The present invention relates to methods and formulations for bonding components of inert material. More specifically, the present invention relates to bonding of components of impregnated or impermeabilized respectively material showing good bonding strength after curing and good resistance to water and solvents.
The inertness of material, in particular of impregnated porous material can be a problem for bonding of components. This is due to the absence of reactive groups on the materials to be bonded and on which the glue should develop some chemical interactions.
A revolution in the development of high performance engineering adhesives occurred in the past few years. Technological advances in the chemistry of locking, sealing, retaining and structural adhesives brought us to an era of rapid innovation in the assembly and maintenance of mechanical components.
Hernon Manufacturing, Inc. developed acrylic and epoxy based resins which have been used for adhesive purposes. Acrylics have unique performances capabilities, its high peel and high impact strengths are combined to deliver tough, durable and shock resistant bonds. It has ability to bond wide range of materials, excellent gap fills and fast fixture time.
From the publication McGraw-Hill Chemical engineering (2006) “Epoxy Adhesive Formulations” a range of epoxy, acrylics as well as epoxy-acrylic hybrid formulation for adhesion of a diverse class of materials is known.
In particular when bonded structures are used in a chemical solvent environment, the bonding material should ideally be stable for all the life of the system in which they are used in order to prevent any defect of application they are used for.
It is an object of the present invention to provide a system and method addressing these needs and solving the drawbacks from the prior arts.
The above mentioned problems and drawbacks of the conventional concepts are solved by the subject-matter of the embodiments of the present invention.
According to one aspect, the invention suggests an adhesive formulation for bonding materials, comprising
40 to 80 wt.-% of an epoxy monomer; and
15 to 30 wt.-% of an oxetane monomer; and
0.1 to 10 wt.-% of an adhesion promotor; and
0.1 to 5 wt.-% of a sensitizer; and
1 to 10 wt.-% of a radiation and temperature activable photoinitiator or a mixture of a photoinitiator and a thermal initiator.
The formulation according the invention is able to secure a bonding even between parts of two highly inert materials.
This adhesion formulation according to the invention was found to have a high strength after curing and good resistance to water and solvents.
With such a formulation preferably bonding of different components such as microelectronic components and/or silicon chips can be achieved to a good extent.
Even when impregnated highly inert materials were used, a good bonding could be achieved. Impregnation or impermeabilization, respectively, is usually used to limit penetration of liquid in a porous material.
According to a preferred embodiment of the invention the epoxy monomer is selected from the group comprising Araldite 9699(Huntsman), Celloxide 2021P (Daicel), 3,4-Epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (Sigma-Aldrich), Diglycidyl 1,2-cyclohexanedicarboxylate (Sigma-Aldrich), Cyclohexene oxide (Sigma-Aldrich), 1,2,5,6-Diepoxycyclooctane (Sigma-Aldrich) and/or Poly[(phenyl glycidyl ether)-co-formaldehyde] (Sigma-Aldrich).
Good results were achieved, when the oxetane monomer is selected from the group comprising OXT221(Toagosei Chemical), 3-Ethyl-3-oxetanemethanol (Sigma-Aldrich), 3,3-Dimethyloxetane (Sigma-Aldrich) and/or 3-ethyl-3-[(2-ethylhexyloxy)methyl]oxetane (OXT 212)(Toagosei chemical).
According to another preferred embodiment of the invention the adhesion promotor is a silane-epoxy adhesion promoter, preferably selected from the group comprising Silquest A187(Momentive), (3-Glycidyloxypropyl)triethoxysilane (Sigma-Aldrich), (3-Glycidyloxypropyl)trimethoxysilane (Sigma-Aldrich) and/or Trimethoxy[2-(7-oxabicyclo[4.1.0]hept-3-yl)ethyl]silane (Sigma-Aldrich).
Advantageously the sensitizer is a UV-Vis sensitizer, preferably selected from the group comprising Anthracure UVS 1331(Kawasaki Chemical), Anthracene (Sigma-Aldrich), 9-Fluorenone (Sigma-Aldrich), perylene (Sigma-Aldrich) and/or 9,10 diethoxy anthracene (UVS 1101) (Kawasaki Kasei Chemicals).
Further, the radiation and temperature activable photoinitiator is preferably a cationic photoinitiator, more preferably PAG GSID26-1 (BASF).
If a mixture of photoinitiator and thermal initiator is used for the formulation according to the invention, the thermal initiator is preferably an anhydride, preferably selected from the group Phtalic anhydride (Sigma-Aldrich); Maleic anhydride (Sigma-Aldrich); Cyclobutane-1,2,3,4-tetracarboxylic dianhydride (Sigma-Aldrich); Benzoic anhydride (Sigma-Aldrich) and/or Oleic anhydride (Sigma-Aldrich) and the photoinitiator is a cationic photoinitiator, preferably selected from the group PAG Irgacure 290 (BASF), Diphenyliodonium hexafluorophosphate (Sigma-Aldrich), diphenyliodonium hexafluoroantimonate (Sigma-Aldrich), Triarylsulfonium hexafluorophosphate salts (Sigma Aldrich) and/or Triphenylsulfonium triflate (Sigma-Aldrich).
Good results could be achieved, if the formulation further comprises a fluorurated epoxy monomer, preferably selected from the group 3-Perluorooctyl-1,2-propenoxide (Fluorochem), 3-PERFLUOROHEXYL-1,2-EPOXYPROPANE (Sigma-Aldrich) (Chemical Co., Ltd) and/or 3-[2-(Perfluorohexyl)ethoxy]-1,2-epoxypropane (TCI American).
According to another aspect, the invention refers to a method for bonding at least two parts of which one is at least an inert material, comprising the following steps:
Applying to one part an adhesive formulation according to any of the preceding embodiments;
placing another part to be bonded on the one part;
exposing the parts to UV light radiation; and
heat treating of the part.
After the parts to be bonded are overlapped with the use of an adhesive according to the invention, some adhesive is sticking out. Due to the presence of a photoinitiator as part of the formulation this exposed or protruding photoinitiator is photoreticulated by UV exposure, assuring the positioning and alignment of the chip during the next manufacturing steps. Afterwards a heat treatment is carried out in order to promote the reticulation of the “shielded area” (the area between the two parts) of the adhesive.
The adhesive according to the invention can for example be used for bonding silicon chips on impregnated/impermeabilized, inert material.
As the formulation can also be thermally cured, high performances, like e.g. solvent resistance, can be achieved also in areas where the adhesive is shielded to the UV radiation.
The formulation leads to a bonding with high chemical resistance towards water and e.g. water based inks, once cured.
Further the formulation shows a good adhesion towards the inert material.
According to the invention an epoxy monomer is used, as it shows a high viscosity, is photo/thermally reticulable and improves the solvent resistance.
The presence of an oxetane monomer is photo/thermally cross-linkable and reduces the final viscosity of the adhesive.
The adhesion promotor advantageously improves the adhesion of the adhesive formulation.
The sensitizer could advantageously sensitize the formulation to wavelengths, to which the photoinitiator is not sensitive.
The photoinitiator as part of the formulation photoinitiates the cross-linking of the monomer in the formulation.
According to another aspect, the invention relates to the use of the formulation for bonding impregnated/impermeabilized graphite material to a silicon material.
The present invention will be described for the sake of better understanding by way of exemplary embodiments. These embodiments may be best understood by taking the following drawings in consideration. Within the figures of these drawings, same reference numerals are used for features that are identical or have an identical or similar function. In these figures,
For example in order to develop an ink-jet printing system for water and/or solvent based inks it is necessary to have a set of materials compatible with the liquids to be printed via the printing system. The liquids musn't damage the constituting parts of the printing system and the bondings of their parts in order to avoid defects during the life of the printing machine.
Usually a printing bar of a printing system comprises a series of printing modules (1) such as that represented in
In such a printing bar ink is coming from an ink reservoir and reaches the ejector groups by passing through holes dug into a porous material (4).
The printing bar is composed by one or more than one graphite modules (1), each connected to a macrohydraulic channel (2) by passing through holes (3). The channel conveys the ink to the modules and specifically to each ejector group (5).
Preferred materials used for the component (4) have a linear thermal dilatation coefficient as similar as possible to silicon (≈3*10−6° C.−1) as the print head will contain silicon parts, which will be bonded to the component (4). The similarity of the two thermal coefficients avoids damages to the silicon chips once bonded to the material (4), these damages can be a consequence of thermal stresses due to the manufacturing process.
There are not so many materials on the market involving reasonable cost and easy workability by means of common techniques and linear thermal dilatation coefficient near to 10−6° C.−1. One of these materials is graphite.
These materials are often characterized by a high porosity (at micro and nanometric scale) that could be a problem under the point of view of permeability to liquids and compatibility with glues or encapsulants used during the assembling process.
Therefore impregnating liquid formulations are used, suitable for the application and compatible with the manufacturing process.
The material is preferably compatible with water and solvent inks without exhibiting any damage after a 7 weeks contact at 45° C. This composite polymeric-graphite material is very inert and does not release contaminants into the liquids during the life of the printing system.
This inertness could be a problem for the bonding procedures of components (silicon chips) on the graphite material (4) as a consequence of the absence of reactive groups on the impregnating material on which the glue should develop some chemical interactions. A specific photo-thermally curable epoxy glue has been developed in order to solve this problem with high robustness and stability.
Some of the epoxy based formulations prepared are listed in the following table.
Each formulation listed in the table is photosensitive toward radiation comprised between 250 nm and 420 nm.
It has been observed that formulation L125 containing the photoinitiator PAG GSID26-1 is able to reticulate at temperatures equal to or higher than 180° C. without any UV exposure energy. The formulation L117 is only able to reticulate when exposed to UV radiation.
The formulation L125 has been analyzed by FTIR transmission spectroscopy collecting the data in
In
Once reticulated with UV exposure energies higher than 1000 mJ/cm2 and/or thermally cured to temperatures equal to or higher than 180° C. for 60 minutes, the material becomes very hard and chemically resistant toward water and solvent based inks. Once reticulated it is not swelled by the inks even after a 7 weeks contact at 45° C.
The thermal reactivity of L125 at temperatures higher than or equal to 180° C., make this formulation ideal for the bonding application on impregnated graphite.
The formulation is ideal for this application for two particular reasons:
The glue has been dispensed on the graphite material, particularly on the edges of the ink inlet hole (5) on which the silicon chip is overlapped.
Once the chip has been located on the glue ring (
In a first step (9) a glue (7) ring is dispensed (grey area in
The alignment of the silicon chip during the following manufacturing steps is guaranteed by a UV exposure step that induces photoreticulation of the unshielded area of the uncovered perimetric area of the glue.
Optionally it could be useful to make a second UV exposure on the back side of the assembled part in order to induce photoreticulation of the glue also on the internal edges of the ink hole.
After these steps the glue could be thermally cured in order to complete the reticulation in all the areas of the device without losing alignment of the ejector groups.
It is important to guarantee a good reticulation degree of the unexposed area of the glue, in order to reach high adhesion and solvent resistance. In particular it is important to reach a certain reticulation degree in order to adhere to the impregnated graphite.
Once cured the glue attains very high chemical resistance to water and solvent based inks, maintaining its adhesive and mechanical performance even after 7 weeks in contact with inks at 45° C.
The impregnated graphite with the silicon chips bonded on top by the glue L125 a high endurance in pressure conditions (2 bar) for 2 weeks at room temperature without exhibiting any damage.
The structure of OXT 221, an oxetane monomer, can be taken from
Number | Date | Country | Kind |
---|---|---|---|
16170330.1 | May 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/062112 | 5/19/2017 | WO | 00 |