The embodiments herein relate generally to lighting systems, and more particularly, to an adjustable and directional light enhancing attachment for metal lamp reflectors.
Conventional lighting systems provide inefficient light concentration onto subject areas. For example, fluorescent and incandescent systems typically provide a diffuse light output. While for most daily room lighting systems, light diffusion may be sufficient for a person's visibility, other application may need more light concentration. For example, indoor growing systems use artificial lighting to help stimulate photosynthesis. Under the proper wavelengths, plant growth can be substantial. However, with conventional lighting, light is emitted omnidirectional and thus, a significant portion of light energy is emitted away from a subject area. Some lighting systems, for example, an elongated fluorescent tube bulb and rectangular housing, include reflective internal surfaces of the housing to bounce more light back toward the subject area. Yet these systems still lose a lot of light to the periphery of the housing. The angles of the internal reflective surfaces are static and some surfaces do not point reflected energy to the subject area.
As can be seen, there is a need for a lighting system that improves the reflection of light toward a subject area.
According to one embodiment, a light enhancing system comprises a light housing including: a light source, a first reflector panel extending from the light housing, and a mount. The system further comprises a second reflector panel; a first flexible arm including a distal first end affixed to the second reflector panel, wherein the first flexible arm projects outwardly from an exterior of the light housing and the second reflector panel on the distal end of the flexible arm is also exterior of the light housing; a third reflector panel and a second flexible arm affixed to the third reflector panel; and a swivel joint mount coupling the first flexible arm and the second flexible arm to the light housing, wherein the swivel joint mount is configured to rotate freely about an axis transverse to the first or second flexible arm in response to airflow impacting the second reflector panel or the third reflector panel.
According to another embodiment, a light enhancing system comprises a light housing including: a light source, a first reflector panel extending from the light housing, and a mount. The system further comprises a second reflector panel; a first flexible arm including a distal first end affixed to the second reflector panel, wherein the first flexible arm projects outwardly from an exterior of the light housing and the second reflector panel on the distal end of the flexible arm is also exterior of the light housing; a first quick-connect fastener on a proximal second end of the first flexible arm, the first quick-connect fastener attachable and detachable to the mount of the light housing, wherein, when the first quick-connect fastener is attached to the mount, a distal edge of the second reflector panel is positioned beyond and disconnected from a distal end of the first reflector panel, and wherein the first flexible arm is configured to adjust an angle of reflection of light from the light source off an underside of the second reflector panel; a third reflector panel, a second flexible arm affixed to the third reflector panel, and a second quick-connect fastener coupled to the second flexible arm, wherein the third panel reflector is removably attached to the light housing by coupling the second quick-connect fastener to the mount; and a swivel joint mount coupling the first flexible arm and the second flexible arm to the light housing, wherein the swivel joint mount is configured to rotate freely about an axis transverse to the first or second flexible arm in response to airflow impacting the second reflector panel or the third reflector panel.
The detailed description of some embodiments of the present invention is made below with reference to the accompanying figures, wherein like numerals represent corresponding parts of the figures.
The word “exemplary” is used herein to mean “serving as an example or illustration.” Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs.
Generally, embodiments of the subject technology provide light enhancement for applications such as grow lighting. Exemplary embodiments improve the amount of light reflected onto a subject area. Aspects of the lighting system make better use of a light source by shortening the distance to the targeted area of, for example, a garden subjected to grow lighting. In addition, energy is saved and produces more light by capturing what would otherwise be stray lost light with no additional heat. In some embodiments, a detachable attachment system may retrofit onto grow light sources in the garden and greenhouse industry. As will be appreciated, features of the embodiments disclosed will increase the yield in any garden using grow light.
Referring now to
The system 10 may include a mount fixture 15. In some embodiments the mount fixture 15 is permanently affixed to the lighting unit 11. In some embodiments the mount fixture 15 is retrofit on to the lighting unit 11 housing. The mount fixture 15 may include one or more post(s) 12 extending up from the housing. In some embodiments the mount fixture 15 may include two mounting points and a cross bar 17 connecting the two points across a length of the housing. A 4-way tee coupler 18 may connect the cross bar 17 to the posts 12.
In an exemplary embodiment, the system 10 includes a lamp reflector panel 13, a flexible arm 16 including a first end affixed to the metal lamp reflector panel 13 and a quick-connect fastener 20 on a second end of the flexible arm 16. Some embodiments may include a single reflector panel 13 and one or more flexible arms 16 extending therefrom while other embodiments may include two or even more reflector panels 13 attached to the lighting unit 11. In general, the lamp reflector panel 13 is disposed to extend the area of available light reflection from the lighting unit 11. For example a distal edge of the reflector panel 13 may be positioned beyond a distal end of the reflector panel 14. In some embodiments, the reflector panel 13 may include a flap on the distal edge to further catch and reflect stray lighting from the lighting unit 11. The reflector panel 13 and reflector panel 14 may be metallic, which may include a hammered finish on the underside surface (not shown). The quick-connect fastener 20 may be a threaded or press-fit connector which may be attachable to the tee-coupler 18. The flexible arm 16 may include for example gooseneck tubing. When connected to the mount fixture 15, a user may adjust positioning of the lamp reflector panel 13 by bending the flexible arm 16 so that an angle of reflection of light from the lighting unit 11 off the underside of the lamp reflector panel 13 is adjusted to catch more or less light and reflect more or less light onto an area as desired. As shown in
Referring now to
Referring now to
Referring now to
In an exemplary embodiment, the free rotating device may be for example a bearing 130 coupled to a post system 170 that is connected to the reflector panel 14 (or the housing in general for the system 100's light source). The post system 170 may be perpendicular to a cross-post 180 that may be generally aligned with, and extending in connection between, the centers of the washers 24. A light socket 150 and light source 155 (see
In use, the embodiments in
Persons of ordinary skill in the art may appreciate that numerous design configurations may be possible to enjoy the functional benefits of the inventive systems. Thus, given the wide variety of configurations and arrangements of embodiments of the present invention the scope of the present invention is reflected by the breadth of the claims below rather than narrowed by the embodiments described above.
This application claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Applications having Ser. No. 62/148,888 filed Apr. 17, 2015, and U.S. Non-Provisional application Ser. No. 15/130,833 filed Apr. 15, 2016, which are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6883952 | Sander | Apr 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
62148888 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15130833 | Apr 2016 | US |
Child | 16130754 | US |