The present application is directed to the field of shelf mounting. More specifically, the present application is directed to the field of hardware used for adjustable, angled shelf mounting.
Current brackets used for mounting shelves, and specifically shelving in retail and grocery store dairy cases and frozen food cases, do not typically include angle adjustability. Such brackets usually include two tangs that extend from the bracket and attach into apertures and a mounting device at the back of the cabinet. Such brackets provide for a fixed attachment point for shelving units. Such typically used brackets are limited in that they provide a fixed shelf angle, and they ordinarily utilize only two tangs to attach to the mounting device, thus having limited strength qualities for supporting shelves with heavier loads. Typical brackets further are only configured for compatibility with a single type of shelving system.
Furthermore, current brackets have no range of adjustability once they are installed in a mounting device. Typical brackets may be removed and reinserted into a mounting device to change or adjust the height of the shelf it is supporting, but cannot be adjusted once it is installed in order to change the angle of the shelf relative to horizontal. Typical brackets are therefore limited in providing a strong, efficient, compatible and adjustable angle shelf for such applications.
The adjustable angle bracket of the present application includes a plurality of tangs configured to engage a mounting device such that a top shelf support surface supports a shelving unit and provides a desired angle for the shelving unit. The device further includes a plurality of shelf coupling apertures compatible with various types of shelving units. The devices further include a cam that rests against the mounting device, providing variable positions of the device relative to the mounting bracket effectuating a variable angle of the shelf support surface.
In one aspect of the present invention, an angle bracket comprises a body portion having a top surface configured to support a shelving unit, a first tang protruding from the body portion, the first tang having a first and second contact member, wherein the first and second contact member engage an aperture of a mounting device, a second tang protruding from the body portion, the second tang having a third contact member, wherein the third contact member engages the mounting device, wherein the first and second tangs secure the bracket to the mounting device, and a disk-shaped rotatable cam mounted to an end of the body portion opposite to the top surface, wherein a radius of the cam is variable relative to a mounting point of the cam, and further wherein an outer edge of the cam rests on the mounting device such that rotating the cam about its mounting point adjusts the angle of the top surface.
In another aspect of the present invention, an angle bracket comprises an adjustable angle top surface configured to support a shelving unit, a first tang protruding from the angle bracket, the first tang having a first and second contact member, wherein the first and second contact member engage an aperture of a mounting device, a second tang protruding from the angle bracket, the second tang having a third contact member, wherein the third contact member engages the mounting device, a third tang protruding from the angle bracket having a fourth contact member, wherein the second and third tang include an elongated contact surface, and a disk-shaped rotatable cam mounted to an end of the angle bracket opposite to the top surface, wherein a radius of the cam is variable relative to a mounting point of the cam, and further wherein an outer edge of the cam rests on the mounting device such that rotating the cam about its mounting point adjusts the angle of the top surface, and the elongated contact surfaces of the second and third tangs maintain contact with a bottom surface of the aperture of the mounting, device.
In another aspect of the present invention, an angle bracket comprises a body portion having a top surface configured to support a shelving unit, a first tang protruding from the body portion, the first tang having a first and second contact member, wherein the first and second contact member engage an aperture of a mounting device, a second tang protruding from the body portion, the second tang having a third contact member, wherein the third contact member engages the mounting device, wherein the first and second tangs secure the bracket to the mounting device, a third tang protruding from the body portion, the third tang having a fourth contact member, a disk-shaped rotatable cam mounted to an end of the body portion opposite to the top surface, wherein the outer edge of the cam includes a plurality of flat edges perpendicular to the radius of the cam relative to the mounting point, such that each flat edge defines a unique radius from the mounting point, and a plurality of shelf coupling apertures configured on the body portion of the bracket opposite the first, second and third tangs, such that the shelf coupling apertures accommodate a plurality of shelving systems, and wherein a radius of the cam is variable relative to a mounting point of the cam, and further wherein an outer edge of the cam rests on the mounting device such that rotating the cam about its mounting point adjusts the angle of the top surface, wherein the second and third tang include an elongated contact surface, wherein the elongated contact surface maintains contact with a bottom surface of the aperture of the mounting device such that rotation of the angle bracket about the first tang when the cam is rotated is effectuated.
a-1f illustrate a number of views of an embodiment of a bracket according to the present application.
a-2g illustrate a number of views of an embodiment of a bracket and a mounting device of the present application.
a-3d illustrate a number of views of an embodiment of an assembly pin of the present application.
In the present description, certain terms have been used for brevity, clearness and understanding. No unnecessary limitations are to be applied therefrom beyond, the requirement of the prior art because such terms are used for descriptive purposes only and are intended to be broadly construed. The different systems and methods described herein may be used alone or in combination with other systems and methods. Various equivalents, alternatives and modifications are possible within the scope of the appended claims. Each limitation in the appended claims is intended to invoke interpretation under 35 U.S.C. §112, sixth paragraph, only if the terms “means for” or “step for” are explicitly recited in the respective limitation.
Referring to
Referring to
Referring to
Referring now to
g illustrates a top view of the device 10 and the mounting device 50 illustrating how the device and in this case the tang 20 engage an inside surface of the mounting device in order to couple the device 10 to the mounting device 50.
Referring to
As further illustrated in
Still referring to
a-3d include various views of the assembly pin 40 as shown in
Referring again to
In comparison to existing fixed-angle gravity feed shelving, the bracket 10 of the present application and its adjustable angle configuration allows various product/package types to be gravity fed at a minimal angle, thus using vertical space more efficiently. The bracket 10 of the present application therefore assists and optimizes gravity-feed shelving systems that save significant amounts of labor by reducing the time required for stocking and shelf detailing, and allows for inventory reductions, as shelves look full at all times. This mitigates what is known in the trade as “shopkeeper mentality” or the need to present a fully stocked shelf to the customer at all times, regardless of inventory turns. The use of this bracket 10 to improve gravity-feed shelving also optimizes product presentation at all times and has thus repeatedly provided sales increases as a result.
Utilizing two or three tangs 20, 22, 24, or more tangs, also increases the weight load capability over typical shelving brackets, and increases the field life of such brackets 10.
The bracket 10 of the present application, in the embodiment illustrated, is constructed of a high-strength steel, or may be fashioned out of any material that allows for a bracket that can withstand the weight and longevity requirements of the shelving system.
In operation, the shelf support surface 34 can be adjusted by rotating the cam 44 on the cam arm 30 before installing the bracket 10 in the mounting device 50, or while the bracket 10 is installed in the mounting device 50. In another embodiment, the angle of the shelf support surface 34 can be adjusted by rotating the cam 44 without a spring washer 42, or other biasing device. Tensioning the cam 44 in such a way allows the cam 44 to turn easily, but to hold a position until a shelf is mounted on the shelf support surface 34 and shelf coupling apertures 36.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make anew the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
The present application claims priority to U.S. Provisional Application No. 61/467,662, filed Mar. 25, 2011, the content of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61467662 | Mar 2011 | US |