongoing need to provide improved wound dressings. No single wound dressing product is suitable for use in all wound types or at all stages of healing. However, the use of soft silicone as the skin contact layer is beneficial in many applications and it would clearly be advantageous to provide a silicone component for use as the skin contact layer in a variety of wound dressings.
Moreover, it would be advantageous to provide a component that can be used as the skin contact layer in a variety of dressings, wherein that component becomes an integral part of the dressing, ie is affixed in such a way that the dressing retains its composite structure when removed.
There has now been devised a hydrophobic gel-bearing laminate that is useful as the skin contact layer for a wide variety of wound dressings, and which furthermore has numerous other applications.
According to a first aspect of the invention there is provided a releasably adhesive laminate comprising a structural layer carrying on at least part of one side thereof a hydrophobic gel and carrying on at least part of the other side thereof a pressure-sensitive adhesive.
The structural layer most preferably has the form of a relatively thin film of a synthetic plastics material. A wide variety of plastics may be suitable for use as the structural layer. Examples include polyvinylchloride, polypropylene and regenerated cellulose. However, the currently preferred material for the structural layer is polyurethane, and in particular melt-blown polyurethane.
The pressure-sensitive adhesive may be any one of numerous pressure-sensitive adhesives known in the art. Such adhesives generally in dry (solvent free) form are aggressively and permanently tacky at room temperature and firmly adhere to a variety of dissimilar surfaces upon mere contact without the need for more than finger or hand pressure. They require no activation by water, solvent or heat in order to exert a strong adhesive holding force. Examples of pressure sensitive adhesives include rubber/resin adhesive, which is a mixture of a rubbery material and a hard resin, and acrylic (or acrylate) adhesives. The currently preferred class of pressure-sensitive adhesive for use in the present invention is acrylic adhesive.
The laminate of the present application provides a simple and versatile means of releasably securing an item to a substrate. Soft silicones (silicone gels) are known to have releasably adhesive properties. The hydrophobic gel that is carried on one side of the structural layer is thus most preferably a silicone gel.
Most preferably, suitable silicone gels are formed by reaction between two components that are mixed immediately prior to application to the structural layer. Suitable components that are intended for such reaction to form a silicone gel are readily available commercially. Typically, the two components are a vinyl substituted silicone and a hydride-containing silicone.
Gels having different properties may be produced by varying the proportions and/or nature of the components used in the reaction. For example, the molecular weights of the various components and/or their degree of substitution by reactive groups may be different.
Suitable components for forming silicone gels for use in the laminate of the present invention are readily available.
The hydrophobic gel may be coated onto the structural layer at a wide variety of coating weights. The most appropriate coating weight will depend on the properties of the gel and its intended application. Typically, the gel may be coated onto the structural layer at a weight of between 50 g/m2 and 800 g/m2. The thickness of the gel may typically be between 5 μm and 10 mm, more commonly between 20 μm and 5 mm.
The properties of silicone gels are well-documented and provide several advantages for the use of silicone gel as the releasably adhesive hydrophobic gel layer in the laminate of the present invention, for many intended applications. For example, silicone gels are soft, tactile and conformable. They are adhesive but do not leave fibres, residue or tack on a surface/substrate when removed.
In particular, silicone gels exhibit excellent releasable adhesion to the skin. The advantages and benefits of skin contact layers comprising layers of silicone gel are particularly well-documented for wound dressing applications. They include softness, good adhesion to dry skin and, particularly importantly, low adherence to an underlying wound. Thus, the dressing can be applied to a wound and subsequently removed without causing trauma to the wound.
Thus, in a related aspect of the invention, there is provided a skin contact layer for use in a dressing, which skin contact layer comprises a structural layer carrying on at least part of one side thereof a hydrophobic gel and carrying on at least part of the other side thereof a pressure-sensitive adhesive.
The adhesive that is applied to the other side of the structural layer may be any one of numerous pressure-sensitive adhesives. One particular example is an acrylic adhesive.
The presence of the pressure-sensitive adhesive on the opposite side of the structural layer to the hydrophobic gel greatly facilitates the assembly of composite dressings that include the laminate. In particular, the presence of the pressure-sensitive adhesive enables secondary dressing components, for instance absorbent materials, to be attached to the laminate, and also fluid-impermeable barrier layers to prevent escape of fluid such as wound exudate from the dressing. Such a composite dressing, including a layer of hydrophobic gel, may retain its integrity upon removal from the skin, enabling the dressing to be removed and repositioned readily. The dressing according to the invention may particularly be an absorbent dressing, ie a dressing that includes an absorbent body capable of absorbing fluids such as wound exudate. Examples of suitable absorbent components that may be incorporated into such a dressing include fabric pads, hydrophilic foams, (in particular polyurethane foam), hydrogels, hydrocolloids and alginates. In such forms of dressing, the absorbent body will generally be positioned adjacent to the side of the laminate that carries the pressure-sensitive adhesive, or will be attached to the laminate by that adhesive.
In order for fluid to be transmitted to the absorbent body, therefore, it will generally be necessary for the laminate to be apertured or perforated. This may also improve the adhesion of the laminate to the skin, as the apertures or perforations permit the escape of fluid, which therefore does not build up under the laminate. Additional advantages of perforation of the laminate include ease of removal, improved flexibility and conformity, and skin breathability.
In one group of presently preferred embodiments of the invention, the laminate is formed with a regular array of perforations. Typically, such perforations are circular and have a diameter of from 50 μm to 10 mm, more commonly from 1 mm to 5 mm.
In some embodiments of a composite dressing in which the side distal to the skin contact layer comprises a fluid-impermeable barrier layer, the barrier layer may be provided with an opening to which is bonded a coupling by which the dressing may be connected to a gas supply or to a suction line. Typically, such a coupling comprises a unitary component that is moulded in plastics material, and includes a tubular connector to which a gas or suction line can be fitted. By this means, air or oxygen can be supplied to the dressing, in order to oxygenate the wound and improve healing, or fluid can be drawn from the dressing, thereby preventing buildup of excessive amounts of fluid within the dressing.
Prior to use, the layer of hydrophobic gel is most preferably protected by a release liner that is removed to expose the hydrophobic gel immediately prior to use. The release liner is most preferably formed in such a way as to be readily grasped and removed, eg by having one or more projecting tabs.
The need for suitable means, such as a bandage, to keep the absorbent pad and/or barrier layers in place over the skin-contact layer is reduced and in many cases removed by the use of dressings according to the invention. With less or no bandaging required, the dressing is easier to apply and remove, and more comfortable for the patient. The advantages of the laminate layer being an integral part of the dressing, and removal of the need for bandaging, may allow the dressing to be changed by a patient or helper, when otherwise the expertise of a medical practitioner or other experienced professional would be required to apply the dressing.
Wound dressings of the present invention may be pre-formed in manufacture or may be made up by a medical practitioner in an extemporaneous manner for specific applications or for a particular patient. Alternatively, a composite dressing can be assembled after first applying only the laminate. This approach may be particularly useful in situations where the dressing is awkward to position correctly and/or accurate positioning is particularly vital, for whatever reason. The laminate is preferably supplied with release liners protecting both the pressure-sensitive adhesive layer and the hydrophobic gel layer. The release liner would be removed from the hydrophobic gel layer and the hydrophobic gel placed over the wounds such that it overlaps the wound margin. The release liner covering the pressure-adhesive layer can then be peeled back and a secondary dressing component affixed to form the composite dressing.
Manufactured dressings according to the invention will generally be packaged as individual units in envelopes that are bacteria-proof and which are sterilized, most commonly using ethylene oxide or by irradiation with γ-radiation.
Apart from its use in wound dressings, the laminate of the present invention is useful for numerous other applications in which the hydrophobic gel layer contacts the skin. Silicone gels exhibit excellent releasable adhesion to the skin and it is therefore preferred that the hydrophobic gel layer is a silicone gel for those applications too.
Thus, according to another aspect of the invention there is provided an item intended to be affixed to the skin of a user, to which item is attached, via the pressure-sensitive adhesive, a patch of a laminate according to the first aspect of the invention.
In these skin contact applications, it is again preferable for the laminate to be apertured or perforated. Perforations improve adhesion with the skin because moisture, eg sweat, is transmitted away from the skin rather than accumulating under the laminate and consequently reducing adhesion. Likewise, the perforations improve skin breathability. The ease of removal of the laminate is improved by perforating the laminate because the perforations reduce the area of hydrophobic gel that is in direct contact with the skin. Perforations also enhance the flexibility and conformity of the laminate.
One form of skin-contact application in which the laminate of the present invention is useful is in the affixing of items of clothing to the skin. Such items of clothing may be items of outerwear, but more commonly are items of underwear. For instance, the laminate may have a form suitable for application to a bra or the like. Such an arrangement may reduce or eliminate the requirement of additional fastenings such as straps or clasps. The laminate may thus be incorporated into strapless and/or backless bras. In a similar manner, the laminate may be applied to a component that functions simply as a nipple cover. The laminate may also find application in securing other items of underwear, such as ladies' stockings.
The laminate may also be applied to items of outerwear, such as dresses or strapless “tops”, in order to hold such items in position, for instance where a dress or other item of clothing has a revealing neckline.
The laminate is also useful for securing wigs, false beards or moustaches and the like. The laminate may offer several advantages over conventional tapes used for the same purpose, including softness on the skin, improved conformability and breathability. Particular benefits may include the ease and comfort of removal and the ability to remove and reposition with little or no loss of adherence.
Another potential field of application for the laminate according to the invention is in the securing to the body of protective or other equipment used in sports or outdoor activities. The laminate may be affixed to the equipment via the pressure-sensitive adhesive, such that the hydrophobic gel-bearing surface is, in use, applied to the user's skin. The laminate may then provide for, or enhance, the correct positioning of the equipment on the body. Examples of protective equipment to which the laminate may be applied include shin, knee or elbow guards. The laminate may also be applied to an item of sports equipment that, in use, is grasped by a user, in order improve the user's grip on that equipment, or which is fitted to a user's hand. Examples of such equipment include bats, eg for cricket or baseball, racquets for use in tennis, badminton or squash, and golf clubs, and also catching gloves, as used in sports such as cricket and baseball.
In yet further applications of the laminate according to the invention, it is used not for the application of articles to the skin, but for releasably securing items to hard surface substrates. Thus, according to a yet further aspect of the invention, there is provided an item intended to be affixed to a hard surface substrate, to which item is attached, via the pressure-sensitive adhesive, a patch of a laminate according to the first aspect of the invention.
In such applications, the laminate may be attached via the pressure-sensitive adhesive to the substrate, so that the hydrophobic gel-bearing side of the laminate constitutes a patch onto which the item to be secured can be placed.
Alternatively, the laminate may be applied to the item. In either case, the laminate constitutes a means for adhering the item to the substrate. The degree of adherence may vary considerably, depending in particular on the nature of the substrate and the item, and of the hydrophobic gel. The item may be secured to the substrate relatively strongly, such that the item does not move in normal usage. Where the degree of adherence is less strong, the hydrophobic gel-bearing side of the laminate may simply act as a non-slip surface that inhibits, without necessarily completely preventing, movement of the item relative to the substrate.
The laminate may be used in innumerable applications in the home and workplace, and also in cars or other vehicles. For instance, the laminate may be used to fix an item such as a mobile phone to the fascia or dashboard of a car or other vehicle.
The laminate according to the invention may be manufactured in various ways. A currently preferred method of manufacture comprises the steps of:
Where the hydrophobic gel is a silicone gel, the hydrophobic gel precursor composition is preferably prepared by mixing immediately prior to application to the structural layer. Typically, such a composition will comprise a vinyl substituted silicone and a hydride-containing silicone.
Embodiments of the invention will now be described in greater detail, by way of illustration only, with reference to the accompanying drawings, in which
Referring first to
A two-part release liner 6a,6b is applied to the upper (as viewed in
The laminate 1, formed by the structural layer 2, the acrylic adhesive layer 3, the paper backing 5 and the silicone gel layer 5 is perforated, having a regular array of perforations 7. The perforations 7 may vary considerably in size and shape, again depending on the form and intended use of the article that the laminate 1 is incorporated into, but are typically circular, with a diameter of the order of a few millimeters, eg 2-4 mm, though smaller and larger diameter perforations may be appropriate in certain applications. Usually, the perforations will all be of the same shape and size, but different forms of perforation may be present in the same product. Most commonly, the perforations are arranged in a regular array, the separation between adjacent perforations typically being comparable with, or greater than, the diameter of the perforations. However, an irregular or random distribution of perforations may also be possible.
As shown in
The laminate 1 may be manufactured as follows. First, a pre-formed pre-laminate consisting of the structural layer 2, acrylic adhesive layer 3 and paper backing 4 is fed to a conveyor that transports the pre-laminate through successive stations of a manufacturing line. The conveyor preferably comprises one or more looped belts, eg of PTFE-coated glass fibre. Suction may be applied from beneath the belts to hold the pre-laminate flat during at least the initial stages of the manufacturing process. The pre-laminate is fed to the belt with the paper backing 4 lowermost, ie with the paper backing 4 in contact with the belt and the surface of the structural layer 2 opposite to that to which the acrylic adhesive 3 is applied uppermost.
At a first station of the manufacturing line, the silicone gel layer 5 is applied. As is conventional, the silicone gel layer 5 is formed by application of a curable mixture of two components via an applicator in which the two components are intimately mixed. Prior to curing, the mixture is fluid and can be applied as a uniform film with the desired thickness. The mixture may be applied by spraying, but more commonly is applied from the edge of a suitably formed blade that is positioned close to the surface of the laminate passing beneath it.
After application of the curable silicone mixture, the coated laminate passes into a first curing stage where the laminate passes beneath a bank of medium wave infra-red heaters that operate continuously. The thermal energy from these heaters initiates curing of the silicone mixture, and in particular cures the upper surface of the mixture, which maintains the structural integrity of the silicone layer during passage of the laminate through a second, longer curing stage. In the second curing stage, the laminate passes beneath further medium wave infra-red heaters. Curing of the silicone mixture, to form a layer of gel of the desired thickness and other properties, is completed during passage of the laminate through the second curing stage. The operating parameters may be optimised to suit the particular product being manufactured. Variables that may be adjusted include the power of the infra-red heaters, the speed of passage through the various stages of the process, as well as the length of the curing stages. Typically, the time taken for the laminate to pass through the curing stages is between 5 and 15 minutes.
At a suitable stage of the process, perforations are introduced into the laminate. This may be achieved by means of pins that reciprocate into and out of the laminate, or which are mounted on a rotating drum.
After completion of curing, the release liner is applied to the exposed surface of the silicone gel layer. This may be achieved by conventional means, involving the feeding of the two components of the release liner from rollers and passing the two components over suitable formers to introduce the fold into the first component 6a and to cause the two components 6a,6b to overlap to the desired extent.
To produce the dressing 20 of
Finally, the assembled dressing 20 is completed by cutting to the desired size. It will be appreciated that full-scale manufacture of the dressing 20 would normally involve continuous feed of the laminate 1 to an assembly line, stripping off of the paper backing 4, positioning of absorbent pads 21 and application of the cover sheet 22, followed by cutting of the completed dressings 20 from the continuous material. Passage of the product through the various stages of assembly may be continuous, or it may be intermittent, the product being indexed from one stage to the next.
The assembled dressings 20 will normally be sterile-packaged as individual units. For use, the dressing 20 is removed from its packaging, the release liner 6a,6b removed to expose the silicone gel layer, and the dressing applied to a wound, with the silicone gel layer in contact with the wound. The dimensions of the dressing 20 are chosen such that the entire wound is overlaid by the absorbent pad 21. Wound exudate is able to pass through the perforations 7 in the laminate 1, and is absorbed by the absorbent pad 21. The absorbent pad 21 may comprise a foam or other porous material that is capable of absorbing fluid by capillary or similar action. Alternatively, the absorbent pad 21 may consist of, or comprise, a so-called superabsorbent material, eg based on a hydrogel, that is capable of absorbing aqueous fluid and swelling to several times its original dimensions.
Turning now to
The dressing 30 is manufactured in a generally similar manner to the first embodiment 20. The skin contact film 31 is produced by applying a layer of silicone gel 41 to a structural layer 42 that is coated on the other side with a layer of acrylic adhesive that carries a paper backing. Release lines 44a,43b are then applied to the surface of the silicone gel 41. The skin contact film 31 is then fed through an assembly line in which the paper backing is stripped off the acrylic adhesive, the opening 32 is cut and the preformed envelope containing the absorbent material is positioned over the opening 32. The cover sheet 33 is then pressed into contact with the acrylic adhesive, thereby captivating the envelope between the cover sheet and the skin contact film. As for the first embodiment 20, the manufacturing process is normally a continuous process that involves continuous feed of the skin contact film 31 to an assembly line, stripping off of the paper backing, positioning of the envelopes of absorbent material and application of the cover sheet 33, followed by cutting of the completed dressings 30 from the continuous material. Passage of the product through the various stages of assembly may be continuous, or it may be intermittent, the product being indexed from one stage to the next.
Referring now to
The embodiment of
In use, the release liner 66a,66b is removed and the dressing applied to a wound, as for the other embodiments described above. A gas supply line can be connected to the extension 72 in order for air or oxygen to be supplied under slight positive pressure to the interior of the dressing. Alternatively, reduced pressure may be applied to the coupling in order to draw excess fluid from the interior of the dressing.
The laminate 1 of
The laminate 1 may also be used to secure items other than dressings to the skin. As described above, such items may include items of clothing, in particular items of underwear. Thus, for instance, a patch of the laminate 1 may be applied via the pressure-sensitive adhesive 3 to a strapless and/or backless bra in order to affix the bra to the wearer's skin. An example of such an application is illustrated in
Number | Date | Country | Kind |
---|---|---|---|
0606661.7 | Apr 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2007/050179 | 4/3/2007 | WO | 00 | 10/3/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/113597 | 10/11/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2720477 | Lancaster | Apr 1953 | A |
2750942 | Robson | Jun 1956 | A |
3042549 | Arnold et al. | Jul 1962 | A |
3645264 | Gallagher | Feb 1972 | A |
4034751 | Hung | Jul 1977 | A |
4286592 | Chandrasekaran | Sep 1981 | A |
4346700 | Dunshee et al. | Aug 1982 | A |
4353945 | Sampson | Oct 1982 | A |
4423101 | Willstead | Dec 1983 | A |
4427425 | Briggs et al. | Jan 1984 | A |
4550725 | Wishman | Nov 1985 | A |
4598004 | Heinecke | Jul 1986 | A |
4616644 | Saferstein et al. | Oct 1986 | A |
4621029 | Kawaguchi | Nov 1986 | A |
4630603 | Greenway | Dec 1986 | A |
4655767 | Woodard et al. | Apr 1987 | A |
4660553 | Naylor et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4696854 | Ethier | Sep 1987 | A |
4787380 | Scott | Nov 1988 | A |
4815457 | Mazars et al. | Mar 1989 | A |
4838253 | Brassington et al. | Jun 1989 | A |
4867150 | Gilbert | Sep 1989 | A |
4921704 | Fabo | May 1990 | A |
4947877 | Meyer et al. | Aug 1990 | A |
4997425 | Shioya et al. | Mar 1991 | A |
5004465 | Ternström et al. | Apr 1991 | A |
5042466 | McKnight | Aug 1991 | A |
5052381 | Gilbert et al. | Oct 1991 | A |
5088483 | Heinecke | Feb 1992 | A |
5123900 | Wick | Jun 1992 | A |
5153040 | Faasse, Jr. | Oct 1992 | A |
5158555 | Porzilli | Oct 1992 | A |
5160328 | Cartmell et al. | Nov 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5230701 | Meyer et al. | Jul 1993 | A |
5322729 | Heeter et al. | Jun 1994 | A |
5340363 | Fabo | Aug 1994 | A |
5409472 | Rawlings et al. | Apr 1995 | A |
5415865 | Söderberg et al. | May 1995 | A |
5512041 | Bogart | Apr 1996 | A |
5524765 | Gutentag | Jun 1996 | A |
5540922 | Fabo | Jul 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5635201 | Fabo | Jun 1997 | A |
5650450 | Lovette et al. | Jul 1997 | A |
5728085 | Widlund et al. | Mar 1998 | A |
5861348 | Kase | Jan 1999 | A |
5902260 | Gilman et al. | May 1999 | A |
5939339 | Delmore et al. | Aug 1999 | A |
5951505 | Gilman et al. | Sep 1999 | A |
6051747 | Lindqvist et al. | Apr 2000 | A |
6231872 | Mooney et al. | May 2001 | B1 |
6280840 | Luhmann et al. | Aug 2001 | B1 |
6472581 | Muramatsu | Oct 2002 | B1 |
6479724 | Areskoug et al. | Nov 2002 | B1 |
6486378 | Areskoug et al. | Nov 2002 | B1 |
6541089 | Hamerski et al. | Apr 2003 | B1 |
6566575 | Stickels et al. | May 2003 | B1 |
6787682 | Gilman | Sep 2004 | B2 |
6846508 | Colas et al. | Jan 2005 | B1 |
7066182 | Dunshee | Jun 2006 | B1 |
7161056 | Gudnason et al. | Jan 2007 | B2 |
20020106471 | Kuo et al. | Aug 2002 | A1 |
20020193723 | Batdorf, Sr. et al. | Dec 2002 | A1 |
20030026967 | Joseph et al. | Feb 2003 | A1 |
20030027475 | Yu | Feb 2003 | A1 |
20030220596 | Dunshee | Nov 2003 | A1 |
20030229326 | Hovis et al. | Dec 2003 | A1 |
20040092855 | Fabo | May 2004 | A1 |
20040096489 | Fabo | May 2004 | A1 |
20040143220 | Worthley | Jun 2004 | A1 |
20040127835 | Sigurjonsson et al. | Jul 2004 | A1 |
20040181198 | Farbrot et al. | Sep 2004 | A1 |
20040249328 | Linnane et al. | Dec 2004 | A1 |
20050059918 | Sigurjonsson et al. | Mar 2005 | A1 |
20050215932 | Sigurjonsson et al. | Sep 2005 | A1 |
20050233072 | Stephan et al. | Oct 2005 | A1 |
20050276965 | Etchells | Dec 2005 | A1 |
20060228318 | Fabo | Oct 2006 | A1 |
20080113572 | Ragaru et al. | May 2008 | A1 |
20100267302 | Katner et al. | Oct 2010 | A1 |
20110070391 | Cotton | Mar 2011 | A1 |
20110160686 | Ueda et al. | Jun 2011 | A1 |
20130053748 | Cotton | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
821734 | Feb 1975 | BE |
1306701 | Aug 1992 | CA |
1775301 | May 2006 | CN |
2007499 | Sep 1971 | DE |
3032092 | Apr 1982 | DE |
3204582 | Aug 1983 | DE |
3726736 | Feb 1988 | DE |
0092999 | Nov 1983 | EP |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0169184 | Jan 1986 | EP |
0210968 | Feb 1987 | EP |
0250125 | Dec 1987 | EP |
0251810 | Jan 1988 | EP |
0251810 | Jan 1988 | EP |
0261167 | Mar 1988 | EP |
0269454 | Jun 1988 | EP |
0275353 | Jul 1988 | EP |
0296324 | Dec 1988 | EP |
0300620 | Jan 1989 | EP |
0315333 | May 1989 | EP |
0320814 | Jun 1989 | EP |
0 341 875 | Nov 1989 | EP |
0342950 | Nov 1989 | EP |
0355991 | Feb 1990 | EP |
0356614 | Mar 1990 | EP |
0 368 541 | May 1990 | EP |
0 375 211 | Jun 1990 | EP |
0393426 | Oct 1990 | EP |
0395215 | Oct 1990 | EP |
0475807 | Mar 1992 | EP |
0497607 | Aug 1992 | EP |
0633757 | Jan 1995 | EP |
0633757 | Jan 1995 | EP |
0633758 | Jan 1995 | EP |
0676183 | Oct 1995 | EP |
0773764 | May 1997 | EP |
0782457 | Jul 1997 | EP |
0855921 | Aug 1998 | EP |
0865781 | Sep 1998 | EP |
0937792 | Aug 1999 | EP |
0955347 | Nov 1999 | EP |
0955347 | Nov 1999 | EP |
1082147 | Mar 2001 | EP |
1156838 | Nov 2001 | EP |
1280631 | Feb 2003 | EP |
1452156 | Jan 2004 | EP |
1399145 | Mar 2004 | EP |
1448128 | Aug 2004 | EP |
1675536 | Jul 2006 | EP |
1815875 | Aug 2007 | EP |
2001424 | Dec 2008 | EP |
1 151 199 | Jan 1958 | FR |
1151199 | Jan 1958 | FR |
2 528 695 | Dec 1983 | FR |
2528695 | Dec 1983 | FR |
2531627 | Feb 1984 | FR |
2609889 | Jul 1988 | FR |
2662361 | Nov 1991 | FR |
498591 | Jan 1939 | GB |
713838 | Aug 1954 | GB |
735972 | Aug 1955 | GB |
741659 | Dec 1955 | GB |
781975 | Aug 1957 | GB |
807276 | Jan 1959 | GB |
819635 | Sep 1959 | GB |
821959 | Oct 1959 | GB |
833587 | Apr 1960 | GB |
898826 | Jun 1962 | GB |
950207 | Feb 1964 | GB |
987275 | Mar 1965 | GB |
1018093 | Jan 1966 | GB |
1049196 | Nov 1966 | GB |
1110016 | Apr 1968 | GB |
1203611 | Aug 1970 | GB |
1282056 | Jul 1972 | GB |
1390044 | Apr 1975 | GB |
1395815 | May 1975 | GB |
1398011 | Jun 1975 | GB |
1476894 | Jun 1977 | GB |
1490065 | Oct 1977 | GB |
1494643 | Dec 1977 | GB |
1565987 | Apr 1980 | GB |
2038661 | Jul 1980 | GB |
2074029 | Oct 1981 | GB |
2081177 | Feb 1982 | GB |
2085305 | Apr 1982 | GB |
2153229 | Aug 1985 | GB |
2170713 | Aug 1986 | GB |
2176401 | Dec 1986 | GB |
2186233 | Aug 1987 | GB |
2192142 | Jan 1988 | GB |
2226780 | Jul 1990 | GB |
0606661.7 | Apr 2006 | GB |
2423267 | Aug 2006 | GB |
2425487 | Nov 2006 | GB |
4312458 | Nov 1992 | JP |
10095072 | Apr 1998 | JP |
2005029907 | Mar 2005 | JP |
2005-314618 | Nov 2005 | JP |
2005314618 | Nov 2005 | JP |
9200983 | Mar 1992 | SE |
9200984 | Mar 1992 | SE |
9504077 | Nov 1995 | SE |
WO 8705206 | Sep 1987 | WO |
WO 8805269 | Jul 1988 | WO |
WO 9000732 | Jan 1990 | WO |
WO 9014109 | Nov 1990 | WO |
WO 9100718 | Jan 1991 | WO |
WO 9101706 | Feb 1991 | WO |
WO 9116059 | Oct 1991 | WO |
WO 9204923 | Apr 1992 | WO |
WO 9213576 | Aug 1992 | WO |
WO 9315249 | Aug 1993 | WO |
WO 9319709 | Oct 1993 | WO |
WO 9319710 | Oct 1993 | WO |
WO 9410953 | May 1994 | WO |
WO 9410957 | May 1994 | WO |
9417765 | Aug 1994 | WO |
WO 9420054 | Sep 1994 | WO |
WO 9421207 | Sep 1994 | WO |
WO 9530394 | Nov 1995 | WO |
WO 9609076 | Mar 1996 | WO |
WO 9610972 | Apr 1996 | WO |
1996031564 | Oct 1996 | WO |
WO 9711658 | Apr 1997 | WO |
WO 9717922 | May 1997 | WO |
WO 9742985 | Nov 1997 | WO |
WO 9745146 | Dec 1997 | WO |
WO 9857677 | Dec 1998 | WO |
WO 9933420 | Jul 1999 | WO |
WO 9961077 | Dec 1999 | WO |
WO 9961078 | Dec 1999 | WO |
WO 9963920 | Dec 1999 | WO |
WO 0051650 | Sep 2000 | WO |
2000065143 | Nov 2000 | WO |
0168020 | Sep 2001 | WO |
WO 0185393 | Nov 2001 | WO |
WO 0220067 | Mar 2002 | WO |
WO 0228447 | Apr 2002 | WO |
WO 0339419 | May 2003 | WO |
WO 03079919 | Oct 2003 | WO |
WO 2004060225 | Jul 2004 | WO |
WO 2004108175 | Dec 2004 | WO |
2005021058 | Mar 2005 | WO |
WO 2005034797 | Apr 2005 | WO |
WO 2005058381 | Jun 2005 | WO |
WO 2006075950 | Jul 2006 | WO |
WO 2006081403 | Aug 2006 | WO |
WO 2006127292 | Nov 2006 | WO |
2007025544 | Mar 2007 | WO |
WO 2007113597 | Oct 2007 | WO |
2008012443 | Jan 2008 | WO |
WO 2009047564 | Apr 2009 | WO |
2010061228 | Jun 2010 | WO |
2010086457 | Aug 2010 | WO |
2012028842 | Mar 2012 | WO |
2012104584 | Aug 2012 | WO |
Entry |
---|
Colas et al., “Silicone Bipmaterials: History and Chemistry & Medical Applications of Silicones,” Biomaterials Science, Second Edition pp. 80-84 and 698-707. (2005). |
Viana et al., “Silicone Verśus Nonsilicone Gel Dressings: A Controlled Trial,” Dermatol Surg. 27(8):721-6 (2001). |
Gourlay et al., “Physical Characteristics and Performance of Synthetic Wound Dressings,” Trans. Amer. Soc. Artif. Int. Organs vol. XXI:28-33 (1975). |
Gourlay et al., “Physical Characteristics and Performance of Synthetic Wound Dressings,” Trans. Amer. Soc. Artif. Int. Organs vol. XXI:28-34 (1975). |
PCT International Search Report and Written Opinion for corresponding PCT/GB2007/050179 (dated Aug. 21, 2008). |
Opposition Against European Patent No. EP 2001424, Opponent Mölnlycke Health Care AB, 28 pages (Aug. 16, 2012). |
Declaration of Eric Batelson, Opposition Proceedings regarding EP 2001424, Opponent Mölnlycke Health Care AB, 9 pages (Aug. 14, 2012). |
Declaration of Elisabet Ltmdqvist, Opposition Proceedings regarding EP 2001424, Opponent Mölnlycke Health Care AB, 5 pages (Aug. 14, 2012). |
Wacker Silicones, Wacker SilGel® 612, data sheet, 3 pages (2004). |
Prisma's Abridged English-Swedish and Swedish-English Dictionary, title page, copyright page, pp. 24, 25, 34, 35 (University of Minnesota Press 1998). |
Opposition Against European Patent No. EP 2001424, Opponent 3M Innovative Properties Company, 41 pages (Aug. 22, 2012). |
Tan et al., “Pressure-Sensitive Adhesives for Transdermal Drug Delivery Systems,” PSTT 2(2):60-69 (1999). |
Handbook of Technical Textiles, title page, copyright page, pp. 4, 13, 130-151 (Horrocks & Anand eds., 2000). |
Wikipedia, “Polydimethylsiloxane,” webpage http://en.wikipedia.org/wiki/polydimethylsiloxane, 5 pages (Jun. 6, 2012). |
Knovel Plastic Material Data Sheet, Dow Corning 7355 Adhesive, 1 page (Kipp ed., 2004). |
Inorganic Polymers, title page, copyright page, pp. 4, 5, 61, 62 (DeJaeger & Gleria eds., 2007). |
Handbook of Pressure Sensitive Adhesive Technology, cover page, copyright page, pp. 512-517 (D. Satas ed., 2nd ed. 1989). |
Adhesion and Adhesives Technology, The Chemistry and Physical Properties of Elastomer-Based Adhesives, title page, copyright page, pp. 238-241 (A. Pocius ed., 2nd ed. 2002). |
Remington: The Science and Practice of Pharmacy, title page, p. 948 (21st ed. 2005). |
Thomas, “Silicone Adhesives in Healthcare Applications,” Dow Corning Healthcare Industry, 6 pages (2003). |
Sample Preparation Handbook for Transmission Electron Microscopy, Introduction to Materials, title page, copyright page, pp. 12-13 (Ayache et al. eds., 2010). |
“Milestones in Our History,” Screenshot of Mölnlycke Health Care webpage http://www.molnlycke.com/au/About-us/The-Company/AUSNZ/History/Milestones-in-our-History/, 1 page. |
“Tendra Startpage>Products>Safetec Technology,” Screenshots of archived webpage http://www.tendra.com/item.asp?id=1015&lang=2, Internet Archive: Wayback Machine, 6 pages (Nov. 23, 2003). |
“Tendra Startpage>Products>Safetec Technology>Silicone,” Screenshots of archived webpage http://www.tendra.com/bottom.asp?id=1869&lang=2, Internet Archive: Wayback Machine, 3 pp. (May 5, 2003). |
“Tendra Startpage>Products> Safetec Technology>Dressings,” Screenshots of archived webpage http://www.tendra.com/bottom.asp?id=1021&lang=2, Internet Archive: Wayback Machine, 8 pages (May 3, 2003). |
“Tendra Startpage>Products>Alphabetical List>Multiplex®Border,” Screenshots of archived webpage http://www.tendra.com/item.asp?id=774&pid=558, Internet Archive: Wayback Machine, 3 pages (May 11, 2003). |
Tendra, Mepilex® Border Product Sheet, 2 pages (accessed via Internet Archive: Wayback Machine, archived webpage http://www.tendra.com/item.asp?id=774&pid=558, Related Links, Product Sheet) (May 11, 2003). |
David D. Johnson, Ph.D., Analytical Report Concerning MEPILEX™ Border Product from Manufacture LOT 3894-01F18, Opposition Proceedings regarding EP 2001424, Opponent 3M Innovative Properties Company, 16 pages (Jul. 6, 2012). |
Declaration of David R. Holm, Opposition Proceedings regarding EP 2001424, Opponent 3M Innovative Properties Company, 1 page (Aug. 17, 2012). |
Declaration of David D. Johnson, Opposition Proceedings regarding EP 2001424, Opponent 3M Innovative Properties Company, 1 page (Aug. 12, 2012). |
Declaration of Clas Bolander, MSc, Sourcing Director, Wound Care Division, Mölnlycke Health Care AB, Opposition Proceedings regarding EP 2001424, Opponent 3M Innovative Properties Company, 1 page (Aug. 13, 2012). |
Opposition Against European Patent No. EP 2001424, Opponent Lohmann & Rauscher GmbH & Co. KG, 23 pages (Aug. 23, 2012). |
Thomas, “World Wide Wounds-Atraumatic Dressings,” www.worldwidewounds.com/2003/january/Thomas/Atraumatic-Dressings.html, 11 pages (2003). |
Declaration of Stephen Thomas, Ph.D., Opposition Proceedings regarding EP 2001424, Opponent Lohmann & Rauscher GmbH & Co. KG, 54 pages (Aug. 20, 2012). |
Medika AG, Mölnlycke Health Care, price list, 2 pages (2004). |
Davies, “Milestones in the Management of Wound Trauma and Pain,” Poster Presentation, European Wound Management Association Conference, Glasgow, United Kingdom (2007). |
D.E. Packham, Packham Handbook of Adhesion, title page, copyright page, pp. 25-27, 363-365 (2nd ed. 2005). |
Handbook of Adhesive Technology, title page, copyright page, pp. 847-848 (Pizzi & Mittal eds., 2003). |
Polymer Science, Inc., “Medical,” webpage http://www.polymerscience.com/medical.html, 2 pages (Accessed Aug. 17, 2012). |
Thomas, X., “Silicones in Medical Applications,” Chapter 2.17 in Inorganic Polymers, 12 pages (De Jaeger & Gleria eds., 2007). |
Benedek & Heymans, Pressure Sensitive Adhesives Technology, cover page, copyright page, p. 128 (1997). |
Declaration of Dr. Thomas Pontzen, Opposition Proceedings regarding EP 2001424, Opponent Lohmann & Rauscher GmbH & Co. KG, 2 pages (Aug. 23, 2012). |
Opposition Against European Patent No. EP 2001424, Opponents Gerhard Schmitt-Nilson, Stefan Waibel, 37 pages (Aug. 23, 2012). |
Thomas & Mitchell, “Adhesive Technologies for Attaching Medical Devices to the Skin,” Medical Device Technology, pp. 12-15 (Sep. 2004). |
Quinn, “Silicone Gel in Scar Treatment,” Burns 13:S33-S40 (1987). |
Musgrave et al., “The Effect of Silicone Gel Sheets on Perfusion of Hypertrophic Burn Scars,” Journal of Burn Care and Rehabilitation 23(3): 208-214 (2002). |
Wikipedia, “Pressure-Sensitive Adhesive,” webpage http://en.wikipedia.org/w/index.php?title?Pressure-sensitive_adhesive&oldid?499251304, 4 pages (Jun. 25, 2012). |
Wacker Chemie AG, “Wacker SilGel®, The Specialist for Sensitive Devices,” 1 page(2012). |
Joe McMahon, M.SC., “Microstructural and Chemical Characterization of Mepilex Border Wound Dressing,” Report, Opposition Proceedings regarding EP 2001424, Opponents Gerhard Schmitt-Nilson, Stefan Waibel, 11 pages (Aug. 20, 2012). |
Kirit Amin, “Characterization of Mepilex Border by 1H NMR Spectroscopy,” Report, Opposition Proceedings regarding EP 2001424, Opponents Gerhard Schmitt-Nilson, Stefan Waibel, 6 pages (Aug. 22, 2012). |
amazon.com, “ScarAway Professional Grade Silicone Scar Treatment Sheets,” webpage, 2 pages (Aug. 20, 2012). |
Mitchell-Vance Laboratories, “ScarAway®: The Solution for Scars™,” webpage http://www.scaraway.us, product information, 1 page (Aug. 23, 2012). |
acne4idiots.com, “ScarAway Professional Grade Silicone Scar Treatment Sheets,” webpage, 4 pages (Aug. 23, 2012). |
epinions.com, “Neosporin Scar Solution Silicone Scar Sheets 28 Each,” webpage, 3 pages (Aug. 23, 2012). |
Opposition Against European Patent No. EP 2001424, Supplement to Facts and Submissions of Notice of Opposition, Opponents Gerhard Schmitt-Nilson, Stefan Waibel, 4 pages (Oct. 29, 2012). |
Kirit Amin, “Characterization of Mepilex Border by 1H NMR Spectroscopy,” Supplemental Report, Opposition Proceedings regarding EP 2001424, Opponents Gerhard Schmitt-Nilson, Stefan Waibel, 11 pages (Aug. 2012). |
Joe Mcmahon, M.SC., “Microstructural and Chemical Characterization of Silicone Scar Sheet,” Interim Report , Opposition Proceedings regarding EP 2001424, Opponents Gerhard Schmitt-Nilson, Stefan Waibel, 5 pages (Sep. 11, 2012). |
Kirit Amin, “NMR Report on Characterization of Silicone Scar Sheet,” Supplemental Report, Opposition Proceedings regarding EP 2001424, Opponents Gerhard Schmitt-Nilson, Stefan Waibel, 10 pages (Sep. 2012). |
Joe Mcmahon, M.SC., “Chemical Characterization of Glue and Polymer Layers in Wound Dressings,” Final Report, Opposition Proceedings regarding EP 2001424, Opponents Gerhard Schmitt-Nilson, Stefan Waibel, 10 pages (Oct. 2, 2012). |
Opposition Against European Patent No. EP 2001424, Response to Request for Documents, Opponents Lohman & Rauscher GmbH & Co. KG, 2 pages (Oct. 29, 2012). |
McCulloch, “The History of the Development of Melt Blowing Technology,” International Nonwovens Journal, 11 pages (1999). |
Bresee & Ko, “Fiber Formation During Melt Blowing,” INJ Summer, pp. 21-28 (2003). |
Farer et al., “Study of Meltblown structures Formed by Robotic and Meltblowing Integrated System: Impact of Process Parameters on Fiber Orientation,” INJ Winter, pp. 14-21 (2002). |
Zhao, “Melt Blown Dies: A Hot Innovation Spot,” INJ Winter, pp. 37-41 (2002). |
Starr, The Nonwoven Fabrics Handbook, Association of the Nonwoven Fabrics Industry, Cary, North Carolina, pp. iii-v, 4, 7, 45-62 (Batra et al. eds. 1992). |
Kirk Cantor, Blown Film Extrusion: An Introduction, Hanser Gardner Publications, Inc., Cincinnati, Ohio (2006). |
Gantner et al., “Soft Skin Adhesive Gels and Liners: New Formulating Options for Tailored Solutions,” Dow Corning Corporation (2007). |
United Kingdom Intellectual Property Office, Search Report for Application No. GB0908057.3 (dated Sep. 4, 2009). |
PCT International Search Report and Written Opinion for PCT/GB2009/050500 (dated Jul. 22, 2009). |
Ulman & Thomas, “Silicone Pressure Sensitive Adhesives for Healthcare Applications” in Handbook of Pressure Sensitive Adhesive Technology-2, Ch. 6, pp. 133-157 (D. Satas ed. 1995). |
Blackwood, “Achieving Functional Excellence with Silicone Coatings,” Dow Corning Corporation, 8 pages (2004). |
Dow Corning® 7-9700 Soft Skin Adhesive Kit (A&B) Product Description, Typical Properties, https://www.dowcorning.com/applications/search/products/Details.aspx?prod= 04035943&type=prod, 1 page (retrieved Jan. 6, 2016). |
Dow Corning® 7-9800 Soft Skin Adhesive Kit (A&B) Product Description, Typical Properties, http://www.dowcoming.com/applications/search/defaultaspx?R=1059EN, 1 page (retrieved Jan. 6, 2016). |
Viscosity Tables, V&P Scientific Inc, http://www.vp-scientific.com/Viscosity_Tables.htm, 3 pages (retrieved Jan. 6, 2016). |
Prof. W. Woebcken, Kunststoff Lexicon, title page, copyright page, pp. 418-419 (1998). |
“Milestones in Our History,” Screenshot of Mölnlycke Health Care webpage, http://www.molnlycke.com/au/About-us/The-Company/AUSNZ/History/Milestones-in-our-History/, 1 page (Aug. 23, 2012). |
A. Vasel-Biergans & W. Probst, Wundauflagen für die Kitteltasche, 4 pages (2nd ed. 2006). |
Number | Date | Country | |
---|---|---|---|
20100159192 A1 | Jun 2010 | US |