The present invention relates to an adjustable apparel closure assembly, and more specifically, to an apparel closure system that is infinitely adjustable within an operating range of the closure assembly. Another aspect of the invention relates to allowing air to circulate around as well as through the closure assembly to improve cooling of the user.
Many items of apparel are provided with closure assemblies that allow the user to conveniently place the apparel about a body structure and then manipulate the closure assembly so that the apparel can be snuggly and securing positioned about the anatomy of the wearer. Although zipper structures are common for many torso covering apparel, zippers are not particularly conducive to all apparel and/or all anatomical coverings. For instance, zippers commonly require visual inspection of the respective portions of the zipper to allow alignment for proper operation of the zipper. Commonly, such systems also require two-handed manipulation of respective sides of the item of apparel.
Headgear and shoes are two items of apparel that do not lend themselves to zipper closure assemblies. Commonly, and particularly applicable to the use of bicycles, such helmets include a closure assembly that is positioned at the back of the head when the headgear is positioned about the head of the wearer. Many such closure assemblies are constructed for single handled and out of sight operation but such systems are not without their respective drawbacks.
Many helmets, like constructions hard-hats and bicycle helmets include an operator that is turned by the user in a clockwise and counterclockwise direction to tighten and/or loosen the helmet relative to the user. Most such systems include a rack and pinion arrangement that alters the closure associated with the helmet. However, such rack and pinion systems allow for only limited incremental adjustment of the size of the closure. Although such systems tolerate a range of sizes associated with a given user, the incremental nature of the operation of the tightening mechanism leaves many users tolerating a closure pressure that is undesirably loose and/or tight. Accordingly, there is a need for an apparel closure system wherein the shape of the closure is infinitely adjustable within an operating range of the closure assembly.
Another drawback of such closure systems is the generally large footprint associated with the closure system. The closure assembly associated with most headgear includes a generally solid bodied base that rests against the head or other adjacent anatomy of a user. The solid bodied nature of such closure systems do not lend themselves to desirable ventilation of the wearer during the strenuous activities commonly associated with wearing such apparel. The footprint of such closure systems is generally controlled by the size of the rack and pinion system and the structure intended to interact therewith. Although reducing the size of the rack and pinion system would reduce the footprint associated with the closure system, such modification sacrifices the operational integrity of the closure assembly. Accordingly, there is also a need for an adjustable closure assembly that allows better ventilation of the wearer.
As mentioned above, helmets are one environment requiring an improved closure assembly. Shoes, and particularly bicycle shoes, are another environment that could be improved by addressing the shortcomings discussed above. Many users desire to quickly and repeatedly orient and secure a shoe to a respective foot. Single handed operation is another important consideration to any such closure assembly. Particularly during use of a bicycle, due to the interaction with the handlebar, a rider can only have one hand free to adjust a closure of an item of apparel without suspending operation of the bicycle. Adjusting a shoe closure device can often occur during riding to address swelling of the foot.
Like bicycle helmets, many shoe closure devices are also solid bodied assemblies that include adjustable members that are secured to the opposite lateral sides of the upper of a shoe. The compression of the closure assembly about the foot detracts from desirable venting of the foot. Although many manufactures have addressed such a shortcoming by forming portions of the shoe structure from vented materials, such materials do not resolve the inadequate venting attributable to the closure assembly.
Accordingly, regardless of the particular item of apparel, there is a need for an apparel closure assembly that is infinitely adjustable within an operating range of the closure assembly. There is a further need for an apparel closure assembly having a construction that reduces the detrimental heating affects commonly attributable to the solid bodied shape of the closure assembly.
The present invention provides an apparel closure assembly that addresses one or more of the shortcoming discussed above. According to one aspect of the invention, a closure assembly is disclosed that includes a ventilation port therethrough. The closure assembly includes a housing and an operator that rotationally cooperates with the housing. A flexible member is movably supported relative to the housing and cooperates with the operator so that manipulation of the operator alters the amount of the flexible member that extends beyond the housing. A biasing means, such as a torsion spring, cooperates with the operator and interacts with the housing to maintain a desired orientation of the operator, and thereby a desired orientation of the flexible member, relative to the housing to define a shape of a closure of the item of apparel. Another aspect of the invention discloses a vent port that is formed through the closure assembly to mitigate the collection of heat between the closure assembly and the wearer.
Another aspect of invention useable with one or more of the above aspects discloses an apparel closure assembly that includes a housing and a flexible member that extends beyond the housing and engages an item of apparel. A spring is disposed in the housing and an operator is rotatably attached with the housing and engaged by the spring. The operator is configured to interact with the spring and the flexible member so that rotation of the operator in a first direction allows the flexible member to dispense from the housing and rotation of the operator in a second direction retracts the flexible member into the housing. The spring retains the position of the flexible member relative to the housing.
Another aspect of the invention that can be combined or used with one or more of the aspects discussed above discloses an adjustable closure assembly that includes a base member, a drum assembly that extends through the base member, and a handle that is supported by the drum assembly and rotationally connected to the base member. A closure member is disposed between the base member, the drum assembly, and the handle and a spring is positioned between the handle and the drum assembly. The spring is biased from a rest position to constrict about the drum assembly and is positioned to interact with the handle so that rotation of the handle in a first direction biases the spring out of constriction about the drum assembly and rotation of the handle in a second direction rotates the closure member with respect to the base member.
Another aspect of the invention that is combinable with one or more of the aspects or features above discloses a method of altering a tension of a closure of an item of apparel. A first side of a flexible member is secured to a first side of a closure and a second side of the flexible member is secured to a second side of the closure. Manipulation of a handle alters a tension of the flexible member about the closure and manipulating the shape of a torsion spring in response to manipulation of the handle in a first direction relieves tension of the flexible member and the tension on the flexible member is increased during manipulation of the handle in a second direction opposite the first direction.
Another aspect of the invention that is combinable with one or more of the aspects or features above discloses an adjustable closure assembly having a housing and a drum that is attached to the housing. A flexible member is supported by the drum and is rotationally positionable relative to the housing. A handle is attached to the drum and positioned to interact with the flexible member to alter a shape of a closure of an item of apparel. A passage is formed through the housing and exposes a portion of a wearer that is within a boundary of the housing to atmosphere.
Preferably, the closure assemblies and method of altering a tension of a closure disclosed in the above aspects is applicable to various items of apparel including but not limited to bicycle helmets and bicycle shoes.
In another preferred aspect usable with one or more of the above aspects, a vent is formed through the closure assembly and exposes a portion of the wearer that is internal to an exterior edge of the closure assembly directly to atmosphere. The vent reduces the detrimental effects commonly associated with fully covering that portion of the anatomy that underlies the footprint of similar but solid bodied closure assemblies.
These and various other aspects and features of the present invention will be better appreciated and understood when considered in conjunction with the following detailed description and the accompanying drawings. It should be understood that the following description, while indicating preferred embodiments of the present invention, is given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
The drawings illustrate one preferred embodiment presently contemplated for carrying out the invention. In the drawings:
In describing the preferred embodiments of the invention that are illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended that the invention be limited to the specific terms so selected and it is to be understood that each specific term includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. For example, the word “connected,” “attached,” or terms similar thereto are often used. They are not limited to direct connection but include connection through other elements where such connection is recognized as being equivalent by those skilled in the art.
Although closure assembly 20 is shown as being configured to cooperate with a bicycle helmet, it is appreciated that closure assembly 20 can be provided in a number of form factors to tolerate incorporation into other items of apparel. That is, it is envisioned that closure assembly 20 can also be configured to provide a convenient, secure, and repeatable closure assembly for closing the throat or ankle opening commonly associated with bicycle shoes or the like.
As shown in
Closure assembly 20 includes a housing 40 and an operator or handle 46 that is rotationally secured to housing 40. Housing 40 includes an optional first guide 48 and an optional second guide 50 that extend an opposite forward lateral directions from housing 40 and toward the opposite lateral sides of helmet 22. Understandably, guides 48, 50 may have other shapes and/or simply be omitted for other uses of closure assembly 20 and/or use of closure assembly 20 with other helmet configurations.
Arm portions 36, 38 of flexible member 34 movably, and preferably slidably, cooperate with guides 48, 50. Housing 40 also includes a pair of optional supports 56, 58 that extend in a generally upward and slightly forward direction relative to handle 46. A distal end 60, 62 of each support 56, 58 is constructed to cooperate with an interior surface of helmet 22 so as to positionally orient closure assembly 20 relative thereto. An optional flange 68 is disposed between distal ends 60, 62 of supports 56, 58. An opening 70 is formed through flange 68 and configured to cooperate with a boss or other projection, and/or fastener, to provide a more robust securing arrangement of closure assembly 20 with helmet 22.
As shown in
As shown in
As explained further below with respect to
Flexible member 34 includes an opening 108 at slidably cooperates with the outer surface of stem portion 94 of drum 42 such that a hub portion 110 of flexible member 34 can be positioned in chamber 104. Arms 36, 38 of flexible member 34 are connected to hub portion 110 and extend in a radially outward direction therefrom. Although hub portion 110 and arms 36, 38 of flexible member 34 are shown as having a one-piece construction, it is appreciated that arms 36, 38 could be otherwise attached or secured to hub portion 110 such that rotation of hub portion 110 relative to housing 40 winds or otherwise wraps the arms 36, 38 about the hub portion 110 to alter the length of flexible member that extends beyond housing 40.
Hub portion 110 of flexible member 34 has an abutment face 112 that generally aligns with a lateral end 114 of spring 90 but is wider than the radial width of a cross-section of spring 90. As explained further below with respect to
Still referring to
Referring to
Still referring to
Drum nut 44 includes a stepped stem 146 having a first portion 148 and a second portion 150 wherein first portion is constructed to pass radially inward of hub portion 110 of flexible member 34 and second portion 150 is constructed to snuggly and frictionally engage spring 90 when closure assembly 20 is assembled. A lip 152 is formed at a first end 154 of drum nut 44 and a number of teeth 156 and gaps 57 are formed at a second end 158 of drum nut 44. A threaded surface 160 is formed on a radially interior surface 162 of drum nut 44.
Referring to
Flange portion 96 of drum 42 includes a number of optional openings 180 that are configured to cooperate with a spanner wrench or the like to allow rotational tightening of drum 42 and drum nut 44 via the threaded arrangement between threaded surface 100 of drum 42 and threaded surface 160 of drum nut 44. Understandably, it is envisioned that any number of configurations could be provided to facilitate the rotational threaded interaction and tightening between drum 42 and drum nut 44.
As mentioned above and referring to
Referring to
When handle 46 is released, the constricting engagement between spring 90 and drum nut 44 provides a frictional engagement that maintains the orientation of flexible member 34 relative to housing 40 and thereby the shape of the closure opening at a desired tension about the anatomy of the user. Said in another way, rotation of handle 46 in a tightening direction increases the tension associated with flexible member 34 about the wearer.
When handle 46 is rotated in a counterclockwise or loosening direction, second tang 219 of handle 46 interacts with one of tangs 212, 220 of flexible member 34 as well as with end 136 of spring 90. The interaction of tang 219 with end 136 of spring 90 overcomes the constricting bias of spring 90, or “opens” spring 90, so that spring 90 is freely translatable relative to drum nut 44 and flexible member 34 can be rotated so as to dispense or discharge a greater portion of arms 36, 38 beyond housing 40 and thereby increases the cross-sectional opening associated with the closure of the item of apparel so that the item of apparel can be loosened and/or fully removed. Said in another way, rotation of handle 46 in a loosening direction lessens the tension associated with flexible member 34 provided about the anatomy of the wearer.
Regardless of the direction of manipulation of handle 46, when the handle is released, spring 90 constricts about drum nut 44 thereby securing the relative orientation of flexible member 34 relative to housing 40. The interaction of spring 90 with drum nut 44 provides a closure assembly that is infinitely positionable within the operating range of closure assembly 20 as compared to the indexing adjustability associated with the rack and pinion closure assemblies of the prior art. As such, closure assembly 20 provides a highly adjustable closure system that can accommodate a number of different apparel closure applications as well as a large variety of user preferences with respect to any given item of apparel.
Referring back to
Therefore, one embodiment of the invention includes an apparel closure assembly having a housing and a flexible member that extends beyond the housing and engages an item of apparel. A spring is disposed in the housing and an operator is rotatably attached with the housing and engaged by the spring. The operator is configured to interact with the spring and the flexible member so that rotation of the operator in a first direction allows the flexible member to dispense from the housing and rotation of the operator in a second direction retracts the flexible member into the housing. The spring retains the position of the flexible member relative to the housing.
Another embodiment of the invention combinable with one or more of the features or embodiments above includes an adjustable closure assembly having a base member, a drum assembly that extends through the base member, and a handle that is supported by the drum assembly and rotationally connected to the base member. A closure member is disposed between the base member, the drum assembly, and the handle and a spring is positioned between the handle and the drum assembly. The spring is biased from a rest position to constrict about the drum assembly and is positioned to interact with the handle so that rotation of the handle in a first direction biases the spring out of constriction about the drum assembly and rotation of the handle in a second direction rotates the closure member with respect to the base member.
Another embodiment of the invention that is combinable with one or more of the features or embodiments above includes a method of altering a tension of a closure of an item of apparel. A first side of a flexible member is secured to a first side of a closure and a second side of the flexible member is secured to a second side of the closure. Manipulation of a handle alters a tension of the flexible member about the closure and manipulating the shape of a torsion spring in response to manipulation of the handle in a first direction relieves tension of the flexible member and the tension on the flexible member is increased during manipulation of the handle in a second direction opposite the first direction.
Another embodiment of the invention that is combinable with one or more of the features or embodiments above includes an adjustable closure assembly having a housing and a drum that is attached to the housing. A flexible member is supported by the drum and is rotationally positionable relative to the housing. A handle is attached to the drum and positioned to interact with the flexible member to alter a shape of a closure of an item of apparel. A passage is formed through the housing and exposes a portion of a wearer that is within a boundary of the housing to atmosphere.
The present invention has been described above in terms of the preferred embodiment. It is recognized that various alternatives and modifications may be made to these embodiments which are within the scope of the appending claims.
Number | Name | Date | Kind |
---|---|---|---|
2926406 | Zahnor et al. | Mar 1960 | A |
3214809 | Zahnor | Nov 1965 | A |
3325824 | Donegan | Jun 1967 | A |
3668791 | Salzman et al. | Jun 1972 | A |
3729779 | Porth | May 1973 | A |
4633599 | Morell et al. | Jan 1987 | A |
4660300 | Morell et al. | Apr 1987 | A |
4961544 | Bidoia | Oct 1990 | A |
5745959 | Dodge | May 1998 | A |
5887288 | Arney et al. | Mar 1999 | A |
5934599 | Hammerslag | Aug 1999 | A |
5950245 | Binduga | Sep 1999 | A |
5983405 | Casale | Nov 1999 | A |
6108824 | Fournier et al. | Aug 2000 | A |
6202953 | Hammerslag | Mar 2001 | B1 |
6226802 | Sasaki et al. | May 2001 | B1 |
6260197 | Hoogewind | Jul 2001 | B1 |
6289558 | Hammerslag | Sep 2001 | B1 |
6401261 | Arney et al. | Jun 2002 | B1 |
6425142 | Sasaki et al. | Jul 2002 | B2 |
6966075 | Racine | Nov 2005 | B2 |
7000262 | Bielefeld | Feb 2006 | B2 |
7043772 | Bielefeld et al. | May 2006 | B2 |
7089603 | Ketterer et al. | Aug 2006 | B2 |
7174575 | Scherer | Feb 2007 | B1 |
7178175 | Rogers et al. | Feb 2007 | B2 |
7222374 | Musal et al. | May 2007 | B2 |
7249727 | Kovacevich et al. | Jul 2007 | B2 |
7252259 | Kovacevich et al. | Aug 2007 | B2 |
7296305 | Ketterer et al. | Nov 2007 | B2 |
7367522 | Chen | May 2008 | B2 |
7516914 | Kovacevich et al. | Apr 2009 | B2 |
7591050 | Hammerslag | Sep 2009 | B2 |
7634820 | Rogers et al. | Dec 2009 | B2 |
7694354 | Philpott et al. | Apr 2010 | B2 |
7950112 | Hammerslag et al. | May 2011 | B2 |
7954204 | Hammerslag et al. | Jun 2011 | B2 |
20020095750 | Hammerslag | Jul 2002 | A1 |
20050204456 | Piper et al. | Sep 2005 | A1 |
20050262619 | Musal et al. | Dec 2005 | A1 |
20060015986 | Bielefeld | Jan 2006 | A1 |
20060053532 | Ketterer et al. | Mar 2006 | A1 |
20060156517 | Hammerslag et al. | Jul 2006 | A1 |
20060185357 | Kovacevich et al. | Aug 2006 | A1 |
20060195974 | Burkhart et al. | Sep 2006 | A1 |
20070039085 | Kovacevich et al. | Feb 2007 | A1 |
20070079429 | Pilon et al. | Apr 2007 | A1 |
20070169251 | Rogers et al. | Jul 2007 | A1 |
20070245468 | Butler | Oct 2007 | A1 |
20070250986 | Zuber | Nov 2007 | A1 |
20080060167 | Hammerslag et al. | Mar 2008 | A1 |
20080060168 | Hammerslag et al. | Mar 2008 | A1 |
20080066345 | Hammerslag et al. | Mar 2008 | A1 |
20080066346 | Hammerslag et al. | Mar 2008 | A1 |
20080083135 | Hammerslag et al. | Apr 2008 | A1 |
20080156924 | Kovacevich et al. | Jul 2008 | A1 |
20080223972 | Kovacevich et al. | Sep 2008 | A1 |
20080276354 | Stokes et al. | Nov 2008 | A1 |
20080289085 | Bryant et al. | Nov 2008 | A1 |
20090031482 | Stokes et al. | Feb 2009 | A1 |
20090184189 | Soderberg et al. | Jul 2009 | A1 |
20100050324 | Musal | Mar 2010 | A1 |
20100139057 | Soderberg et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
0832572 | Mar 2002 | EP |
WO 2006050266 | May 2006 | WO |
WO 2006091976 | Aug 2006 | WO |
WO 2010059989 | May 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20120167281 A1 | Jul 2012 | US |