The present invention relates to improvements in the foot rest system of a kayak.
Kayaks employ either of two basic foot rest systems. The first such system is comprised of a pair of individual foot pegs, attached mechanically to either side of the bow, to separately support each foot. The second system is comprised of a unitary bulkhead, similarly disposed in the bow, on which the user supports both feet.
For whitewater kayaks, the use of foot pegs has fallen out of favor as they provide limited surface area for contact with the user's feet and as a result, foot slippage can cause loss of control of the kayak or injury to the legs and ankles. Bulkheads, on the other hand, provide a larger surface area on which to rest the feet. While this system is common to whitewater kayaks, other types of kayaks may also employ bulkhead systems.
As known in the art, the overwhelming majority of bulkhead systems share a common design feature: the bulkhead is mechanically attached to rigid rails, a rigid cross member, or both which are in turn affixed to the hull of the kayak. These rigid components are normally made of aluminum. For systems with rails, the hull attachment points occur along the sides at or near the cockpit. Cross member only systems (without rails) attach to the hull where the bulkhead cross member engages the bow at the sides of the kayak. Mechanical fasteners such as screws and bolts are used at the attachment points. Such bulkhead systems, while providing direct and solid mechanical contact with the kayak, are by nature stationary. Adjustment to the bulkhead position can only be achieved by removing the mechanical fasteners and repositioning the rails or cross member to a new location and then refastening. Typically, rigid rails will be fitted with a row of multiple screw holes to allow for adjustment. Cross member only systems generally require drilling new attachment points along the sides of the kayak. By necessity, adjustments to traditional stationary bulkheads must be accomplished by the user from outside the kayak and often require the use of hand tools.
One alternate system, also known in the art, allows the bulkhead to be adjusted from a seated position inside the kayak. This system is comprised of a unitary bulkhead that moves along a slot in a foam bow wall support and is secured using a rope that runs internal within the wall. The rope can be pulled to tighten the bulkhead and is locked in place by a plastic cleat fastener attached to the front of the wall. The entire bulkhead system is contained and supported by the bow wall. There are no attachment points that independently or directly secure the bulkhead to the hull of the kayak. The bow wall (with mounted bulkhead assembly) fits into the bow cavity and is secured in place using a face plate on the front of the wall. The faceplate is secured to the deck of the kayak and to a horizontal hull floor support which runs under the seat and connects bow wall to stern wall.
While solving the problem of inside the boat adjustability, this system (unlike a traditional stationary bulkhead) has been known to slip when impacting an immovable object. Under these circumstances, the rope often breaks free of the cleat and the bulkhead slides free along the slot toward the bow. The paddler looses foot pressure on the bulkhead and possibly control over the kayak. Furthermore, this type system is also prone to loosening once the bow wall becomes wet and as the paddler applies pressure to the bulkhead with his feet. The wall tends to compress in these instances and the bulkhead can slip forward. Finally, the bulkhead itself is supported entirely by the structure of the bow wall. Compromises to the bow wall foam or assembly can result in total failure of the bulkhead system.
In view of the above, a need has existed in the art to provide a bulkhead system whose position is fully adjustable by the user while seated in the kayak and yet which has the structural integrity and non-slip fixed positioning associated with a traditional stationary bulkhead.
As additional impetus, the current art of kayak manufacture utilizes two distinct classes of raw materials and methods to create boats with differing properties. The first such class involves creating kayaks from molding pelletized plastics such as polyethylene. The second class comprises composite kayaks made from resins such as epoxy and vinyl ester and woven fabrics such as carbon fiber and aramid. Prior art bulkhead system design has focused primarily on applications for plastic kayaks while ignoring the unique properties and design advantages that are available with composite kayaks.
As a result, there exists an additional need in the art for a bulkhead system design that will work for composite kayaks as well as those made from plastics.
It is therefore an object of the present invention to provide a bulkhead system adapted to allow the paddler to adjust the position of the bulkhead while seated inside the kayak while in use on the water and to provide a non-slip fixed foot support for the user under extreme conditions.
To achieve these primary objects, the present invention replaces the rigid metal rails and fasteners of prior art bulkhead designs with flexible straps equipped with strap adjusting hardware and coupled to looped anchor points that are affixed to each side on the inside of the kayak. Left and right straps (with respect to the seated user) are connected to their respective ends of the bulkhead, coupled to looped anchor points and threaded back through common strap adjusters such that the user can pull concurrently on the ends of each strap and synch the bulkhead toward the seat tightening himself into the kayak.
To achieve the synching function, it is necessary that the present invention also provide for a floating bulkhead. The floating bulkhead is capable of moving forward and backward inside the bow along the longitudinal axis of the kayak. The present invention provides for floating bulkheads with one friction point as well as multiple friction points. The one friction point floating bulkhead requires a horizontal slot to be cut into the vertical bow support wall along which the bulkhead can move. Dual friction point floating bulkheads that do not require a bow support wall are also provided. These utilize channelized runners disposed inside the bow along each side. The ends of the bulkhead cross member are disposed within the channels to allow the bulkhead to move freely forwards or backwards. Furthermore, bulkheads which utilize a combination of bow support wall slots and channelized runners are also provided.
Finally, to hold the bulkhead steady in its selected position, the present invention also provides a force that is in the opposite direction of that provided by the synch straps. To accomplish this, the present invention provides a rebounding stretch cord that couples the floating bulkhead to a loop anchor disposed in the end of the bow of the kayak. The stretch cord provides a constant force pulling the bulkhead away from the seat. When the user desires to relax the tightness and position of the bulkhead the strap adjusters can be loosened and the opposite force provided by the stretch cord will move the bulkhead away from the user's feet.
A further object of the invention is to provide an adjustable bulkhead system for use in all types of kayaks of any material of construction. The present invention utilizes different loop anchor mechanisms to provide for various materials of construction.
These and other objects of the present invention will become apparent from the following drawings and detailed specification taken together with the representative examples.
Turning to
A foot support member, shown in
Turning also now to
A bungee cord, flexible rubber strap or other stretchable band, 30, is securely fastened to loop 26, threaded through anchor 32 around the end of wall 10, and fastened to loop 28. Anchor 32 is positioned such that bungee cord 30 lies parallel to cutout sleeve 18 and perpendicular to the faces of pedals 12 and 14 on which the paddler, P, rests his feet. The length of bungee cord 30 is fashioned such that it exerts continual force on the bulkhead pulling it toward the end of the bow in direction 34 regardless of the position of cross member 16 with respect to sleeve 18.
Separate flexible straps, 36 and 38, are affixed respectively at one end to loops 22 and 24 and pass along the sides of the hull, 2, through guide anchors 40 and 42 respectively. The remaining ends of flexible straps 36 and 38 are affixed to separate strap adjusters (as known in the art of strap hardware), 44 and 46 respectively.
Additional and separate flexible straps, 48 and 50, are affixed at one end to anchors 52 and 54 respectively. The remaining ends of flexible straps 48 and 50 are threaded through strap adjusters 44 and 46 respectively.
Anchors 52 and 54 and guide anchors 40 and 42 are positioned such that, when under tension, flexible straps, 36 and 38 and flexible straps 48 and 50 lie parallel to cutout sleeve 18 and perpendicular to the faces of pedals 12 and 14 on which the paddler, P, rests his feet. Furthermore, when under tension, straps 36, 38, 48, 50 and bungee cord 30 all lie, generally speaking, within the same horizontal plane which is, in turn, perpendicular to the faces of pedals 12 and 14 on which the paddler, P, rests his feet.
When paddler, P, pulls simultaneously on the ends of straps 48 and 50, the bulkhead will move in the direction of arrow 56, counter to the force exerted by bungee 30 which will stretch and provide opposite force to keep the bulkhead in the selected location. Through this means, paddler, P, can “synch” himself into the kayak, K, adjusting the bulkhead location to fit the length of his legs while remaining seated in the boat while in use on the water. Alternately, by simply flipping the tabs on strap adjusters 44 and 46, paddler P, can immediately loosen straps 48 and 50 to reduce the tension of the bulkhead for added comfort. Upon loosening the straps, the bulkhead, through the force exerted by bungee 30, moves back in the direction of arrow 34. This adjustment can also be made without exiting the kayak, K.
Because the bulkhead, according to the present invention, truly floats within sleeve 18 and is not affixed to the hull by rigid rails and fasteners, but instead utilizes flexible straps as configured above, it is useful to firmly secure the position of wall, 10, in the bow of the kayak, K.
To do so, wall support, 58, is comprised of an elongated “U” or channel shaped sleeve that is fashioned to entirely wrap the front face and a portion of both side faces of wall 10. The top of wall support 58 is firmly and permanently affixed to the underside of deck, 4, utilizing resin and woven cloth as is known in the art. As shown in
The resulting configuration serves to secure the wall, 10, into place and provides rigid vertical support and shock absorbing energy transfer from the hull, 2, into the deck, 4, upon impact of the hull, 2, near the cockpit, 6.
Additional details of the preferred embodiments are described below:
Bow wall 10 is typically made from closed minicell foam, as known in the art, though other wall materials rigid, flexible or otherwise are within the scope of the present invention.
Pedals 12 and 14 are preferably constructed from composite materials such as carbon fiber and aramid though other materials of construction such as plastic or metal are within the scope of the present invention.
Turning to
Sleeve 18 is preferably made from carbon fiber and aramid but other rigid materials such as plastic or metal are within the scope of the present invention. The longitudinal length of sleeve 18 is fashioned such that a wide range of users with various heights and leg lengths can be accommodated. Appendage 64 and cross member 16 combine to form a rigid rectangle that rests wholly within sleeve 18 preventing cross member 16 from spinning within sleeve 18 when extreme force is applied to the top or bottom of pedals 12 and 14. Alternately, and within the scope of the present invention, cross member 16 can be fashioned from a single rectangular tube or rectangular metal plate provided the inside height of sleeve 18 and the height of cross member 16 are generally the same and the width of cross member 16 is greater than its height.
Flexible straps 36, 38, 48, and 50 are preferably made from flat polyester webbing though other materials such as flat nylon webbing, tubular webbings, ropes, cords or other flexible segments are within the scope of the present invention.
Anchors 32, 52, and 54 are fashioned from U shaped segments of rope a portion of which are unraveled at each end and affixed to the hull using resin and a reinforcing cloth as known in the art.
Guide Anchors 40 and 42 are fashioned from vertical segments of rope a portion of which are unraveled at each end and affixed to the hull using resin and a reinforcing cloth as also known in the art.
Wall support 58 and flange cover 62 are preferably made of carbon fiber, though other materials of construction such as fiberglass or aramid are also within the scope of the present invention.
Additional short segments of “U” shaped wall support pieces, not shown but similar to wall support 58 though narrower and without the flange, may be affixed to the deck, 4 and hull, 2, via resin and reinforcing cloth, as known in the art, to further secure the wall, 10 to the kayak, K.
The details of the preferred embodiments discussed above were done so relative to kayaks constructed from composite materials. However, the scope of the present invention also pertains to kayaks made from pelletized plastics, wood, or other materials and is not limited as such.
The present invention encompasses alternate embodiments listed below but not limited to the following:
Loop attachment points on cross member 16 shown in
Other foot support members are also within the scope of the present invention. While a bulkhead as shown in the drawings and otherwise known in the art is preferred, other rigid and unitary members fashioned to support the feet of the user are within the scope of the present invention. One example is shown in
Also within the scope of the present invention, sleeve 18 can be replaced with a simple slot cut into the bow wall. This slot can be lined on top and bottom with plastic or metal reinforcement to reduce friction or left unreinforced provided the bulkhead cross member can slide freely.
Furthermore, the use of multiple bungee cords, rubber straps or other flexible cords to replace or be used in conjunction with the single bungee cord as described in the preferred embodiment is also considered within the scope of the present invention. To achieve this, additional anchor points to the bulkhead, deck, 4, or hull, 2, may be added. These additional anchoring points are considered within the scope of the present invention.
Also within the scope of the invention is a bulkhead system which floats at the ends of the cross member in addition to floating at the middle of the cross member as discussed in the preferred embodiment. To illustrate how this is accomplished, the bow wall was removed from the drawing in
Furthermore, the scope of the present invention can be extended to kayaks without bow walls. For this application, runners 66 and 68, can be used alone as the tracking mechanism with the bulkhead floating at each end of cross member, 16. In this scenario, a single piece bulkhead, 80, as shown in
Also within the scope of the present invention are varieties in how the straps are secured, configured and aligned. For example, in the preferred embodiment, strap sliders (as known in the art of strap hardware), 70, 72, 74, and 76, are used to secure straps 36 and 38 to the bulkhead and straps 48 and 50 to anchors 52 and 54 respectively. Other methods of securing the straps include the use of tied knots or sewn loops. In another example, a single strap with or without a sewn strap adjuster can be configured to replace the two-strap-per-side system as described in the preferred embodiment. A final example includes the use of multiple guide anchors to pilot the straps closer to the hull walls or elsewhere.
Anchors 32, 52, and 54 and guide anchors 40 and 46 were discussed in the detailed embodiment to be made of rope and secured using resin and woven cloth reinforcement as known in the art. Within the scope of the present invention are varieties on the materials used for their construction and how said anchors are attached to the hull of the kayak. For example, sturdy metal “D” rings, “0” rings, and other loops and guides affixed to a mounting plate can be secured to the hull using mechanical fasteners. As a second example, in plastic kayaks the bow grab loop and seat, as known in the art, are typically attached to the hull using mechanical fasteners. These points of attachment can be doubly purposed to mount sturdy metal anchors 32, 52, and 54 to the underside of the deck. In another example, metal runners, 66 and 68 (as shown in
As known in the art, plastic kayaks generally utilize a hull support piece, 78 (as illustrated in
Finally, while this invention has been described as having a preferred design, it is understood that it is capable of further modifications, and uses and/or adaptations of the invention and following in general the principle of the invention and including such departures from the present disclosure as come within the known or customary practice in the art to which the invention pertains, and as may be applied to the central features hereinbefore set forth, and fall within the scope of the invention or limits of the claims appended hereto.
REFERENCING PROVISIONAL Patent Application No.: 62/165,898 submitted on May 23, 2015
Number | Date | Country | |
---|---|---|---|
62165898 | May 2015 | US |