The invention relates to a basestation for a telecommunications network, and to the baseband processing of a telecommunications signal within such a basestation at both chip and symbol rate.
The uplink traffic channel processing subsection 10 consists of a multipath searcher 16 to detect multipath components in the uplink traffic channel and a finger processing section 18 to despread signals received in the uplink traffic channel to correct for different channel paths and to form a combined output. The uplink traffic channel processing subsection 10 also comprises a symbol rate processing stage 20 to convert the raw data output by the finger processing section 18 into formatted uplink data.
The processing that is performed in the uplink random access channel processing subsection 12 is similar to that performed in the uplink traffic channel processing subsection 10, except that the multipath searcher 22 in subsection 12 also includes a random access channel detector to detect random access bursts transmitted by subscriber units. The random access channel detection is normally implemented by means of a random access preamble detector.
The downlink traffic channel processing subsection 14 comprises a symbol rate processing section 24 to encode and format the data to be transmitted, followed by a chip rate processing section 26 to spread the signal output by the symbol rate processing section 24 to the chip rate.
As is apparent from
The present invention seeks to improve the manner in which basestation baseband processing is implemented.
According to a first aspect, the invention provides a basestation for a telecommunications network, comprising digital signal processing means for performing both chip and symbol rate processing of telecommunications signals, wherein the basestation is capable of changing a baseband processing function of the digital signal processing means to perform a baseband task in different ways.
Thus, the baseband processing section of a basestation can be adjusted to increase the efficiency of the baseband processing section and the basestation as a whole.
Further, the invention enables a move away from the rigid formulation where the chip rate processing is carried out in a substantially fixed configuration and the bit rate processing is done in software on a digital signal processor.
In one embodiment, the change to the baseband processing function involves adjusting the behaviour of the function. For example, the number of fingers used in a rake receiving process can be adjusted.
In another embodiment, the change to the baseband processing function involves selecting one of a group of functions available to perform said task. For example, a rake receiver function and an adaptive equalisation function could both be available to a basestation for the purpose of demodulating a signal and the basestation could choose the most appropriate of the two demodulation functions to use under the prevailing conditions.
Adjustments to the baseband processing regime within the basestation could be initiated in several ways. For example, the basestation could be provided with control means for instructing the digital signal processing means to adjust its baseband processing routines. Alternatively, the digital signal processing means could be arranged to gather information about the user and/or channel providing a telecommunications signal being processed by the basestation, the digital signal processing means then using said information to adjust at least one baseband processing function operating on said telecommunications signal.
In a preferred embodiment, the basestation according to the invention can choose between the use of a function implementing a rake receiver and a function performing adaptive equalisation in order to demodulate telecommunications signals received at the basestation. Advantageously, the choice of which demodulation function to use may be made on the basis of an assessment made by the digital signal processing means of the user and/or channel providing the signal to be demodulated.
Some of the parameters which may be used to initiate or control changes in the baseband processing performed by the basestation have been discussed above. Additionally or alternatively, the basestation could monitor the demand on, and availability of, baseband processing resources within the basestation and use the results of that assessment to determine if the baseband processing should be adjusted. For example, such a process could be used to ensure that the available baseband processing power within the basestation is fairly distributed amongst the various baseband processing tasks that need to be performed at any one time.
In one embodiment, the digital signal processing means is a digital signal processor (DSP). In another embodiment, the digital signal processing means comprises a plurality of DSPs arranged to share said chip-and symbol rate processing, preferably in a dynamic manner. The plurality of DSPs may be arranged to act together so as to equate to a single, more powerful DSP which performs the chip and symbol rate processing.
The basestation according to the invention is preferably a UMTS basestation, although it will be apparent to the skilled that the basestation could be of another type.
By way of example only, an embodiment of the invention will now be described with reference to the accompanying figures, in which:
The basestation according to the embodiment of
The baseband processing section performs various baseband processing tasks, such as those chip and symbol rate tasks described earlier with reference to
The control unit 34 selects the appropriate one of processes 36 and 38 for carrying out the demodulation. In the case where other traffic channels are active, the control unit 34 also selects the appropriate demodulation function to use for those users. Thus, the baseband processing section can be configured by the control unit 34 to use a first demodulation process, say a rake receiver, with a first user on a first channel and a second demodulation process, say adaptive equalisation, with a second user on a different traffic channel.
In a variation on the embodiment shown in
In the embodiment of
In the embodiment of
The embodiment of
For example, some users might only have a small number of dominant multipath components, therefore requiring only perhaps one or two fingers to be allocated to them. This frees digital signal processing power for users that are subject to several multipath components to be detected using a greater number of rake fingers, e.g. users at the edge of the basestation's cell that have many multipath components of roughly equal amplitude.
The allocation of the number of fingers is done when a new user is acquired by the basestation. It would also be possible to change the number of fingers dynamically as the channel conditions experienced by users change. The parameters used to control the number of fingers to be allocated to a user include the delay spread of a received signal, the spreading factor applied to a received signal, the EC/N0 ratio, the EC/I0 ratio, the recent delay spread history and statistics, and such history/statistics averaged over several previous users of the channel.
Some other tasks that can be rendered configurable will now be discussed.
The best multipath component search strategy to use with a received signal will depend upon several factors describing a particular user and channel. A group of functions for implementing a multipath component search strategy in different ways can be provided and the most appropriate function can be selected depending upon the circumstances. Alternatively, the behaviour of the function performing the multipath search task can be adjusted, rather than swapping one function for another. The different ways available to implement the multipath component search strategy allow the selection of various characteristics of the strategy.
The hierarchy of the search strategy can be made selectable. The baseband processing section can be arranged to select between functions which implement one, two or more levels. The set of rules for controlling changes between the levels in a multilevel search hierarchy may also be rendered selectable. As an example, the system could allow the selection of a two level hierarchy in which one level implements a coarse search to detect major shifts in multipath components and the other level implements a fine search to locate the components accurately and track small changes. The selection of the interval which elapses between repetitions of a search could be allowed. The selection of different intervals for different layers of a hierarchy could be allowed. The range of searching could be allowed to become selectable. The range of searching could be changed depending on the expected temporal distribution of multipath components. Additionally, the system could allow the resolution of the search to be selected dynamically. For example, the system could be allowed to select between 0.25, 0.5 and 1.0 chip resolutions.
There are various criteria that can be used to control the selection of the appropriate nature of a particular aspect of the search strategy. For example, the selection could be controlled by the amplitude and speed of movement of multipath components, multipath component birth and death statistics, the delay spread in the received signal, the spreading factor applied to the received signal, the EC/N0 ratio, the EC/I0 ratio, the recent search history of a particular user or channel, and the history of a channel averaged over several previous users.
The task of combining the outputs of individual rake fingers can also be made the subject of a group of selectable functions. For example, functions could be made available to perform finger combination using a maximum ratio combining scheme, a maximum likelihood scheme or an optimal combining scheme based on the estimation of the statistical properties of the interference affecting the channel. The choice of the function to be employed could be dictated by, for example, the EC/N0 ratio, the EC/I0 ratio or the bit error rate of the channel.
In a similar manner, other baseband processing tasks can be made configurable. For example, the channel estimation strategy could be made adaptive. This could include changing the filtering strategy for channel estimates, i.e. implementing a variable forgetting factor. The base station may be arranged to implement a power control scheme for, e.g., economising on the power used when transmitting to subscriber units and/or for instructing subscriber units to adjust their transmission power so that signals received at the base station have similar or substantially equal power levels. The step size and update interval used for adjusting the transmit power levels in such a scheme could be made adaptable. Similarly, a transmit diversity scheme using multiple antennae could be implemented using selectable functions, as could the random access channel search strategy (in a similar manner to the foregoing discussion of the traffic channel search strategy), the frequency of automatic frequency control updates, and the chip level signal sampling rate.
A further factor that can be used to influence the selection of the way in which a given baseband processing task is performed is the available baseband processing power within the basestation. For example, the system can be arranged so that in conditions of high demand for baseband processing power, the system aims to reduce the amount of baseband processing resources consumed by dictating that a baseband processing task is performed in the one of the available ways which best conserves baseband processing resources.
It will also be apparent that, although the arrangements for selectable and adjustable functions have been described separately, such options for configuring baseband processing routines can be combined. For example, as regards demodulation, a selection between a rake receiver process and an equaliser could be performed with the number of rake fingers in the rake receiver process being adjustable if this technique is selected for use.
Number | Date | Country | Kind |
---|---|---|---|
0203410.6 | Feb 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB03/00629 | 2/13/2003 | WO | 4/20/2005 |