The present invention is directed generally toward communication antennas, and more particularly to mounting structures for communications antennas.
As wireless data service demands have grown, a conventional response has been to increase the number and capacity of conventional cellular Base Stations (Macro-Cells). Such Macro-Cells are typically mounted on antenna towers. A conventional antenna tower has three or four legs on which antennas and supporting remote radio units (RRUs) are mounted. However, in some environments structures known as “monopoles” are used as mounting structures. Monopoles are typically employed when fewer antennas/RRUs are to be mounted, and/or when a structure of less height is required.
In addition, Macro-Cell sites are becoming less available, and available spectrum limits how much additional capacity can be derived from a given Macro-Cell. Accordingly, small cell RRU and antenna combinations have been developed to “fill in” underserved or congested areas that would otherwise be within a Macro-Cell site. Deployment of small cells, particularly in urban environments, is expected to continue to grow. Often such small cell configurations (sometimes termed “metrocells”) are mounted on monopoles.
Some small cell antenna configurations may comprise a generally cylindrical unit with three antennas deployed at 120 degree angles to one another. An exemplary cylindrical antenna unit is shown in U.S. Pat. No. 9,433,034 to Hendrix, the disclosure of which is hereby incorporated herein in its entirety. Such antenna units are typically mounted on the top of a monopole.
In some instances, operators are employing wooden poles (such as telephone poles or power poles) that are already present in a particular location to mount metrocells. Wooden poles tend to be somewhat variable in size and condition. As such, it may be desirable to provide mounting systems that can facilitate the mounting of metrocells on wooden poles.
As a first aspect, embodiments of the invention are directed to an adjustable mount for an antenna. The adjustable mount comprises: a generally vertical elongate pole having an upper end; a plurality of rails mounted adjacent the upper end of the pole, each of the rails including a cap with a mounting hole at an upper end thereof; a mounting foundation having a base panel and a mounting platform positioned above the base panel, the base panel including a set of discontinuous slots, each of the discontinuous slots extending at an oblique angle to a radius originating at a center point of the base panel; a plurality of threaded members, each of the threaded members inserted into the mounting hole of a respective one of the rails and one of the set of discontinuous slots to mount the mounting foundation above the upper end of the pole; and a plurality of nuts, each threaded onto a respective threaded member beneath the base panel, wherein rotation of the nut relative to the threaded member causes an overlying section of the base panel to move vertically.
As a second aspect, embodiments of the invention are directed to an adjustable mount for an antenna comprising: a generally vertical elongate pole having an upper end; a plurality of rails mounted adjacent the upper end of the pole, each of the rails including a cap with a mounting hole at an upper end thereof; a mounting foundation having a generally triangular base panel and a generally square mounting platform positioned above the base panel, the base panel including a set of discontinuous slots, each of the discontinuous slots extending at an oblique angle to a radius originating at a center point of the base panel; a plurality of threaded members, each of the threaded members inserted into the mounting hole of a respective one of the rails and one of the set of discontinuous slots to mount the mounting foundation above the upper end of the pole; and a plurality of nuts, each threaded onto a respective threaded member beneath the base panel, wherein rotation of the nut relative to the threaded member causes an overlying section of the base panel to move vertically.
As a third aspect, embodiments of the invention are directed to a method of leveling an antenna mount on a pole, comprising the steps of: providing a generally vertical elongate pole having an upper end; mounting a plurality of rails adjacent the upper end of the pole, each of the rails including a cap with a mounting hole at an upper end thereof; providing a mounting foundation having a base panel and a mounting platform positioned above the base panel, the base panel including a set of discontinuous slots, each of the discontinuous slots extending at an oblique angle to a radius originating at a center point of the base panel; mounting the mounting foundation on the rails above the upper end of the pole with a plurality of threaded members and a plurality of nuts, each of the threaded members inserted into the mounting hole of a respective one of the rails and one of the set of discontinuous; and rotating at least one of the plurality of nuts relative to the threaded rod to cause an overlying section of the base panel to move vertically.
The present invention will now be described more fully hereinafter, in which embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like numbers refer to like elements throughout. Thicknesses and dimensions of some components may be exaggerated for clarity.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein the expression “and/or” includes any and all combinations of one or more of the associated listed items.
In addition, spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Well-known functions or constructions may not be described in detail for brevity and/or clarity.
Referring now to the drawings, an antenna mount leveling assembly is illustrated in
Referring first to
Referring now to
As can be seen in
It should be noted that, in some embodiments, the rails 120 may be mounted to the pole 110 via bands (e.g., a hose clamp) that encircle the pole 110 and fit within the recesses 130 of the rails 120. (If three bands are to be used, two bands can fit within the recesses 130 in the rails 120 and one band can overlie the lower “tail” of the rail 120 below the side flanges 124.) In such embodiments, each band may engage and secure all three of the rails 120.
The mounting foundation 200 is then mounted to the rails 120. As can be seen in
It can be seen that the arrangement illustrated and described herein can be employed to both mount and level the mounting foundation 200 onto the pole 110. As discussed above, poles, and particularly wooden poles, can vary greatly in size, roundness, and perpendicularity of mounting, and the top surfaces of different poles can vary greatly in their degree of flatness. The assembly 100 can enable a technician to adjust the mounting foundation 200 to a desired orientation (typically level), by rotating the nuts 170 (in particular the nuts 170a, which underlie the base plate 201, may be rotated) on their respective threaded rods 150; such rotation of the nuts 170 raises or lowers the corners of the mounting foundation 200 relative to each other, which adjusts the angle of the base plate 201 and mounting platform 220 relative to the pole 110 (and, in turn, to the horizon). In some embodiments, the technician may employ a level or other angle-detecting device as an aid to confirm that the desired orientation has been attained.
In addition, the inclusion of the rails 120 on the pole 110 and the slots 210 in the base panel 201 of the mounting foundation 200 can also permit the mounting foundation 200 to be mounted on poles of varying diameters, and even varying degrees of roundness.
Once the mounting foundation 200 is mounted on the pole 110 as described above, equipment (such as an antenna, a radio, or the like) can be mounted on the mounting foundation 200.
The mounting foundation 200 is typically formed of a metallic material, such as steel or aluminum. The base panel 201 may be of any thickness, but should be of sufficient thickness to provide a rigid mounting location for the antenna or other equipment; a thickness of between about 0.188 and 0.5 inch is typical, Similarly, the mounting platform 220 may be should be of sufficient thickness to provide a rigid mounting location for the antenna; a thickness of between about 0.188 and 0.5 inch is typical.
It should also be noted that the base plate 201, which is shown to be generally triangular, may take another shape (e.g., circular, square, hexagonal), as may the mounting platform 220. The holes 226, 228 in the mounting platform 220 may be arranged in a different pattern. The hole patterns in the bottom plate 300, 300′ (which are discussed in U.S. Patent Publication No. 2020/0388902, the disclosure of which is hereby incorporated by reference herein in full) may also vary. In some embodiments, the threaded rods 150 may be integrated into the rails 120. Other variations may also be employed.
it should also be understood that the assembly 100 may be employed to mount other equipment, such as radios (particularly within a module), 4G or 5G antennas, and other types of modules (e.g., power modules); exemplary modules are discussed in U.S. Patent Publication No. No. 2018/0254545, and U.S. Patent Publication No. 2020/0136236. Both of these documents are hereby incorporated herein by reference in full.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof Although exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
The present application claims priority from and the benefit of U.S. Provisional Patent Application No. 62/977,575, filed Feb. 17, 2020, the disclosure of which is hereby incorporated herein be referenced in its entirety.
Number | Date | Country | |
---|---|---|---|
62977575 | Feb 2020 | US |