The present invention relates generally to light fixtures, and more specifically, but not by way of limitation, to adjustable and/or recessed light fixtures.
An adjustable light fixture may allow for a level of control over some aspect of light output from the fixture (e.g., by allowing tilting and/or swiveling of a light source of the fixture relative to other components of the fixture to adjust a direction of light output by the fixture). Such fixtures may be recessed into a structure (e.g., at least partially disposed within a wall, ceiling, floor, other structure, and/or the like).
Typical tilting fixtures are often susceptible to various issues. For example, such tilting fixtures may involve mechanisms that, during tilting of a light source, cause other, undesirable movements of the light source (e.g., rolling, yawing, undesired lateral translation, and/or the like). Such mechanisms may be prone to binding and/or falling out of adjustment. Especially for recessed fixtures, known tilting mechanisms are often relatively large and complex (e.g., involving many moving parts), which may complicate the installation of a tilting fixture including such a tilting mechanism (e.g., by requiring a relatively large opening in a wall, ceiling, floor, and/or the like to accommodate the tilting fixture and/or correspondingly large trim or patching to cover gaps).
Typical swiveling fixtures often also exhibit undesirable qualities. For example, such swiveling fixtures may involve swiveling mechanisms that provide non-smooth (e.g., jerky or inconsistent) feel to swiveling adjustments (e.g., involving meshing gears, interfacing rough surfaces, and/or the like). Additionally, such swiveling mechanisms may require considerable effort to adjust and may be prone to falling out of adjustment. Some existing swiveling mechanisms may be relatively large and complex, which may complicate the installation of swiveling fixtures including such swiveling mechanisms (e.g., similarly as to described above).
Some recessed light fixtures are designed to be recessed into a structure, which typically involves the use of a mount. Some existing mounts may require access to both sides of a structure (e.g., ceiling) within which a fixture is to be mounted (in some instances, such access may be impossible without a significant increase in installation time and/or cost). Other mounts may be designed to install a fixture without requiring such access, but often require mounting hardware to be disposed on an exterior surface of and extending laterally outward, which must be passed through the structure in which the fixture is to be mounted. Thus, such mounts may require an undesirably larger hole in the structure (e.g., and/or use of such mounts may necessitate a relatively large trim or “goof” ring).
In general, it may be desirable to access certain components of a light fixture once the light fixture is installed (e.g., for adjustment, maintenance, and/or the like). Perhaps particularly for a recessed fixture, access to such components may be limited (e.g., due to the placement of the fixture within a wall, ceiling, floor, and/or the like). As a further complication, in some instances, a lens or other optical element may be disposed in front of the light source. While some fixtures may include removable lenses, typically, such removable lenses include features (e.g., tabs, recesses, notches, and/or the like) to facilitate removal of the lenses, which must necessarily be disposed in the path of light from the light source. Such features may compromise light quality, as well as be aesthetically unpleasing.
Some embodiments of the present fixtures are configured (e.g., via a mechanical actuator that is configured to direct movement of a light mount relative to a base along an arcuate path defined by one or more bearing surfaces) to allow adjustment of light output from the fixture while minimizing binding, undesirable and/or unintended movements of the light mount relative to the base, and/or the like.
Some embodiments of the present fixtures are configured (e.g., via an interface between a stationary portion of the fixture and a rotatable portion of the fixture that is at least partially defined by one or more smooth surfaces) to provide for a smooth and consistent feel during rotation of the rotatable portion relative to the stationary portion.
Some embodiments of the present mounts are configured (e.g., via a base having a sidewall that defines an outer perimeter and one or more mounting tabs, each movable between a deployed state and a retracted state in which at least a portion of the mounting tab is disposed within the outer perimeter) to allow for installation of the mount into a structure through a relatively small opening (e.g., an opening having a maximum transverse dimension approximately equal to a maximum transverse dimension of the outer perimeter).
Some embodiments of the present removable shroud assemblies are configured (e.g., via a lens coupled to a second end of a shroud, the shroud having a first end defining an aperture, the lens movable from a first position to a second position in which a portion of the lens is not in contact with the second end of the shroud) to allow for the shroud to be removed from a base, mount, and/or fixture via access to the second end of the shroud through the aperture (e.g., without requiring the placement of removal features, such as tabs, recesses, notches, and/or the like in a path of light from the light source).
Some embodiments of the present light fixtures comprise: a base comprising a sidewall extending between a first end and a second end to define an interior passageway, the first end defining an aperture, a light mount movably coupled to the base, and a mechanical actuator configured to direct movement of the light mount relative to the base, the mechanical actuator comprising one or more first sliders coupled to the light mount, a first guide coupled to the base and comprising one or more arcuate bearing surfaces that define an arcuate path along which movement of the light mount relative to the base is permitted, each of the one or more arcuate bearing surfaces configured to support at least one of the one or more first sliders, an input shaft, a carrier member movably coupled to the input shaft, the carrier member longitudinally movable relative to the input shaft, and a lever movably coupled to the carrier member and pivotally coupled to the base, the lever configured to move the one or more first sliders along the one or more arcuate bearing surfaces in response to movement of the carrier member relative to the input shaft, where movement of the one or more first sliders along the one or more arcuate bearing surfaces rotates the light mount relative to the base.
In some embodiments, the one or more arcuate bearing surfaces of the first guide comprises two or more arcuate bearing surfaces, each configured to support at least one of the one or more first sliders. In some embodiments, the first guide is configured to restrict rotational movement of the carrier member relative to the input shaft. In some embodiments, the first guide has a maximum transverse dimension smaller than a maximum transverse dimension defined by the sidewall of the base. In some embodiments, no portion of the first guide extends beyond an outer perimeter defined by the sidewall of the base. In some embodiments, the first guide is pivotally coupled to the base and movable between a first position and a second position in which no portion of the first guide extends beyond an outer perimeter defined by the sidewall of the base.
Some embodiments comprise one or more second sliders coupled to the light mount and a second guide coupled to the base opposite the first guide, the second guide comprising one or more arcuate bearing surfaces, each configured to support at least one of the one or more second sliders. In some embodiments, the one or more arcuate bearing surfaces of the second guide comprises two or more arcuate bearing surfaces, each configured to support at least one of the one or more second sliders. In some embodiments, the second guide has a maximum transverse dimension smaller than a maximum transverse dimension defined by the sidewall of the base. In some embodiments, no portion of the second guide extends beyond an outer perimeter defined by the sidewall of the base.
In some embodiments, the light mount comprises an elongated slot configured to releasably couple a light source to the light mount. In some embodiments, the light mount comprises a retaining spring configured to releasably secure the light source relative to the light mount. In some embodiments, the light mount includes a first support movably coupled to the first guide via the one or more first sliders and a second support movably coupled to the second guide via the one or more second sliders. In some embodiments, the light mount includes a brace extending between the first support and the second support.
In some embodiments, at least a portion of the input shaft is threaded and the carrier member is threadably coupled to the threaded portion of the input shaft such that rotation of the input shaft causes longitudinal movement of the carrier member relative to the input shaft. In some embodiments, at least a portion of the input shaft is accessible through the aperture. Some embodiments comprise an adjustment knob coupled to the input shaft such that rotation of the adjustment knob rotates the input shaft.
In some embodiments, the lever includes a slot configured to movably coupled the lever to the carrier member. In some embodiments, the lever includes a slot configured to movably couple the lever to at least one of the one or more first sliders. Some embodiments comprise a linkage extending between a first end and a second end, where the first end of the linkage is pivotally coupled to at least one of the one or more first sliders.
Some embodiments comprise a tilt indicator including a lever extending between a first end and a second end that defines a slot, where the first end of the lever is pivotally coupled to the base and the second end of the lever is slidably coupled to at least one of the one or more sliders via the slot. In some embodiments, the first end of the lever of the tilt indicator includes a gauge configured to indicate an angular position of the light mount relative to the base.
In some embodiments, the base comprises a stationary portion and a rotatable portion configured to rotate relative to the stationary portion in a plane substantially parallel to a plane defined by the aperture and the light mount is coupled to the rotatable portion of the base. In some embodiments, the base comprises a circular cross-section.
Some embodiments of the present methods for moving a light mount of a light fixture relative to a base of the light fixture comprise: adjusting a position of an input shaft to move the light mount relative to the base along an arcuate path defined by one or more arcuate bearing surfaces of a guide coupled to the base, where the light mount comprises one or more sliders, each supported by one of the one or more arcuate bearing surfaces, and where the input shaft is coupled to the one or more sliders through a lever pivotally coupled to the base.
Some embodiments of the present light fixtures comprise: a stationary portion configured to secure the light fixture to a structure, the stationary portion comprising a body having a sidewall defining an interior volume and a ledge configured to project from the sidewall, and a rotatable portion couplable to a light source and rotatably couplable to the stationary portion, the rotatable portion comprising a body having a first retaining member and a second retaining member configured to be longitudinally spaced from the first retaining member, where the ledge of the stationary portion is configured to be received between the first and second retaining members of the rotatable portion such that an interface between the ledge and the first and second retaining members is at least partially defined by one or more smooth surfaces. In some embodiments, the ledge is unitary with the body of the stationary portion. In some embodiments, at least one of the first and second retaining member is unitary with the body of the rotatable portion.
Some embodiments of the present light fixtures comprise: a stationary portion configured to secure the light fixture to a structure, the stationary portion comprising a body having a sidewall defining an interior volume, a first retaining member configured to project away from the sidewall, and a second retaining member configured to project away from the sidewall such that the second retaining member is longitudinally spaced from the first retaining member, and a rotatable portion couplable to a light source and rotatably couplable to the stationary portion, the rotatable portion comprising a body having a ledge configured to be received between the first and second retaining members of the stationary portion such that an interface between the ledge and the first and second retaining members is at least partially defined by one or more smooth surfaces. In some embodiments, the ledge is unitary with the body of the rotatable portion. In some embodiments, at least one of the first and second retaining members is unitary with the body of the stationary portion.
In some embodiments, a compression applied by the first and second retaining members to the ledge is adjustable, whereby a frictional force that resists rotation of the rotatable portion relative to the stationary portion can be varied. Some embodiments comprise one or more fasteners configured to retain the ledge between the first and second retaining members. In some embodiments, at least one of the one or more fasteners comprises at least one of the first and second retaining members.
Some embodiments comprise one or more low-friction materials disposable between the ledge and at least one of the first and second retaining members such that the one or more low-friction materials define at least a portion of the interface between the ledge and the at least one of the first and second retaining members. In some embodiments, the one or more low-friction materials comprises polytetrafluoroethylene.
In some embodiments, the stationary portion comprises a circular cross-section. In some embodiments, the ledge is annular. In some embodiments, at least one of the first and second retaining members is annular.
In some embodiments, the rotatable portion comprises a light mount configured to be coupled to the light source and the light mount is movable relative to the rotatable portion along an arcuate path.
Some embodiments of the present methods comprise: rotating a rotatable portion of a light fixture relative to a stationary portion of the light fixture, the rotatable portion configured to be coupled to a light source and the stationary portion configured to secure the light fixture to a structure, where a ledge of the stationary portion is received between first and second retaining members of the rotatable portion, and where an interface between the ledge and the first and second retaining members is at least partially defined by one or more smooth surfaces.
Some embodiments of the present methods comprise: rotating a rotatable portion of a light fixture relative to a stationary portion of the light fixture, the rotatable portion configured to be coupled to a light source and the stationary portion configured to secure the light fixture relative to a structure, where a ledge of the rotatable portion is received between first and second retaining members of the stationary portion, and where an interface between the ledge and the first and second retaining members is at least partially defined by one or more smooth surfaces.
In some embodiments, the light fixture comprises one or more low-friction materials disposed between the ledge and at least one of the first and second retaining members, the one or more low-friction materials defining at least a portion of the interface between the ledge and the at least one of the first and second retaining members.
Some embodiments of the present mounts for a light fixture comprise: a base having a sidewall extending between a first end and a second end to define an interior passageway, the first end defining an aperture, where the sidewall defines an outer perimeter, and one or more mounting tabs movably coupled to the base, each mounting tab movable between a deployed state in which at least a portion of the mounting tab extends outwardly from the base and beyond the outer perimeter and a retracted state in which a majority of the mounting tab is disposed within the outer perimeter. In some embodiments, each of the one or more mounting tabs is completely disposed within the outer perimeter when the mounting tab is in the retracted state.
In some embodiments of the present mounts for a light fixture, the one or more mounting tabs are axially movable between the deployed state and the retracted state. In some embodiments, each of the one or more mounting tabs comprises a portion that is disposed within the interior passageway and accessible through the aperture when the mounting tab is in the deployed state. In some embodiments, the one or more mounting tabs are biased towards the deployed state. In some embodiments, the one or more mounting tabs are biased towards the retracted state.
In some embodiments of the present mounts for a light fixture, each of the one or more mounting tabs comprises a support that extends from the mounting tab and towards the first end of the base, where the support is configured to rest on an interior surface of a wall, ceiling, or floor when the mount is used to install a light fixture. In some embodiments, each support is removably coupled to one of the one or more mounting tabs.
Some embodiments of the present mounts for a light fixture comprise: one or more retaining posts, each retaining post configured to limit outward movement of one of the one or more mounting tabs beyond the deployed state and inward movement of the mounting tab beyond the retracted state. In some embodiments, the one or more retaining posts are disposed within the outer perimeter. In some embodiments, the one or more retaining posts are disposed within the interior passageway. In some embodiments, each of the one or more retaining posts is configured to selectively and releasably secure one of the one or more mounting tabs relative to the base.
In some embodiments of the present mounts for a light fixture, the mount comprises a circular cross-section. In some embodiments, the first end of the base comprises a lip that extends outwardly from the sidewall and beyond the outer perimeter. In some embodiments, the sidewall defines one or more openings, each opening configured to receive at least a portion of one of the one or more mounting tabs as the mounting tab moves between the deployed state and the retracted state.
Some embodiments of the present mounts for a light fixture comprise: one or more latching mechanisms extending from the sidewall and into the interior passageway, the one or more latching mechanisms configured to releasably secure light fixture components relative to the mount.
Some embodiments of the present methods for installing a light fixture comprise: inserting a base of a mount into an opening in a wall, ceiling, or floor, the base comprising a sidewall extending between a first end and a second end, the sidewall defining an outer perimeter and moving one or more mounting tabs of the mount between a deployed state in which at least a portion of each of the one or more mounting tabs extends outwardly from the base and beyond the outer perimeter and a retracted state in which a majority of each of the one or more mounting tabs is disposed within the outer perimeter.
Some embodiments of the present removable shroud assemblies for a light fixture comprise: a shroud having a sidewall extending between a first end and a second end to define an interior passageway, the first end defining an aperture, and a lens coupled to the second end of the shroud and accessible through the interior passageway, the lens movable from a first position to a second position in which a portion of the lens is not in contact with the second end of the shroud, where the shroud assembly is configured such that the second end of the shroud is accessible through the interior passageway when the lens is in the second position. In some embodiments, the lens is biased towards the first position. Some embodiments comprise one or more springs configured to bias the lens towards the first position. In some embodiments, the shroud comprises a circular cross-section.
Some embodiments of the present removable shroud assemblies for a light fixture comprise: a lens retaining cup configured to locate the lens relative to the shroud when the lens is in the first position. In some embodiments, the lens retaining cup is configured to overlie at least a portion of the sidewall when the lens is in the first position.
In some embodiments of the present removable shroud assemblies for a light fixture, the shroud comprises one or more projections extending from the sidewall and away from the interior passageway, the one or more projections configured to removably couple the shroud assembly to the light fixture. In some embodiments, the light fixture comprises a recessed light fixture.
Some embodiments of the present methods for removing a shroud assembly from a light fixture comprise: accessing a second end of a shroud through an interior passageway of the shroud by moving a lens that is coupled to the second end from a first position to a second position in which a portion of the lens is not in contact with the second end and removing the shroud assembly from the light fixture, where the shroud comprises a sidewall extending between a first end and the second end to define the interior passageway.
As used in this disclosure, and unless stated otherwise, lateral and/or laterally means in a direction that is generally parallel with the plane of an aperture and/or parallel to a face of a structure to and/or within which a light fixture is mounted and/or a direction that is generally perpendicular to a longitudinal direction, and longitudinal and/or longitudinally means in a direction that is generally perpendicular with the plane of an aperture and/or perpendicular to a face of a structure to and/or within which a light fixture is mounted and/or a direction that is generally perpendicular to a lateral direction.
The term “coupled” is defined as connected, although not necessarily directly, and not necessarily mechanically. Two items are “couplable” if they can be coupled to each other. Unless the context explicitly requires otherwise, items that are couplable are also decouplable, and vice-versa. One non-limiting way in which a first structure is couplable to a second structure is for the first structure to be configured to be coupled (or configured to be couplable) to the second structure. The terms “a” and “an” are defined as one or more unless this disclosure explicitly requires otherwise. The term “substantially” is defined as largely but not necessarily wholly what is specified (and includes what is specified; e.g., substantially 90 degrees includes 90 degrees and substantially parallel includes parallel), as understood by a person of ordinary skill in the art. In any disclosed embodiment, the term “substantially” may be substituted with “within [a percentage] of” what is specified, where the percentage includes 0.1, 1, 5, and 10 percent.
Further, a device or system that is configured in a certain way is configured in at least that way, but it can also be configured in other ways than those specifically described.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), and “include” (and any form of include, such as “includes” and “including”) are open-ended linking verbs. As a result, an apparatus that “comprises,” “has,” or “includes” one or more elements possesses those one or more elements, but is not limited to possessing only those elements. Likewise, a method that “comprises,” “has,” or “includes” one or more steps possesses those one or more steps, but is not limited to possessing only those one or more steps.
Any embodiment of any of the apparatuses, systems, and methods can consist of or consist essentially of—rather than comprise/include/have—any of the described steps, elements, and/or features. Thus, in any of the claims, the term “consisting of” or “consisting essentially of” can be substituted for any of the open-ended linking verbs recited above, in order to change the scope of a given claim from what it would otherwise be using the open-ended linking verb.
The feature or features of one embodiment may be applied to other embodiments, even though not described or illustrated, unless expressly prohibited by this disclosure or the nature of the embodiments.
Some details associated with the embodiments described above and others are described below.
The following drawings illustrate by way of example and not limitation. For the sake of brevity and clarity, every feature of a given structure is not always labeled in every figure in which that structure appears. Identical reference numbers do not necessarily indicate an identical structure. Rather, the same reference number may be used to indicate a similar feature or a feature with similar functionality, as may non-identical reference numbers. The figures are drawn to scale (unless otherwise noted), meaning the sizes of the depicted elements are accurate relative to each other for at least the embodiment depicted in the figures.
Referring now to the drawings, and more particularly to
In the embodiment shown, fixture 10a comprises a light mount 38a configured to be coupled to a light source (e.g., 42, described below). The present light fixtures may be used with any suitable light source, whether electroluminescent (e.g., light-emitting diodes), fluorescent (e.g., fluorescent tubes), incandescent (e.g., incandescent light bulbs), and/or the like, and light source 42 is provided only by way of illustration. For example, in this embodiment, light source 42 includes a light-emitted diode (LED) light source, with a heat sink 46, a reflector 52, and a lens 60. In the depicted embodiment (
In the embodiment shown, light mount 38a comprises an elongated slot 48 (
In the embodiment shown, light mount 38a is movably coupled to base 14 such the light mount (and light source 42, when coupled to the light mount) may rotate and/or translate relative to the base (e.g., fixture 10a comprises an adjustable light fixture). For example, in this embodiment, and as described in more detail below, mechanical actuator 58a generally functions to move light mount 38a relative to base 14 along an (e.g., planar) arcuate path 78 (e.g., compare
In the embodiment shown, mechanical actuator 58a comprises a guide 62a coupled to base 14. In this embodiment, guide 62a is coupled to the base (e.g., a rotatable portion 142 thereof, described in more detail below) via one or more fasteners; however, in other embodiments, respective guides may be unitary with respective bases (e.g., or respective portions thereof). In the depicted embodiment, as shown in
In this embodiment, each of one or more arcuate bearing surfaces 74 is configured to support one or more sliders 82a (e.g., pins, dowels, and/or the like), which in this embodiment, are coupled to light mount 38a such that the one or more sliders, supported by the one or more arcuate bearing surfaces, carry the light mount relative to base 14. In this way, one or more sliders 82a may slide along one or more arcuate bearing surfaces 74, thus causing light mount 38a to move (e.g., rotate and translate) relative to base 14 along arcuate path 78. In the depicted embodiment, movement of the one or more sliders laterally away from the one or more arcuate bearing surfaces may be limited by one or more retaining members 86, which may be coupled to the one or more sliders 82a on either side of guide 62a (e.g., such that the guide is disposed between two or more retaining members).
In the embodiment shown, at least by including at least two arcuate bearing surfaces 74, each of which supports at least one slider 82a, translational motion and rotational motion of light mount 38a relative to base 14 may be coupled along the arcuate path. In other words, in this embodiment, at given translational position of the light mount relative to the base, mechanical actuator 58a, and more particularly guide 62a, may dictate a corresponding rotational position of the light mount relative to the base. For example, in the depicted embodiment, as light mount 38a moves relative to base 14 along arcuate path 78, the light mount may tend to rotate in a first direction as a distance between the arcuate bearing surfaces increases, and the light mount may tend to rotate in a second direction, opposite the first direction, as a distance between the arcuate bearing surfaces decreases. Thus, the present fixtures, and more particularly, respective mechanical actuators of the present fixtures, may be configured to reduce the occurrence of binding and/or undesirable movements of a light mount and/or light source (e.g., rolling, yawing, undesired lateral translation, and/or the like) which might otherwise occur during adjustment.
Control of light mount 38a movement relative to base 14 along arcuate path 78 can be accomplished in any suitable fashion. Provided by way of illustration, in the embodiment shown, mechanical actuator 58a comprises an input shaft 90 configured to control movement of (e.g., and/or to allow a user to adjust the orientation of) the light mount relative to the base along the arcuate path. In this embodiment, as described in more detail below, such control is achieved via rotation of input shaft 90 relative to base 14; however, in other embodiments, such control may be achieved via translation (lateral and/or longitudinal) of input shaft 90 relative to base 14. In the depicted embodiment, mechanical actuator 58a comprises an adjustment knob 94 coupled (directly or indirectly) to input shaft 90 such that rotation of the adjustment knob rotates the input shaft. In the embodiment shown, at least a portion of input shaft 90 and/or adjustment knob 94 is accessible through aperture 34 (e.g., to facilitate adjustments to light mount 38a position relative to base 14 when fixture 10a is installed).
Referring additionally to
As described in more detail below, mechanical actuator 58a, and more particularly, input shaft 90, may be coupled to a rotatable portion of fixture 10a (e.g., rotatable portion 142 of base 14). In this way, adjustment knob 94 and/or input shaft 90 may be configured to allow a user to adjust a tilt of light mount 38a and/or light source 42 relative to base 14 (e.g., along arcuate path 78), by rotating the adjustment knob and/or input shaft about a longitudinal axis of the adjustment knob and/or input shaft (e.g., generally along a direction indicated by arrow 416), and/or adjust a swivel of light mount 38a and/or light source 42 (e.g., generally along a direction indicated by arrow 146, shown in
In this embodiment, mechanical actuator 58a comprises a carrier member 98 movably coupled to input shaft 90 such that the carrier member is longitudinally movable relative to the input shaft. For example, in the depicted embodiment, carrier member 98 is threadably coupled to a threaded portion 102 of input shaft 90 such that rotation of the input shaft and/or adjustment knob 94 causes the carrier member to longitudinally displace relative to the input shaft. In at least this way, the present fixtures, and more particularly, respective mechanical actuators of the present fixtures, may be configured mitigate inadvertent movement of a light mount and/or light source relative to a base (e.g., the present fixtures may be less prone to falling out of adjustment, as the rotatable and threaded coupling between carrier member 98 and input shaft 90 may be resistant to movement when longitudinally acted upon by the weight of light mount 38a and/or light source 42 as supported in a given orientation). In the depicted embodiment, guide 62a is configured to restrict rotational movement of carrier member 98 relative to input shaft 90, for example, via slot 106, which may receive a portion of the carrier member (e.g., to prevent the carrier member from rotating with the input shaft as the input shaft is rotated).
In the embodiment shown, mechanical actuator 58a comprises a lever 110a pivotally coupled to base 14 (e.g., to guide 62a, as shown, at a pivot point 114). In this embodiment, lever 110a is configured to move one or more sliders 82a along one or more arcuate bearing surfaces 74 in response to movement of carrier member 98 relative to input shaft 90. For example, in the embodiment shown, lever 110a comprises a first portion 118 coupled to carrier member 98, and a second portion 122 coupled to one or more sliders 82a, where the first and second portions are disposed on opposing sides of pivot point 114. In this way, movement of first portion 118 in response to movement of carrier member 98 may cause movement of second portion 122, thus causing one or more sliders 82a to move along one or more arcuate bearing surfaces 74.
In the embodiment shown, lever 110a comprises a slot 128 configured to movably couple the lever to carrier member 98. Similarly, in this embodiment, lever 110a comprises a slot 130 configured to movably couple the lever to at least one of one or more sliders 82a. In these and other ways, lever 110a may be a unitary piece and/or be pivotally coupled to base 14 at a single pivot point 114, while still being capable of controlling movement of light mount 38a relative to base 14 along arcuate path 78 (e.g., while being resistant to binding). However, in other embodiments, such movable coupling of a light mount relative to a respective base may be accomplished in any suitable fashion, and the description of fixture 10a, and more particularly, mechanical actuator 58a, is provided only by way of illustration.
Referring additionally to
Referring now to
In the embodiment shown, fixture 10b includes one or more first sliders 82b coupled to light mount 38b, and more particularly, to first support 116a of the light mount. In this embodiment, fixture 10b includes a first guide 62b coupled to base 14 and defining one or more arcuate bearing surfaces 74, each configured to support at least one of one or more first sliders 82b. First guide 62b may be substantially similar to guide 62a, with the primary exception that first guide 62b is not pivotally coupled to base 14 (e.g., to rotatable portion 142 thereof). In the depicted embodiment, no portion of first guide 62b extends beyond an outer perimeter 220 defined by sidewall 18 of base 14.
In the embodiment shown, fixture 10b includes one or more second sliders 82c coupled to light mount 38b, and more particularly, to second support 116b of the light mount. In this embodiment, at least one of first slider(s) 82b and/or second slider(s) 82c comprises a fastener, which may have a threaded portion configured to be received by light mount 38b and/or a head configured to prevent lateral movement of the slider away from a respective arcuate bearing surface 74 (e.g., the head of the fastener may function as and/or comprise a retaining member 86). In the depicted embodiment, fixture 10b includes a second guide 62c coupled to base 14 (e.g., to rotatable portion 142 thereof) opposite first guide 62b and defining one or more arcuate bearing surfaces 74 (e.g., two arcuate bearing surfaces, as shown), each configured to support at least one of one or more second sliders 82c. In this embodiment, second guide 62c has a maximum transverse dimension 132 that is smaller than a maximum transverse dimension 70 of base 14. More particularly, in the depicted embodiment, no portion of second guide 62c extends beyond an outer perimeter 220 defined by sidewall 18 of base 14. In these ways and others, first guide 62b and second guide 62c may cooperate to guide movement of light mount 38b relative to base 14 along arcuate path 78, thereby mitigating the occurrence of binding and/or undesirable movements of the light mount and/or a light source (e.g., 42) coupled to the light mount.
In the embodiment shown, mechanical actuator 58b, similarly to mechanical actuator 58a, comprises a lever 110b pivotally coupled to base 14 and configured to move one or more first sliders 82b along one or more arcuate bearing surfaces 74 of first guide 62b in response to movement of carrier member 98 relative to input shaft 90. In this embodiment, lever 110b is coupled to at least one of one or more first sliders 82b via a linkage 134 (e.g., as opposed to slot 130). More particularly, in the depicted embodiment, linkage 134 extends between a first end that is pivotally coupled to lever 110b and a second end that is pivotally coupled to at least one of one or more sliders 82b.
In the embodiment shown, fixture 10b includes a tilt indicator 136 configured to indicate an angular position of light mount 38b (e.g., and thus a light source 42 coupled to the light mount) relative to base 14. For example, in this embodiment, tilt indicator 136 includes a lever 144 extending between a first end that is pivotally coupled to base 14 and a second end that is coupled to light mount 38b. More particularly, in the depicted embodiment, the second end of the lever defines a slot 148 configured to slidably engage at least one of second slider(s) 82c. Thus, in the embodiment shown, as light mount 38b moves relative to base 14 along arcuate path 78, lever 144, due to slidable engagement with at least one of second slider(s) 82c, may pivot at its first end relative to base 14. In this embodiment, the first end of the lever includes a gauge 160 including markings (e.g., raised, relieved, and/or printed markings) that are each indicative of an angular position of light mount 38b relative to base 14. In the depicted embodiment, tilt indicator 136 includes an indicator or pointer 164, which may be fixed relative to base 14 (e.g., a rotatable portion 142 thereof), configured to cooperate with gauge 160 to indicate an angular position of light mount 38b relative to base 14 (e.g., by identifying a marking of gauge 160 that corresponds to the angular position of the light mount relative to the base).
Some embodiments of the present methods for moving a light mount (e.g., 38a, 38b, and/or the like) of a light fixture (e.g., 10a, 10b, and/or the like) comprise adjusting a position of an input shaft (e.g., 90) to move the light mount relative to the base along an arcuate path (e.g., 78) defined by one or more arcuate bearing surfaces (e.g., 74) of a guide (e.g., 62a, 62b, 62c, and/or the like) coupled to the base, where the light mount comprises one or more sliders (e.g., 82a, 82b, 82c, and/or the like), each supported by one of the one or more arcuate bearing surfaces, and where the input shaft is coupled to the one or more sliders through a lever (e.g., 110a, 110b, and/or the like) pivotally coupled to the base.
Referring additionally to
In the embodiment shown, stationary portion 138 comprises a body 154 having a sidewall 158, which, in some embodiments, may not comprise sidewall 18, defining an interior volume 162, which, in some embodiments, may not coincide with interior passageway 30. For example, in some embodiments, the present bases may comprise a respective sidewall 18 and a respective sidewall 158, which may be (e.g., laterally) offset from sidewall 18, to define an interior volume 162 between sidewall 18 and sidewall 158 (e.g., a sidewall 158 may at least partially separate interior volume 162 and interior passageway 30). In the depicted embodiment, stationary portion 138 comprises a ledge 166 projecting from sidewall 158 and, though not required, into interior volume 162. As shown, ledge 166 is coupled to stationary portion 138, and more particularly, body 154, via one or more fasteners (
In this embodiment, rotatable portion 142 comprises an (e.g., annular) body 178 defining an opening in communication with interior passageway 30 (e.g., such that light from light source 42 may pass through the opening of body 178 and into interior passageway 30). In the depicted embodiment, rotatable portion 142 comprises a first retaining member 170 and a second retaining member 174 configured to be longitudinally spaced from the first retaining member, where the first and second retaining members are configured to receive ledge 166 therebetween (
In the depicted embodiment, ledge 166 of stationary portion 138 is configured to be received between first and second retaining members, 170 and 174, respectively, such that an interface between the ledge and the retaining members is at least partially defined by one or more smooth surfaces. For example, in the embodiment shown, base 14 comprises one or more low-friction materials 182 disposable between ledge 166 and at least one of first and second retaining members, 170 and 174, respectively, such that the one or more low-friction materials define at least a portion of the interface between the ledge and the at least one of the first and second retaining members. Respective low-friction materials 182 of the present bases can comprise any suitable low-friction material, such as, for example, polytetrafluoroethylene, metals, such as copper, brass, aluminum, steel, and/or the like, plastics, composites, and/or the like, and such low-friction materials may have any suitable structure, such as, for example, a body, a film, a coating, and/or the like. However, in other embodiments, an interface between a ledge (e.g., 166) and a first retaining member (e.g., 170) and a second retaining member (e.g., 174) may be at least partially defined by a smooth surface (e.g., a smooth surface finish) of the ledge, the first retaining member, and/or the second retaining member (e.g., as in fixture 10b). In these ways and others, the present fixtures, and more particularly, bases of the present fixtures, may be configured to provide a smooth and consistent feel during rotational adjustment.
In the embodiment shown, a compression applied by retaining members 170 and 174 to ledge 166 may be adjustable, whereby a frictional force that resists rotation of rotatable portion 142 relative to stationary portion 138 can be varied. For example, in this embodiment, one or more fasteners 186 are configured to secure ledge 166 between retaining members 170 and 174, such that the one or more fasteners may be tightened or loosened to increase or decrease, respectively, a compression applied by the retaining members to the ledge. Through selection of a surface finish of ledge 166, a surface finish of retaining members 170 and/or 174, low-friction materials 182 (if present), the compressive force applied to the ledge by the retaining members, and/or the like, the characteristics (e.g., feel, resistive force, and/or the like) of rotation of rotatable portion 142 relative to stationary portion 138 can be varied.
In the depicted embodiment, as shown, no components associated with rotation of rotatable portion 142 relative to stationary portion 138 extend beyond an outer perimeter 220 defined by sidewall 18 (e.g., rotatable portion 142, or body 178 thereof, ledge 166, first retaining member 170, second retaining member 174, low-friction materials 182, fasteners 186, and/or the like). In other embodiments, such rotatable coupling of a rotatable portion relative to a respective stationary portion can be accomplished in any suitable fashion, and the description of base 14 is provided only by way of illustration.
Referring now to
In the depicted embodiment, ledge 166 may comprise a component and/or portion of rotatable portion 142, and first retaining member 170 and second retaining member 174 may comprise a component and/or portion of stationary portion 138. In these and similar embodiments, ledge 166 may be unitary with rotatable portion 142 (e.g., or a body 178 thereof), and/or first and/or second retaining members, 170 and 174, respectively, may be unitary with stationary portion 138 (e.g., or a body 154 thereof).
In this embodiment, base 14b includes a protrusion or stop 198 that extends longitudinally from rotatable portion 142 and is configured to rotate with the rotatable portion. In this way, rotatable portion 142 may rotate, along with protrusion or stop 198, relative to stationary portion 138 until the protrusion or stop contacts a projection or tooth 202, which may be coupled in fixed relation to, and/or unitary with a body 154 of, stationary portion 138, thus physically limiting the range of permitted rotation of the rotatable portion relative to the stationary portion.
Some embodiments of the present methods comprise rotating a rotatable portion (e.g., 142) of a light fixture (e.g., 10a, 10b, and/or the like) relative to a stationary portion (e.g., 138) of the light fixture, the rotatable portion configured to be coupled to a light source (e.g., 42) and the stationary portion configured to secure the light fixture to a structure (e.g., 150), where a ledge (e.g., 166) of the stationary portion is received between first and second retaining members (e.g., 170 and 174, respectively) of the rotatable portion, and where an interface between the ledge and the first and second retaining members is at least partially defined by one or more smooth surfaces. In some embodiments, the light fixture comprises one or more low friction materials (e.g., 182) disposed between the ledge and at least one of the first and second retaining members, the one or more low-friction materials defining at least a portion of the interface between the ledge and the at least one of the first and second retaining members.
Some embodiments of the present methods comprise rotating a rotatable portion (e.g., 142) of a light fixture (e.g., 10a, 10b, and/or the like) relative to a stationary portion (e.g., 138) of the light fixture, the rotatable portion configured to be coupled to a light source (e.g., 42) and the stationary portion configured to secure the light fixture to a structure (e.g., 150), where a ledge (e.g., 166) of the rotatable portion is received between first and second retaining members (e.g., 170 and 174, respectively) of the stationary portion, and where an interface between the ledge and the first and second retaining members is at least partially defined by one or more smooth surfaces.
Referring additionally to
In the embodiment shown, mount 214 comprises one or more latching mechanisms 216 extending from sidewall 18 and/or sidewall 158 and into interior passageway 30. In this embodiment, one or more latching mechanisms 216 are configured to releasably secure light fixture components (e.g., shroud assembly 264a or 264b, each described in more detail below) relative to the mount. For example, in the depicted embodiment, latching mechanisms 216 comprise ball plungers; however, other embodiments may comprise any suitable latching mechanisms, such as, for example, detents, slots, ridges, fasteners, and/or the like. In yet other embodiments, latching mechanisms may be omitted.
In the embodiment shown, sidewall 18 defines an outer perimeter 220 and a transverse dimension 222 (
In the embodiment shown, mount 214 comprises one or more mounting tabs 228 movably coupled to base 14. In this embodiment, mount 214 comprises three (3) mounting tabs 228; however, other embodiments may comprise any suitable number of respective mounting tabs, such as, for example, 1, 2, 3, 4 5, or more mounting tabs. In the depicted embodiment, each mounting tab 228 is movable between a deployed state (
In this embodiment, sidewall 18 defines one or more openings 232, each configured to receive at least a portion of one of one or more mounting tabs 228 as the mounting tab moves between the deployed state and the retracted state (e.g., to allow the mounting tab to move between the retracted state and the deployed state unhindered by sidewall 18). In the depicted embodiment, each of one or more mounting tabs 228 comprises a portion 230 that, when the mounting tab is the deployed state, is disposed within interior volume 126 and/or interior passageway 30 and accessible through aperture 34. In this way, one or more mounting tabs 228 may be readily movable from the deployed state to the retracted state via access through aperture 34 (e.g., when installing and/or removing mount 214 into and/or from a structure 150).
In the embodiment shown, mount 214 comprises one or more retaining posts 236, each configured to limit outward movement of one of one or more mounting tabs 228 beyond the deployed state and inward movement of the mounting tab beyond the retracted state. For example, in this embodiment, each retaining post 236 is received within a slot 240 of a mounting tab 228, whereby the slot and retaining post cooperate to physically limit movement of the mounting tab relative to the base beyond the deployed state and/or beyond the retracted state.
In the depicted embodiment, one or more retaining posts 236 may be configured to selectively and releasably secure one or more mounting tabs 228 relative to base 14. To illustrate, in the embodiment shown, each retaining post 236 comprises a (e.g., threaded) fastener 244, which may be tightened to secure a mounting tab 228 relative to base 14 (e.g., between or at the retracted state and/or the deployed state), and loosened to allow movement of the mounting tab relative to the base between the retracted state and the deployed state. For example, in this embodiment, each fastener 244 is received by a threaded portion of a track 238, and each track 238 is slidably engaged with an opening 232, where threading of the fastener causes the track, and a mounting tab 228 received within the track, to longitudinally move relative to base 14 (e.g., generally along a direction indicated by arrow 242). In this way, for example, a structure (e.g., 150) may be received longitudinally between a deployed mounting tab 228 (or a support 248 attached to the mounting tab) and lip 224, and a fastener 244 may be tightened to secure the mounting tab relative to mount 214 (e.g., by engaging the mounting tab or support with an interior surface of the structure) (e.g., thus securing the mount 214 relative to the structure).
In the embodiment shown, each of one or more retaining posts 236 are disposed within outer perimeter 220 (e.g., and within interior volume 162 and/or interior passageway 30). By minimizing and/or eliminating mounting hardware (e.g., mounting tabs 228, retaining posts 236, latching mechanisms 216 and/or the like) disposed outside of outer perimeter 220, and particularly during installation and/or removal of the present mounts (e.g., when mounting tabs 228 may be in the retracted state), the present mounts may be configured to be received within a relatively small opening 152 in a structure. For example, in this embodiment (
In the depicted embodiment, each of one or more mounting tabs 228 comprises a support 248 that extends from the mounting tab and towards first end 22 of base 14. In the embodiment shown, each of one or more supports 248 is configured to rest on an interior surface of a structure 150 (e.g., a wall, ceiling, floor, and/or the like), when the mount is installed within the structure (
Some embodiments of the present methods for installing a light fixture comprise inserting a base (e.g., 14) of a mount (e.g., 214) into an opening (e.g., 152) in a wall, ceiling, or floor (e.g., structure 150), the base comprising a sidewall (e.g., 18) extending between a first end (e.g., 22) and a second end (e.g., 26), the sidewall defining an outer perimeter (e.g., 220), and moving one or more mounting tabs (e.g., 228) of the mount between a deployed state (
Referring now to
In the embodiment shown, shroud assembly 264a, and more particularly shroud 268, is configured to be removably coupled to and/or within a light fixture (e.g., a recessed light fixture) (e.g., light fixture 10a, and more particularly, to and/or within base 14 and/or mount 214). For example, in this embodiment, shroud 268 comprises one or more projections or ribs 290 extending from sidewall 272 and away from interior passageway 284, the one or more projections or ribs configured to removably couple the shroud to and/or within a light fixture (e.g., by interfacing with latching mechanisms 216 of mount 214). For further example, in the depicted embodiment, two projections or ribs 290 are longitudinally spaced apart from one another to define an (e.g., annular) groove 294, within which latching mechanisms 216 of mount 214 may be received. In the embodiment shown, shroud assembly 264a, and more particularly, shroud 268, is sized to be closely received within base 14 and/or mount 214. For example, in this embodiment, aperture 288 of shroud 268 substantially corresponds to aperture 34 of base 14 (e.g., aperture 288 has a perimeter having a substantially similar size and shape to a perimeter of aperture 34, as shown in
In the embodiment shown, shroud 268 comprises a ledge or shelf 298, which defines a lip 302 configured to locate and/or physically limit movement of the shroud assembly relative to a light fixture (e.g., aligning shroud assembly 264a within base 14 and/or mount 214, for example, such that aperture 34 is substantially parallel with aperture 288, preventing the shroud assembly from being inserted into the base and/or mount beyond a desired distance from first end 22 towards second end 26, and/or the like). In this embodiment, ledge or shelf 298 and/or lip 302 may function to (e.g., physically) resist undesired movement of shroud 268 relative to base 14 and/or mount 214 as lens 306 is moved relative to the shroud, as described below.
In the depicted embodiment, shroud assembly 264a comprises a lens 306 movably coupled to second end 280 of shroud 268 and accessible through interior passageway 284. For example, in the embodiment shown, lens 306 is movable relative to shroud 268 between a first position (
In the depicted embodiment, shroud assembly 264a comprises a lens retaining cup 310a configured to locate lens 306 relative to shroud 268 when the lens is between and/or at the first position and/or second position. For example, in the embodiment shown, lens retaining cup 310a defines a recess 314 within which lens 306 may be received such that the lens retaining cup, via recess 314, physically limits undesirable (e.g., lateral) movement of lens 306 relative to shroud assembly 264a, and more particularly, shroud 268. For further example, in this embodiment, lens retaining cup 310a is configured to overlie at least a portion of sidewall 272 when lens 306 is in the first position (e.g., recess 314 is dimensioned to receive a portion of shroud 268, which may facilitate locating and/or securing of lens 306 between lens retaining cup 310a and shroud 268 when the lens is in the first position). In the depicted embodiment, lens retaining cup 310a and lens 306 are separate components that may or may not be attached to one another; however, in other embodiments, respective lens retaining cups may be integrally formed with respective lenses.
In the embodiment shown, lens retaining cup 310a comprises one or more openings or slots 318 and is coupled to shroud 268 via one or more fasteners 322, each disposed through an opening or slot 318 and received by shroud 268. In this embodiment, such coupling is movable in that each opening or slot 318 is configured to slidably engage a fastener 322 at a shaft portion 326, such that, as lens 306 is moved between the first position and the second position, the opening or slot, and thus the lens retaining cup and/or lens, may move relative to the fastener, and thus shroud 268. In the depicted embodiment, fasteners 322 may be configured to limit movement of lens 306 and/or retaining cup 310a relative to shroud 268. For example, as shown, each fastener 322 comprises a head 330 sized such that the head portion cannot pass through a corresponding opening or slot 318 (e.g., to physically limit movement of the lens retaining cup and/or lens relative to the shroud). However, in other embodiments, movable coupling of a lens relative to a respective shroud can be accomplished in any suitable fashion, and the description of shroud assembly 264a is provided only by way of illustration.
In the embodiment shown, lens 306 and/or lens retaining cup 310a is biased towards the first position. For example, in this embodiment, shroud assembly 264a comprises one or more springs 334a configured to bias the lens and/or lens retaining cup towards the first position. To illustrate, in the depicted embodiment, each spring 334a is disposed around a shaft portion 326 of a fastener 322 and retained between lens retaining cup 310a and a head 330 of the fastener (e.g., thus supplying a biasing force tending to hold the lens retaining cup and/or lens in the first position).
Referring now to
Some embodiments of the present shroud assemblies (e.g., 264a, 264b, and/or the like) may include an O-ring, gasket, seal, and/or the like disposed or disposable around at least a portion of a shroud (e.g., 268) such that the shroud assembly may be sealingly coupled to and/or within a light fixture (e.g., to and/or within a base 14 and/or a mount 214 such that the O-ring, gasket, seal and/or the like contacts an interior surface of sidewall 18 and/or sidewall 158), thereby protecting fixture component(s) from moisture and/or contaminants. To illustrate, in this embodiment, shroud assembly 264b includes an O-ring 350 disposed or disposable within a groove 354 defined by an exterior portion of shroud 268.
Some embodiments of the present methods for removing a shroud assembly (e.g., 264a, 264b, and/or the like) from a light fixture (e.g., light fixture 10a or 10b, from base 14 and/or mount 214) comprise accessing a second end (e.g., 280) of a shroud (e.g., 268) through an interior passageway (e.g., 284) of the shroud by moving a lens (e.g., 306) that is coupled to the second end from a first position (e.g.,
The above specification and examples provide a complete description of the structure and use of illustrative embodiments. Although certain embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of this invention. As such, the various illustrative embodiments of the methods and systems are not intended to be limited to the particular forms disclosed. Rather, they include all modifications and alternatives falling within the scope of the claims, and embodiments other than the one shown may include some or all of the features of the depicted embodiment. For example, elements may be omitted or combined as a unitary structure, and/or connections may be substituted. Further, where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and/or functions, and addressing the same or different problems. Similarly, it will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments.
The claims are not intended to include, and should not be interpreted to include, means-plus- or step-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase(s) “means for” or “step for,” respectively.
This application is a continuation of U.S. patent application Ser. No. 17/656,837, filed Mar. 28, 2022, which is a continuation of U.S. patent application Ser. No. 17/085,909, filed Oct. 30, 2020, which is a continuation of U.S. patent application Ser. No. 16/429,987, filed Jun. 3, 2019, which is a continuation of U.S. patent application Ser. No. 14/970,927, filed Dec. 16, 2015, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/092,804, filed Dec. 16, 2014, the contents of which applications are incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
10962203 | Steines | Mar 2021 | B1 |
20050205576 | Bednara | Sep 2005 | A1 |
20110211346 | Ogawa | Sep 2011 | A1 |
20110249434 | McQuistian | Oct 2011 | A1 |
20120243229 | Cheng | Sep 2012 | A1 |
20140268836 | Thompson | Sep 2014 | A1 |
20170234517 | Highbridge | Aug 2017 | A1 |
20230288035 | Reilly | Sep 2023 | A1 |
Number | Date | Country | |
---|---|---|---|
20240360988 A1 | Oct 2024 | US |
Number | Date | Country | |
---|---|---|---|
62092804 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17656837 | Mar 2022 | US |
Child | 18529942 | US | |
Parent | 17085909 | Oct 2020 | US |
Child | 17656837 | US | |
Parent | 16429987 | Jun 2019 | US |
Child | 17085909 | US | |
Parent | 14970927 | Dec 2015 | US |
Child | 16429987 | US |