In some settings, endoscopic surgical instruments may be preferred over traditional open surgical devices since a smaller incision may reduce the post-operative recovery time and complications. Consequently, some endoscopic surgical instruments may be suitable for placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors may engage tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, stapler, clip applier, access device, drug/gene therapy delivery device, and energy delivery device using ultrasound, RF, laser, etc.). Endoscopic surgical instruments may include a shaft between the end effector and a handle portion, which is manipulated by the clinician. Such a shaft may enable insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby facilitating positioning of the end effector within the patient. Positioning of an end effector may be further facilitated through inclusion of one or more articulation joints or features, enabling the end effector to be selectively articulated or otherwise deflected relative to the longitudinal axis of the shaft.
Examples of endoscopic surgical instruments include surgical staplers. Some such staplers are operable to clamp down on layers of tissue, cut through the clamped layers of tissue, and drive staples through the layers of tissue to substantially seal the severed layers of tissue together near the severed ends of the tissue layers. Merely exemplary surgical staplers are disclosed in; U.S. Pat. No. 4,805,823, entitled “Pocket Configuration for Internal Organ Staplers,” issued Feb. 21, 1989; U.S. Pat. No. 5,415,334, entitled “Surgical Stapler and Staple Cartridge,” issued May 16, 1995; U.S. Pat. No. 5,465,895, entitled “Surgical Stapler Instrument,” issued Nov. 14, 1995; U.S. Pat. No. 5,597,107, entitled “Surgical Stapler Instrument,” issued Jan. 28, 1997; U.S. Pat. No. 5,632,432, entitled “Surgical Instrument,” issued May 27, 1997; U.S. Pat. No. 5,673,840, entitled “Surgical Instrument,” issued Oct. 7, 1997; U.S. Pat. No. 5,704,534, entitled “Articulation Assembly for Surgical Instruments,” issued Jan. 6, 1998; U.S. Pat. No. 5,814,055, entitled “Surgical Clamping Mechanism,” issued Sep. 29, 1998; U.S. Pat. No. 6,964,363, entitled “Surgical Stapling Instrument having Articulation Joint Support Plates for Supporting a Firing Bar,” issued Nov. 15, 2005; U.S. Pat. No. 6,978,921, entitled “Surgical Stapling Instrument Incorporating an E-Beam Firing Mechanism,” issued Dec. 27, 2005; U.S. Pat. No. 6,988,649, entitled “Surgical Stapling Instrument Having a Spent Cartridge Lockout,” issued Jan. 24, 2006; U.S. Pat. No. 7,000,818, entitled “Surgical Stapling Instrument Having Separate Distinct Closing and Firing Systems,” issued Feb. 21, 2006; U.S. Pat. No. 7,111,769, entitled “Surgical Instrument Incorporating an Articulation Mechanism having Rotation about the Longitudinal Axis,” issued Sep. 26, 2006; U.S. Pat. No. 7,143,923, entitled “Surgical Stapling Instrument Having a Firing Lockout for an Unclosed Anvil,” issued Dec. 5, 2006; U.S. Pat. No. 7,303,108, entitled “Surgical Stapling Instrument Incorporating a Multi-Stroke Firing Mechanism with a Flexible Rack,” issued Dec. 4, 2007; U.S. Pat. No. 7,367,485, entitled “Surgical Stapling Instrument Incorporating a Multistroke Firing Mechanism Having a Rotary Transmission,” issued May 6, 2008; U.S. Pat. No. 7,380,695, entitled “Surgical Stapling Instrument Having a Single Lockout Mechanism for Prevention of Firing,” issued Jun. 3, 2008; U.S. Pat. No. 7,380,696, entitled “Articulating Surgical Stapling Instrument Incorporating a Two-Piece E-Beam Firing Mechanism,” issued Jun. 3, 2008; U.S. Pat. No. 7,404,508, entitled “Surgical Stapling and Cutting Device,” issued Jul. 29, 2008; U.S. Pat. No. 7,434,715, entitled “Surgical Stapling Instrument having Multistroke Firing with Opening Lockout,” issued Oct. 14, 2008; U.S. Pat. No. 7,721,930, entitled “Disposable Cartridge with Adhesive for Use with a Stapling Device,” issued May 25, 2010; and U.S. Pat. No. 7,455,208, entitled “Surgical Instrument with Articulating Shaft with Rigid Firing Bar Supports,” issued Nov. 25, 2008. The disclosure of each of the above-cited U.S. patents is incorporated by reference herein. While the surgical staplers referred to above are described as being used in endoscopic procedures, it should be understood that such surgical staplers may also be used in open procedures and/or other non-endoscopic procedures.
While various kinds of surgical stapling instruments and associated components have been made and used, it is believed that no one prior to the inventor(s) has made or used the invention described in the appended claims.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.
The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
I. Exemplary Surgical Stapler
End effector (12) of the present example includes a lower jaw (16) and a pivotable anvil (18). Handle portion (20) includes pistol grip (24) toward which closure trigger (26) is pivotally drawn by the clinician to cause clamping, or closing, of the anvil (18) toward lower jaw (16) of end effector (12). Such closing of anvil (18) is provided through an outmost closure sleeve (32), which longitudinally translates relative to handle portion (20) in response to pivoting of closure trigger (26) relative to pistol grip (24). A distal closure ring (33) of closure sleeve (32) is indirectly supported by frame (34) of implement portion (22). At articulation mechanism (11), a proximal closure tube (35) of closure sleeve (32) communicates with the distal closure ring (33). Frame (34) is flexibly attached to lower jaw (16) via articulation mechanism (11), enabling articulation in a single plane. Frame (34) also longitudinally slidingly supports a firing drive member (not shown) that extends through shaft (23) and communicates a firing motion from firing trigger (28) to firing bar (14). Firing trigger (28) is farther outboard of closure trigger (26) and is pivotally drawn by the clinician to cause the stapling and severing of clamped tissue in end effector (12), as will be described in greater detail below. Thereafter, release button (30) is depressed to release the tissue from end effector (12).
With end effector (12) closed as depicted in
It should be understood that cutting edge (48) may sever tissue substantially contemporaneously with staples (47) being driven through tissue during each actuation stroke. In the present example, cutting edge (48) just slightly lags behind driving of staples (47), such that a staple (47) is driven through the tissue just before cutting edge (48) passes through the same region of tissue, though it should be understood that this order may be reversed or that cutting edge (48) may be directly synchronized with adjacent staples. While
It should be understood that instrument (10) may be configured and operable in accordance with any of the teachings of U.S. Pat. No. 4,805,823; U.S. Pat. No. 5,415,334; U.S. Pat. No. 5,465,895; U.S. Pat. No. 5,597,107; U.S. Pat. No. 5,632,432; U.S. Pat. No. 5,673,840; U.S. Pat. No. 5,704,534; U.S. Pat. No. 5,814,055; U.S. Pat. No. 6,978,921; U.S. Pat. No. 7,000,818; U.S. Pat. No. 7,143,923; U.S. Pat. No. 7,303,108; U.S. Pat. No. 7,367,485; U.S. Pat. No. 7,380,695; U.S. Pat. No. 7,380,696; U.S. Pat. No. 7,404,508; U.S. Pat. No. 7,434,715; and/or U.S. Pat. No. 7,721,930.
As noted above, the disclosures of each of those patents are incorporated by reference herein. Additional exemplary modifications that may be provided for instrument (10) will be described in greater detail below. Various suitable ways in which the below teachings may be incorporated into instrument (10) will be apparent to those of ordinary skill in the art. Similarly, various suitable ways in which the below teachings may be combined with various teachings of the patents cited herein will be apparent to those of ordinary skill in the art. It should also be understood that the below teachings are not limited to instrument (10) or devices taught in the patents cited herein. The below teachings may be readily applied to various other kinds of instruments, including instruments that would not be classified as surgical staplers. Various other suitable devices and settings in which the below teachings may be applied will be apparent to those of ordinary skill in the art in view of the teachings herein.
II. Exemplary Cartridge with Film
Staple pockets (107) of cartridge (101) are similar to staple apertures (51) described above and are configured to receive a foam, paste, or gel material after cartridge (101) is disposed in lower jaw (16). The material contained in pockets (107) is configured to keep staples (47) in place in pockets (107) and/or to seal the medicated, biocompatible material within body (109) of cartridge (101). Pockets (107) may include various materials, such as glue, fabric, and materials that would be apparent to those of ordinary skill in the art in view of the teachings herein. A film such as buttress (100) comprising a hemostatic agent is disposed on top surface (102) to cover gel-filled pockets (107) and is heated to secure buttress (100) and the underlying medicated material into place. In some versions, only the outer edges of buttress (100) are heated to secure buttress (100) to cartridge (101). Any suitable devices may be used to provide such heating, including but not limited to an anvil (e.g., a custom thermoform die on a light press, etc.). While buttress (100) is shown as disposed over cartridge (101), buttress (100) may additionally or alternatively be disposed on an undersurface of anvil (18) that faces cartridge (101).
The material for buttress (100) as well as the material disposed in pockets (107) and coated on staples (47) may comprise, for example, adjunct or hemostatic agents such as fibrin or thrombin that assist to coagulate blood and reduce the amount of bleeding at the surgical site. The hemostatic abilities of such adjuncts may also contribute to the use of such adjuncts as adhesives and sealants. The agents may assist to coagulate blood at a surgical site which allows tissue surrounding such blood to stick together and may prevent leaks along the stapled tissue site, for example.
Such adjuncts or reagents may further include but are not limited to medical fluid or buttress components such as platelet poor plasma (PPP), platelet rich plasma (PRP), starch, chitosan, alginate, fibrin, polysaccharide, cellulose, collagen, bovine collagen, gelatin-resorcin-formalin adhesive, oxidized cellulose, mussel-based adhesive, poly (amino acid), agarose, amylose, hyaluronan, polyhydroxybutyrate (PHB), hyaluronic acid, poly(vinyl pyrrolidone) (PVP), poly(vinyl alcohol) (PVA), polylactide (PLA), polyglycolide (PGA), polycaprolactone (PCL), and their copolymers, VICRYL® (Ethicon, Inc., Somerville, N.J.), MONOCRYL material, PANACRYL (Ethicon, Inc., Somerville, N.J.), and/or any other material suitable to be mixed with biological material and introduced to a wound or defect site, including combinations of materials. For example, buttress (100) may comprise a material selected from the following materials: epsilon-caprolactone glycolide, bovine pericardium, polylactic acid, polyglycolic acid, polyglactin, polydioxanone, polyglyconate, whey protein, cellulose gum, starch, gelatin, silk, nylon, polypropylene, braided polyester, polybutester, polyethylene, and/or polyetheretherketones. Other suitable compounds, materials, substances, etc., that may be used in a medical fluid or buttress will be apparent to those of ordinary skill in the art in view of the teachings herein.
In some versions, a medical fluid may be suspended in a biocompatible carrier to form the material of buttress (100). Suitable carriers may include, for example, a physiological buffer solution, a flowable gel solution, saline, and water. In the case of gel solutions, the tissue repair composition may be in a flowable gel form prior to delivery at the target site, or may form a gel and remain in place after delivery at the target site. Flowable gel solutions may comprise one or more gelling materials with or without added water, saline, or a physiological buffer solution. Suitable gelling materials include biological and synthetic materials. Exemplary gelling materials include proteins, polysaccharides, polynucleotides, and other materials such as alginate, cross-linked alginate, poly(N-isopropylacrylamide), poly(oxyalkylene), copolymers of poly(ethylene oxide)-poly(propylene oxide), poly(vinyl alcohol), polyacrylate, or monostearoyl glycerol co-Succinate/polyethylene glycol (MGSA/PEG) copolymers, and combinations of any of the foregoing.
Buttress (100) may comprise a fibrous pad, a foam, a matrix, a mesh, or another structure, in accordance with the teachings of, by way of example, U.S. Patent App. Pub. No. 2009/0120994, entitled “Surgical Fastening Device with Initiator Impregnation of a Matrix or Buttress to Improve Adhesive Application”, published May 14, 2009, the disclosure of which is incorporated by reference herein. The material may comprise, for example, a biocompatible material that is a buttress, a matrix having a plurality of openings therein, an open cell or closed cell foam, and/or a fabric pad. The material may include porosities that induce a wicking feature to drawing adhesive into the material and ensure the openings remain clear of the adhesive, allowing tissue growth through the openings after application to tissue.
Additionally or alternatively, buttress (100) may be comprised of an adhesive such as, but not limited to, polymerizable and/or cross-linkable materials such as a cyanoacrylate adhesive. The adhesive, for example, may be a monomeric (including prepolymeric) adhesive composition, a polymeric adhesive composition, or any other compound that can adhere to tissue. In embodiments, the monomer may be a 1,1-disubstituted ethylene monomer, e.g., an alpha-cyanoacrylate. When cross linked or polymerized, the cyanoacrylate can change from a liquid to a solid. Polymerized adhesives for example, can be formulated to be flexible to rigid and could be spongy. If desired, the adhesive can be a single part or dual part adhesive, and/or can contain additives such as alternate compounds. Polymerization of the adhesive can occur from, but is not limited to, exposure to moisture, heat, and/or adhesion initiators such as those described in U.S. Patent App. Pub. No. 2009/0120994, the disclosure of which is incorporated by reference above. Other suitable materials and compositions that may be used to form buttress (100) will be apparent to those of ordinary skill in the art in view of the teachings herein.
III. Exemplary Applicator
Referring back to
Additionally, when anvil (117) is directed away from deck (111) of cartridge (113) by releasing closure trigger (26), which longitudinally translates closure sleeve (32) away from anvil (117), gum (126) will pull fabric (124) out of upper portion (120) of applicator portion (114A) and hold it to undersurface (150) of anvil (117). A user may then use handle (110) to pull applicator (106) away from cartridge (113) and may then dispose of applicator (106). When applicator (106) is pulled off of cartridge (113) in a direction substantially opposite to arrow (B), and where cartridge (113) is outside a patient, material (124, 126, 128) has been applied onto end effector (115), which is ready for use in a patient.
When end effector (115) is used in a manner similar to that described above for end effector (12), firing bar (14) will slice through gel (128) and release biocompatible gel (128) onto sliced layers (92, 94) of tissue (90). Concurrently, firing bar (14) will slice through buttress fabric (124) and adhesive gum (126) to release an adjunct gel contained in fabric (124) and adhesive from gum (126) onto sliced and severed tissue (90). Additionally, staples (47) will be driven through material (124, 126, 128) and into tissue (90) such that staples (47) capture material (124, 126, 128) and deposit it onto captured layers (92, 94) of tissue (90) as shown in
Gum (126) may comprise an adhesive such as, but not limited to, polymerizable and/or cross-linkable materials such as a cyanoacrylate adhesive. The adhesive, for example, may be a monomeric (including prepolymeric) adhesive composition, a polymeric adhesive composition, or any other compound that can adhere to tissue. In embodiments, the monomer may be a 1,1-disubstituted ethylene monomer, e.g., an alpha-cyanoacrylate. When cross linked or polymerized, the cyanoacrylate can change from a liquid to a solid. Polymerized adhesives for example, can be formulated to be flexible to rigid and could be spongy. If desired, the adhesive can be a single part or dual part adhesive, and/or can contain additives such as alternate compounds. Polymerization of the adhesive can occur from, but is not limited to, exposure to moisture, heat, and/or adhesion initiators such as those described in U.S. Patent App. Pub. No. 2009/0120994, the disclosure of which is incorporated by reference above. Other suitable materials and compositions that may be used to form gum (124) will be apparent to those of ordinary skill in the art in view of the teachings herein.
III. Exemplary Capillary Action
IV. Exemplary Glue Filled Buttress Bag
Cartridge (123) includes an envelope (156) disposed above staples (47) in housing (129) and below deck (127). Envelope (156) is retained in a pocket (158) formed by internal walls of housing (129) below deck (127) and above housed staples (47). Envelope (156) may comprise a glue filled buttress material comprised of an adhesive and buttress material as respectively described above for gum (126) of cartridge (113) and buttress (100) of cartridge (101). Of course, any other suitable materials and configurations may be used as apparent to one of ordinary skill in the art in view of the teachings herein.
Firing bar (14) and staples (47) may both be coated with a material, such as an adhesive or other liquid biocompatible material, to assist with application of the material from envelope (156) onto tissue (90), which firing bar (14) and staples (47) sever and staple in a manner described above for cartridge (37). Additionally, the glue in envelope (156) may be substituted with a fibrin or thrombin biologic agent. For example, firing bar (14) and staples (47) may be coated with a material such as thrombin to react with the material retained in envelope (156), which may be fibrin for example, when firing bar (14) and staples (47) puncture envelope (156). The alternative application of fibrin and thrombin is possible, such that firing bar (14) and staples (47) are coated with fibrin and envelope (156) comprises thrombin. Indeed, a wide variety of synthetic and biologic agents may be used. Such material may be applied to cartridge (123) at a manufacturing site or sold separately and applied at a later stage. Alternatively, cartridge (123) may include two compartments to contain two separate glues or any other suitable biocompatible materials.
It should be understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.
Versions of the devices described above may have application in conventional medical treatments and procedures conducted by a medical professional, as well as application in robotic-assisted medical treatments and procedures.
Versions of described above may be designed to be disposed of after a single use, or they can be designed to be used multiple times. Versions may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, some versions of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, some versions of the device may be reassembled for subsequent use either at a reconditioning facility, or by a user immediately prior to a procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
By way of example only, versions described herein may be sterilized before and/or after a procedure. In one sterilization technique, the device is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and device may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the device and in the container. The sterilized device may then be stored in the sterile container for later use. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.
Having shown and described various versions in the present disclosure, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, versions, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.