Adjustable beamwidth and azimuth scanning antenna with dipole elements

Abstract
An antenna system includes a plurality of cascading power dividers that work in conjunction with a plurality of mechanical phase shifters to vary a beamwidth and/or an azimuth scan angle of a beam that radiates from active columns. Each phase shifter has an independent remotely controlled drive and is directly electrically connected to a respective radiating column. The radiating columns include cross dipole antenna elements.
Description




FIELD OF THE INVENTION




This invention relates generally to antennas, and more particularly to a mechanism for dynamically varying the beamwidth and azimuth scan angle of such antennas.




BACKGROUND OF THE INVENTION




Antenna construction generally includes a plurality of antenna columns defining a signal beamwidth and azimuth scan angle. The beamwidth of an antenna may be modified by varying the phase of an electrical signal applied to the columns. Advancements in antenna technologies include providing each antenna column with an individually-coupled, mechanical phase shifter. Systems having a phase shifter dedicated to each column of an antenna allow improved beamwidth and azimuth scan angle control.




While antenna configurations having individually-coupled phase shifters provide increased wave propagation control, still greater beamwidth and azimuth scan angle variability is desired. Additionally, an individually-coupled phase shifter configuration may fail to provide sufficient control for certain signal diversity applications, such as where dual dipole elements are desired. Signal diversity generally involves separating signals for subsequent processing. For instance, two signals having different polarizations may be combined upon transmittal so that their aggregate signal strength is sufficient to allow the composite signal to reach respectively polarized antenna columns.




Antennas having dual dipole elements allow a single column to receive/transmit both polarizations, avoiding maintenance, space and aesthetic drawbacks associated with greater numbers of single pole antennas. However, diversity benefits associated with dual dipole elements may remain unrealized in conjunction with the individually-coupled phase shifter configuration incorporated herein, which would facilitate improved propagation control in only one of the two polarizations.




Consequently, there is a need to provide wider dynamic wave propagation control. Further improvements are also possible where each column of an antenna includes multiple poles.











BRIEF DESCRIPTION OF THE DRAWINGS




The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the detailed description given below, serve to explain the principles of the invention.





FIG. 1

is a schematic diagram of the dynamically variable beamwidth and/or variable azimuth scan angle antenna for purposes of explaining the principles of the present invention.





FIG. 2

is a block diagram of an azimuth scanning network suited for explaining the principles of the present invention.





FIG. 3

is an exploded view of an exemplary rotary mechanical phase shifter including a drive.





FIG. 4

is an exploded view of an exemplary linear mechanical phase shifter including a drive.





FIG. 5

is a top view of an antenna having an irregular or linearly segmented column arrangement.





FIG. 6

is a top view of an antenna having a curvilinear column arrangement.





FIG. 7

is a top view of an antenna having a linear column arrangement.











DETAILED DESCRIPTION OF THE DRAWINGS





FIG. 1

shows an exemplary antenna system


10


for purposes of explaining the principles of the present invention. The system includes at least one dynamically variable beamwidth and variable scan angle antenna


12


. The antenna


12


, in turn, comprises a plurality of spaced-apart active radiating columns


28


. Where desired, each column


28


includes a dual dipole element


26


having respective dipoles


26




a


and


26




b.






As shown in

FIG. 1

, each column


28


may electrically couple to a respective pair


40


of phase shifters


40




a,b


of a plurality of continuously adjustable mechanical phase shifters. As explained below in greater detail, phase shifter


40




a


of a respective phase shifter pair


40


may connect to a first dipole


26




a


of each dual dipole element


26


of a radiating column


28


, and phase shifter


40




b


of the phase shifter pair may connect to a second dipole


26




b


of each dual dipole element


26


. As such, each phase shifter


40




a,b


is positioned so as to affect a respective polarization of the signal propagating from each column


28


.




More particularly, each phase shifter


40




a,b


is positioned between a column signal node


50


and a feed node


54


so as to affect the beamwidth and/or azimuth scan angle of the signal through phase variance. To further facilitate signal pattern control, each phase shifter pair


40


includes an independently and remotely controlled drive


42


. In the embodiment, the phase shifter pair


40


of a respective column


28


couples to a common drive


42


for material and operating considerations. For instance, such common control may simplify user control of wave propagation.




The beamwidth and the azimuth scan angle are correlated to phase shifts and/or power distributions accomplished between the respective column nodes


50


and the feed node


54


. In accordance with the principles of the present invention and as will be described hereinafter, the beamwidth and/or azimuth scan angle may be varied such as in response to signal from a control station so as to broaden or narrow the width of the beam and/or move the center of the beam left or right.




To that end, the phase shifters


40




a,b


are independently operable to vary the phase shift, i.e., the phase of an electrical signal, between the respective column signal nodes


50


and respective feed nodes


54


, to thereby vary the beamwidth and/or azimuth scan angle of the beam defined by the plurality of active radiating columns


28


.




A plurality of cascading power dividers contained within an azimuth feed network


46




a


and


46




b


may work in tandem with or separately from the phase shifters


40




a,b


to similarly affect the beamwidth and/or azimuth scan angle. That is, the power dividers of one embodiment are positioned between the column signal node


50


and the feed node


54


. Such positioning allows the power dividers to affect the beamwidth and/or azimuth scan angle of the signal through power variance. To facilitate such signal pattern control, many or all of the power dividers may include an independently controlled drive. Where desired, the drive control of the power dividers is remotely controlled for operability and performance reasons.




As shown in

FIG. 1

the dual dipole elements


26


within each respective column


28


are electromagnetically coupled, such as through elevation reed networks comprising stripline or microstrip conductors, as shown at reference numeral


39


on circuit board


52


in FIG.


1


. The dual dipole elements


26


may also mount on the circuit board


52


. Alternatively, the dual dipole elements


26


within a column


28


may be coupled using air stripline and/or one or more power dividers having associated cabling (all of which are not shown), eliminating the need for a circuit board. Although the dynamically variable beamwidth antenna


12


shown in

FIG. 1

includes five columns


28


, each column


28


having ten dual dipole elements


26


, embodiments of the present invention may be configured using any desired number of columns and elements without departing from the spirit of the present invention. Moreover, while dual dipole elements have particular application within certain embodiments of the present invention, one of skill in the art will appreciate that other embodiments may include any radiating element, to include single or multi-pole elements.




With further reference to

FIG. 1

, electrically associated with each active radiating column


28


is a respective pair of continuously adjustable mechanical phase shifters


40




a,b


. Each mechanical phase shifter pair


40


typically couples to a respective, independent and remotely controlled drive


42


. Each respective mechanical phase shifter


40




a,b


of a pair


40


is directly electrically connected, such as by coaxial cables


44


and/or striplines


30


, to the dual dipole elements


26


of a respective active radiating column


28


. Such direct electrical connections define column signal nodes


50


.




In one embodiment, respective pairs of phase shifters correlate to different polarizations (e.g., plus and minus 45 degrees) and couple to respective radiating columns of the antenna. The beamwidth and/or azimuth scan angle of each beam may also be adjusted remote from the antenna where desired via a remote phase shifter interface.




Each mechanical phase shifter


40




a,b


may also electrically couple to a plurality of power dividers included within a respective azimuth feed network


46


, which defines a respective feed node


54


. Thus, as illustrated in the schematic diagram of

FIG. 1

, the mechanical phase shifters


40




a,b


couple to intermediate column signal nodes


50


and feed node


54


. A radio frequency (RF) connection


48


couples signals to and from feed node


54


as will be readily appreciated. Mechanical phase shifters


40




a,b


may be adjusted independently to vary the phase of the signal emanating from columns


28


.




In addition to the plurality of power dividers, an exemplary azimuth feed network


46


may include a circuit board in the form of traces, associated cabling, and/or other structures to provide a serial or corporate feed, as will be appreciated by those skilled in the art. The plurality of power dividers of the azimuth feed network


46


may apportion power input at nodes


54


among the active radiating columns


28


via the phase shifters


40




a,b


to vary the beamwidth and azimuth scan angle of a signal radiating from the antenna


12


. Conversely, in receiving a signal, the plurality of power dividers of each azimuth feed network


46


may combine power incident on elements


26


in the radiating columns


28


to be received at a respective feed node


54


.




An exemplary power divider may comprise one or more couplers, as well as an inline phase delay device. One of skill in the art should appreciate that a reflective-type phase delay device may alternatively and/or additionally be used. Where desired, each power divider


41


may include a pair of hybrid directional couplers. As in known in the art, a hybrid directional coupler is a four port electromagnetic device that is configured to provide an output that is proportional solely to power incident from a source. For a given bandwidth, a hybrid directional coupler will divide the incident power from a source at one port between two other ports at quadrature phase. The relative power at each other port with respect to the incident power will be known for a given set of impedances, each coupled to a port of the device.




Quadrature hybrid directional couplers are commonly used in communications equipment. Such couplers allow a sample of a communications signal input at an input port and output at an output or “direct” port, to be taken from the signal at third or “coupled” port. No signal emerges from the fourth or “isolated” port. When appropriately designed, a directional coupler may discern between a signal input at the input port and signal input at the direct port. Such ability to discern is particularly useful when, for example, a coupler is coupled intermediate an RF amplifier and an antenna. In such a configuration, the output of the RF amplifier may be monitored independently from that of a signal reflected from a mismatched antenna. Moreover, such a monitored signal may be used to control the gain, e.g., automatic gain control (AGC), or reduce the distortion of the RF amplifier. In any case, a suitable power divider for purposes of this specification may comprise any device capable of apportioning and/or combining power as appropriate.





FIG. 2

shows a power divider configuration


148


suited for explaining the principles of the present invention. As illustrated, a configuration of power dividers


41


similar to that of

FIG. 2

could be included within each of the azimuth feed networks


46


of

FIG. 2

to provide beamwidth and azimuth scan angle adjustment. Thus, the power divider configuration


148


may couple to each column


28


. For instance, the configuration may couple to a mechanical phase shifter


43




a-d


of each (column


28


) phase shifter pair that corresponds to a specific polarization of a dual dipole element


26


.




As shown in

FIG. 2

, one or more of the power dividers


41


may alternatively couple to a respective dual dipole element


26


without first coupling to a variable phase shifter


43




a-d.


Implementation of such a configuration may be particularly applicable where the relative phase of the respective dual dipole element


26


remains constant. Such a scenario is discussed below in greater detail.




In any case, changes in power delivered to respective phase shifters


43




a-d


may bring about variation in beamwidth and azimuth scan angle for the specific polarization associated with the respective phase shifters


43




a-d.


Where single dipole elements


26


are alternatively used, one of skill in the art will appreciate that a single configuration/azimuth feed network


46


may adequately service all columns. Moreover, an embodiment of the present invention may include more or fewer power dividers


41


while remaining in accordance with the principles of the present invention.




Turning more particularly to

FIG. 2

, a first power divider


41




a


couples to respective antenna elements of an antenna


12


via respective phase shifters


42


. As discussed herein, a suitable antenna element of the antenna


12


may comprise any device configured to receive and/or transmit electromagnetic radiation, to include the above discussed dual dipole elements of the antenna


12


. In the context of

FIG. 1

, each antenna element


26


may be included within respective radiating columns


28


.




As shown in

FIG. 2

, a second power divider


41




b


couples to third and fourth antenna elements, respectively, of the antenna


12


, while a third power divider


41




c


couples to both the first power divider


41




a


and a fifth antenna element of the antenna's plurality of antenna elements


26


. Finally, a fourth power divider


41




d


completes the distributed configuration


148


by coupling to both the second and third power dividers,


41




b


and


c


. By adjusting the power distribution setting of one or all of the power dividers


41


in the azimuth feed network


46


, a user may modify the beamwidth and/or azimuth scan angle of a signal propagating from the antenna


12


.




Where desired, the distributed power dividers


41


of the azimuth feed network


46


may couple to the antenna


12


via mechanical phase shifters


40




a,b


as shown in FIG.


1


. Mechanical phase shifters


40




a,b


and their drives mount directly adjacent their respective radiating column


28


of antenna


12


. Such mounting furthers the utility of the azimuth feed networks


46


in antenna


12


, allowing a single RF connection


48


per azimuth feed network


46


to antenna


12


, thereby reducing the number of cables that must traverse tower


14


.




Each drive


42


is independently and remotely controlled using signal(s) coupled through a cable, an optical link, an optical fiber, or a radio signal as indicated at reference numeral


24


. As shown in

FIG. 1

, each drive


42


may have its own respective signal. Using conventional means of addressing, signals


24


may be multiplexed as provided by interface


59


. As discussed herein, a common drive


42


may service both phase shifters


40




a,b


of a respective phase shifter pair


40


. Such mutual coupling may simplify signal adjustment processes for a user where desired.




As such, each mechanical phase shifter


40




a,b


may be used to vary the phase or delay of a signal between feed node


54


and the respective column node


50


for a given polarization. Further, phase shifters


40




a,b


may also be used to vary or stagger the phase between the respective nodes


50


, thereby varying the phase between the radiating columns


28


. The differences in phase between the radiating columns


28


, associated with transmission and reception of signals from antenna


12


determines the beamwidth and/or azimuth scan angle of antenna


12


.




Generally, in varying the beamwidth of such an antenna


12


, a phase delay will be added to or subtracted from the radiating columns


28


such that a greater amount of change in delay is applied to the outer most columns. A mathematical equation may be derived that relates the phase differences between the radiating columns


28


in varying the beamwidth. One such equation may be a second order linear equation, or a quadratic equation.




Similarly, in varying the azimuth scan angle, a phase delay may be added to one end of the columns


28


in the plurality of columns while a phase delay may be subtracted from those columns at the other end. One mathematical equation that relates the phase differences between the radiating columns


28


in varying the azimuth scan angle is a first order linear equation. Those skilled in the art will appreciate that other equations, such as higher order polynomial equations, relating the differences in phase between the radiating columns


28


may also be used and/or derived. Moreover, those skilled in the art will appreciate that a combination of equations each relating phase differences between the radiating columns


28


, such as a linear and a quadratic equation, may be used in varying both beamwidth and azimuth scan angle.




The beamwidth of such an antenna may be varied from approximately 30° to approximately 180° for each beam, depending on the arrangement of the columns


28


, for example, while the azimuth scan angle may be varied by approximately +/−50° for each beam. The ability to vary the azimuth scan angle depends on the beamwidth selected. For example, if a beamwidth of 40° is selected, the azimuth scan angle may be varied +/−50°. However, if a beamwidth of 90° is selected, the azimuth scan angle may be limited such as to +/−40°. Those skilled in the art will appreciate that other beamwidths may be selected that correspondingly affect the range of variability of the azimuth scan angle.




Thus, according to the principles of the present invention, and as illustrated in

FIG. 1

, the phase shifters


40




a,b


are independently and remotely operable to vary the beamwidth and/or azimuth scan angle of antenna


12


(in tandem or independent of the adjustable power dividers


41


). Moreover, such an adjustment in beamwidth and/or azimuth scan angle is possible while antenna


12


is in operation, i.e., dynamically.




Since the difference in phase between columns


28


affects the beamwidth and/or azimuth scan angle of such an antenna, one or more of the columns


28


may be fixed in phase with respect to the signal transmitted by or received using the antenna


12


, thereby varying the phase of only those remaining columns


28


. For example and as shown in

FIG. 1

, a pair


40


of phase shifters


40




a,b


along with their associated drive


42


and control signal


24


, could be eliminated as indicated by connection


58


(shown in dashed line). A number of such connections


58


would effectively short nodes


50


and


54


, such that the columns


28


outnumber phase shifter pairs, or even phase shifters


41


.




The remaining phase shifters


41


may then vary the signals at nodes


50


with respect to the signal at the shorted nodes


58


to vary the beamwidth and/or azimuth scan angle of antenna


12


. Elimination of a phase shifter


41


and its associated drive reduces the cost of the antenna


12


. Those skilled in the art will recognize that other embodiments of the present invention may be constructed using differing numbers of columns


28


, phase shifters


40




a,b


and/or power dividers


41


.




As discussed herein, exemplary mechanical phase shifters


40




a,b


may be linear, reflective-type or rotary. Either type of phase shifter may be coupled to a drive


42


, such as a motor or other suitable means, to move a piece of dielectric material relative to a conductor within the phase shifter, to thereby vary the insertion phase of a signal between input and output ports of the device.




Referring to

FIG. 3

, an exploded view of an exemplary rotary mechanical phase shifter


60


including a drive, or motor,


42


is illustrated. Drive


42


is responsive to a control signal


24


and includes a shaft


62


. Shaft


62


may be coupled directly to the mechanical phase shifter


60


, as shown in

FIG. 3

, or through a gearbox, pulleys, etc. (not shown). Shaft


62


is coupled to a high dielectric constant material


64


that is rotated, as indicated by arrow


66


, in a housing


78


.




Rotary mechanical phase shifter


60


varies the phase shift between input and output ports


68


,


70


by rotating


66


high dielectric constant material


64


on both sides of stripline center conductor


72


. The high dielectric constant material


64


has a slower propagation constant than air, and thus increases electrical delay of a signal carried by conductor


72


. Slots


74


,


76


provide a gradient in the dielectric constant. Alternatively, a plurality of holes or other apertures in the high dielectric constant material


64


may be used to provide a gradient in the dielectric constant. The amount of delay, or phase shift, is determined by the relative length of conductor


72


covered above and/or below by the high dielectric constant material


64


. Thus, the rotation


66


of high dielectric constant material


64


relative to conductor


72


varies the phase of a signal between ports


68


and


70


of the phase shifter


60


. Housing


78


may be constructed using aluminum or some other suitably rigid material.




Another example of a rotary mechanical phase shifter may be found in an article entitled, “A Continuously Variable Dielectric Phase Shifter” by William T. Joines,


IEEE Transactions on Microwave Theory and Techniques,


August 1971, the disclosure of which is incorporated herein by reference in its entirety.




Referring to

FIG. 4

, an exploded view of an exemplary linear mechanical phase shifter


80


is illustrated. Linear mechanical phase shifter


80


couples to a drive, such as a motor


42


, having a shaft


82


. Shaft


82


couples through a mechanism, such as a worm gear


84


, to slab(s)


86


of a high dielectric constant material within the phase shifter


80


. In response to signal


24


, drive


42


, through shaft


82


and worm gear


84


, moves high dielectric constant material


86


linearly relative to a conductor


88


, as indicated at by arrow


90


.




The high dielectric constant material


86


has a slower propagation constant than air, and thus increases the electrical delay of a signal carried by conductor


88


. Slots


96


,


98


provide a gradient in the dielectric constant. The amount of delay, or phase shift, is controlled by the relative length of the conductor


88


that is covered, above and/or below, by the high dielectric constant material


86


. Thus, the linear position of the high dielectric constant material


86


relative to conductor


88


determines the phase of a signal between ports


92


and


94


of the phase shifter


80


.




Another example of linear phase shifter may be found in U.S. Pat. No. 3,440,573, the disclosure of which is incorporated herein by reference in its entirety. Yet another example of a linear phase shifter may be found in U.S. Pat. No. 6,075,424, the disclosure of which is also incorporated herein by reference in its entirety.




In addition to the phase relationships between the columns, the number of columns, the spacing between the columns, and the relative position of the columns in an antenna may determine the ability to vary beamwidth and/or azimuth scan angle as desired.





FIGS. 5-7

illustrate top views of three antennas having particular column arrangements suited for explaining the principles of the present invention. Those skilled in the art will appreciate that the present invention is not limited to any one of these arrangements, they are merely shown by way of example.




More particularly,

FIG. 5

shows an antenna having an irregular or linearly segmented arrangement of five active radiating columns


28


. Each column


28


contains a plurality of dual dipole elements


26


. The dual dipole elements


26


in each radiating column


28


comprise conductive elements on one or more circuit boards


150


in each column


28


. The circuit boards


150


mount to one or more sheet metal reflectors


138


. Where desired, the reflectors


138


include one or more holes or apertures (not shown) for electrically coupling to dual dipole elements


26


in radiating columns


28


.




The dual dipole elements


26


within each active radiating column


28


are electromagnetically coupled using elevation feed networks


30


as described in conjunction with FIG.


1


. As such, the elevation feed networks are located behind the reflectors


138


. For example, if ten active radiating elements


26


were used per active radiating column


28


, then ten cables from each elevation feed network


30


may be used to electromagnetically couple the dual dipole elements


26


within each column


28


.




Alternatively, the dual dipole elements


26


within each respective column


28


may be electromagnetically coupled using a combination of stripline or microstrip conductors located on circuit boards


150


and a plurality of remotely controlled, adjustable power dividers having associated cabling, located behind reflectors


138


. As discussed herein, power variation provided by the adjustable power dividers positioned within block


148


allows users to tailor the beamwidth and azimuth scan angle of the signal pattern. Antenna includes a plurality of mechanical phase shifters


40




a,b


and power dividers


41


as previously described in conjunction with FIG.


1


and as indicted by reference numeral


148


in both

FIGS. 1 and 5

.




Columns


28


may be substantially equally spaced (by a distance


140


, typically at about 0.4 wavelength intervals), columns


28


being arranged in substantially a first plane


142


. Columns


28


are substantially equally spaced


140


from each other. The columns


28


are further set back a distance


144


and


145


, respectfully, from the first plane


142


. Such an irregular or linearly segmented arrangement allows beam


32


broadening, typically associated with an arcuate, curvilinear or cylindrical arrangement as discussed below in detail, while reducing the mutual coupling between adjacent dual dipole elements in adjacent columns.




As shown in

FIG. 5

, exemplary dual dipole elements


26


may bow, angle, or “droop,” inwardly. This bowed feature may minimize space required by the elements, allowing for optimum space efficiencies. The bowed configuration of the elements may further offer advantageous propagation characteristics of their own. For instance, the bowed shape may affect the propagation pattern of the signal transmitted from the columns in a predictable and desirable manner, such as beamwidth equalization. While the dual dipole elements


26


of

FIG. 5

have dual slant polarizations, other embodiments that are consistent with the invention could alternatively use any orthogonal polarization. Moreover, one of skill in the art will appreciate that the choke


141




a


and


141




b


and ground plane structures of the antenna


12


, as well as the relative shape of each element


26


may be modified to meet specific application requirements. For example, the choke


141




a


and


141




b


and ground planes may be optimized to mitigate radiation from front to back.




Referring to

FIG. 6

, an antenna having an arcuate, curvilinear or cylindrical arrangement of active radiating columns


28


is illustrated. The antenna comprises a plurality of dual dipole elements


26


arranged into the eight substantially equally spaced (by a distance


124


) active radiating columns


28


by mounting the elements


26


to a similarly arcuate, curvilinear or cylindrical curved reflector


126


having a stripline or microstrip traces (not shown) for coupling the respective dual dipole elements


26


with each column


28


. The antenna further comprises pairs of continuously adjustable mechanical phase shifters


40




a,b


, each coupled to a respective independently remotely controlled drive


42


and a plurality of power dividers


46


. In operation, control signals


24


actuate drives


42


adjusting the mechanical phase shifters


40




a,b


so as to dynamically vary the beamwidth and/or azimuth scan angle of antenna as described hereinbefore. Likewise, the plurality of power dividers


46


may function to vary power delivered to each phase shifter. In this manner, the power variance further functions to vary the beamwidth and/or azimuth scan angle of the antenna.




The arcuate, curvilinear or cylindrical arrangement of active radiating columns


28




a-h


shown in

FIG. 6

may allow for wider beam broadening than that of a linear arrangement described below. The spacing


124


of columns


28


, such as advantageously on substantially quarter (0.25) wavelength intervals of the center frequency of the antenna, reduces the antenna side lobes at the expense of increased mutual coupling between adjacent dual dipole elements


26


in adjacent columns


28


.




Referring to

FIG. 7

, an antenna having a flat, planar, or linear arrangement of columns is illustrated. The antenna includes four substantially equally spaced (by a distance


102


) active radiating columns


28


, each containing a plurality of dual dipole elements


26


mounted to a circuit board, or reflector,


104


. The dual dipole elements


26


within each respective column


28


are coupled using stripline, microstrip, or air stripline (none of which are shown), as described hereinabove. The active radiating columns


28


are directly electrically connected to respective pairs


40


of continuously adjustable mechanical phase shifters


40




a,b


, each pair


40


coupled to a respective independently remotely controlled drive


42


(although at least one of the phase shifters


40




a,b


may be eliminated as discussed earlier in connection with FIG.


2


). Each phase shifter


40




a,b


of the illustrated embodiment of

FIG. 8

also couples to a network of distributed power dividers


46


. The power dividers


46


may vary the power supplied to respective phase shifters, thereby altering the beamwidth and/or scan angle of the antenna system.




The beamwidth and/or scan angle may be further configured via control signals


24


that actuate the drives


42


. The drives are configured to adjust the mechanical phase shifters


40




a,b


so as to dynamically vary the beamwidth and/or azimuth scan angle of antenna independently from or in tandem with the power dividers


46


as described hereinbefore.




One of skill in the art will appreciate that while the operation of the phase shifters and power dividers may complement each other to synergistically produce superior signal pattern control, different embodiments may include and/or use only one of variable phase shifters or power dividers as described herein to vary the beamwidth and/or scan angle. Similarly, while the use of dual dipole elements provides particular utility in certain applications may use single pole radiating elements.




Thus, in operation, each column


28


of the antenna system includes dual dipole elements


26


. Thus, each column


28


accommodates two polarizations useful in signal diversity applications. To fully obtain the benefits of each polarization, the antenna system couples two independent phase shifters to each column


28


. In so doing, a separate phase shifter may adjust the bandwidth and/or azimuth scan angle for each, diversely polarized signal. As discussed below, each pair of phase shifters corresponding to respective column polarizations may gang together at a common drive


42


for operating considerations. Alternatively, separate drives may control each phase shifter


40




a,b


, while still providing signal diversity.




To achieve greater wave propagation control for each polarized signal, an embodiment of the present invention may capitalize on the independent nature of each phase shifter


40




a,b


by combining them with a cascading series of adjustable power dividers. As shown in

FIG. 2

, a network of power dividers


41


may couple to each phase shifter


40




a,b


associated with a particular polarization. As such, two separate networks of power dividers


41


may vary energy delivered to the antenna


12


in such a manner as to further affect the beamwidth and or azimuth scan angle of each polarized signal. The power dividers


41


may thus work separately or in concert with the phase shifters


40




a,b


to provide greater wave propagation control.




The radiating columns


28


may include dual dipole antenna elements


26


as discussed below in greater detail. In one respect, the dual dipole antenna elements


26


provide signal diversity. That is, the dual dipole antenna elements allow both simultaneously transmitted signals to be received by the same, dual dipole element. This configuration obviates the above discussed requirement of prior art systems for multiple antennas. In so doing, an embodiment of the present invention can receive, transmit and dynamically configure signals without burdening users with many space and maintenance complications that plague conventional antenna systems.




By virtue of the foregoing, there is thus provided a dynamically variable beamwidth and/or variable azimuth scanning angle antenna that relies on the principle of phase shifters to adjust the beamwidth and/or azimuth scan angle with the advantages of both the mechanical phase shifters and the smart antenna, but without their respective drawbacks.




While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. It will be understood that an antenna for purposes of this specification may be utilized as a transmit and/or receive antenna independently or simultaneously, thereby broadening or narrowing the transmit or receive beamwidth and/or steering the beam center accordingly as desired. Further, the present invention is not limited in the type of radiating elements used. Any type of radiating elements may be used, as appropriate. The invention is also not limited in the number of rows of radiating elements, nor does it necessitate rows, per se. The invention may also be used with or without antenna downtilt, either mechanical or electrical.




Moreover, the azimuth distribution network described herein may incorporate the ability to vary the amplitude of a signal at the respective column signal nodes furthering the ability to vary the beamwidth and/or azimuth scan angle. Still further, although the number of columns in relation to phase shifter pairs and/or power dividers are disclosed above, other relationships can be realized in accordance with the principles of the present invention. Those skilled in the art will also appreciate that an antenna in accordance with the present invention may be mounted in any location and is not limited to those mounting locations described herein. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit and scope of applicants' general inventive concept.



Claims
  • 1. A dynamically variable beamwidth and variable azimuth scanning antenna comprising:a plurality of spaced-apart, active radiating columns each including a dual dipole element, the plurality of radiating columns collectively defining both first and second beamwidths, as well as first and second azimuth scan angles corresponding to respective first and second polarizations of the dual dipole elements, wherein the respective beamwidths and azimuth scan angles correlate to phase shifts between a respective feed node and each radiating column of the plurality of columns; and a plurality of continuously adjustable, remotely controlled mechanical phase shifters grouped in pairs, one pair per each column, each phase shifter of a phase shifter pair correlating to one of the respective first and second polarizations and being juxtaposed between a respective radiating column and the respective feed node, wherein each phase shifter of the phase shifter pair is independently operable to vary the phase shift for the one respective polarization between each respective radiating column of the plurality of radiating columns and the feed node to thereby vary at least one of the respective beamwidths and the respective azimuth scan angles defined by the plurality of active radiating columns.
  • 2. The antenna of claim 1, the first polarization being orthogonal to the second polarization.
  • 3. The antenna of claim 1, wherein the phase shifter pair includes a common drive.
  • 4. The antenna of claim 1, wherein the dual dipole element angles inwardly.
  • 5. The antenna of claim 1, wherein the plurality of radiating columns outnumber the plurality of phase shifters.
  • 6. The antenna of claim 1, wherein the plurality of radiating columns equal the plurality of phase shifters in number.
  • 7. The antenna of claim 1, wherein the plurality of radiating columns comprise five radiating columns.
  • 8. The antenna of claim 1, wherein the active radiating columns are spaced apart in a linear pattern.
  • 9. The antenna of claim 1, wherein the active radiating columns are spaced apart in a linearly segmented pattern.
  • 10. The antenna of claim 9, wherein the active radiating columns are spaced apart at approximately 0.4 wavelength intervals.
  • 11. The antenna of claim 1, wherein the active radiating columns are spaced apart in a curvilinear pattern.
  • 12. The antenna of claim 1, wherein the active radiating columns are spaced apart at substantially quarter wavelength intervals.
  • 13. The antenna of claim 1, wherein the mechanical phase shifters are linear phase shifters.
  • 14. The antenna of claim 1, wherein the mechanical phase shifters include at least one of a rotary and a reflective-type phase shifter.
  • 15. The antenna of claim 1, further comprising a control station, the control station electronically communicating with the antenna using signals, each signal associated with a respective independently controlled drive and used to actuate the drive, thereby adjusting the phase shifter, and vary the beamwidth of the antenna.
  • 16. A dynamically variable beamwidth and variable azimuth scanning antenna comprising:a plurality of spaced-apart active radiating columns each having a respective column signal node, the columns collectively defining a beamwidth and an azimuth scan angle correlated to phase shifts and power levels between the respective column signal nodes and a feed node; a plurality of continuously adjustable mechanical phase shifters grouped in pairs, one pair per column, each phase shifter of a phase shifter pair having an independent remotely controlled drive and being directly electrically connected to a respective radiating column between the column signal node thereof and the feed node, the phase shifters being independently operable to vary the phase shift between the respective column signal nodes and the feed node to thereby vary at least one of the beamwidth and the azimuth scan angles defined by the plurality of active radiating columns; and a plurality of adjustable power dividers electrically connected to the plurality of spaced-apart active radiating columns, the power dividers being operable to vary the power levels between respective column signal nodes and the feed node to thereby vary at least one of the beamwidth and the azimuth scan angles defined by the plurality of active radiating columns.
  • 17. The antenna of claim 16, wherein the plurality of power dividers are isolated.
  • 18. The antenna of claim 16, wherein the plurality of radiating columns include a dual dipole element.
  • 19. The antenna of claim 16, wherein the plurality of radiating columns outnumber the plurality of phase shifters.
  • 20. The antenna of claim 16, wherein the plurality of radiating columns equal the plurality of phase shifters in number.
  • 21. A dynamically variable beamwidth and variable azimuth scanning antenna comprising:a plurality of antenna elements, the antenna elements configured to receive and transmit electromagnetic radiation; a first power divider, the first power divider having a receive port and first and second transmit ports, wherein the first and second transmit ports of the first power divider are coupled to first and second antenna elements, respectively, of the plurality of antenna elements; a second power divider, the second power divider having a receive port and first and second transmit ports, wherein the first and second transmit ports of the second power divider are coupled to third and fourth antenna elements, respectively, of the plurality of antenna elements; a third power divider, the third power divider having a receive port and first and second transmit ports, wherein the first transmit port of the third power divider is coupled to the receive port of the first power divider and the second transmit port of the third power divider is coupled to a fifth antenna element of the plurality of antenna elements; and a fourth power divider, the fourth power divider having a receive port and first and second transmit ports, wherein the first transmit port of the fourth power divider is coupled to the receive port of the third power divider, the second transmit port of the fourth power divider is coupled to the receive port of the second power divider and the receive port is coupled to a feed node.
  • 22. The antenna of claim 21, wherein at least one of the power dividers is isolated.
  • 23. The antenna of claim 21, further comprising a plurality of continuously adjustable mechanical phase shifters each having an independent remotely controlled drive and being directly electrically connected to a respective antenna element of the plurality of antenna elements between a signal node and a feed node, the phase shifters being independently operable to vary the phase shift between the respective signal nodes and the feed node to thereby vary at least one of a beamwidth and an azimuth scan angle of a beam defined by the plurality of antenna elements.
  • 24. A dynamically variable beamwidth and variable azimuth scanning antenna comprising:a plurality of spaced-apart active radiating columns each including a dual dipole element, the plurality of radiating columns collectively defining both first and second beamwidths, as well as first and second azimuth scan angles corresponding to the respective first and second polarizations of the dual dipole elements, wherein the respective beamwidths and azimuth scan angles correlate to phase shifts between a feed node and each radiating column of the plurality of columns; and a plurality of continuously adjustable mechanical phase shifters each having an independent remotely controlled drive and being juxtaposed between a respective radiating column and the feed node, the phase shifters being independently operable to vary the phase shift between each respective radiating column of the plurality of radiating columns and the feed node to thereby vary the respective beamwidths and the respective azimuth scan angles defined by the plurality of active radiating columns.
  • 25. The antenna of claim 24, wherein the first polarization is orthogonal to the second polarization.
  • 26. The antenna of claim 24, wherein the phase shifter pair has a common drive.
  • 27. The antenna of claim 24, wherein the dual dipole element angles inwardly.
  • 28. The antenna of claim 24, further comprising a plurality of power dividers electrically connected to the plurality of spaced-apart active radiating columns, the power dividers being operable to vary the power levels between respective column signal nodes and the-feed node to thereby vary at least one of the beamwidth and the azimuth scan angles defined by the plurality of active radiating columns.
  • 29. A dynamically variable beamwidth and variable azimuth scanning antenna comprising:a plurality of spaced-apart active radiating columns each including a dual dipole element, the plurality of radiating columns collectively defining both first and second beamwidths, as well as first and second azimuth scan angles corresponding to the respective first and second polarizations of the dual dipole elements, wherein the respective beamwidths and azimuth scan angles correlate to phase shifts between a feed node and each radiating column of the plurality of columns; and a plurality of continuously adjustable mechanical phase shifters grouped in pairs, one pair per column, each phase shifter of a phase shifter pair having an independent remotely controlled drive and being juxtaposed between a respective radiating column and the feed node, the phase shifters being independently operable to vary the phase shift between each respective radiating column of the plurality of radiating columns and the feed node to thereby vary the respective azimuth scan angles defined by the plurality of active radiating columns.
  • 30. The antenna of claim 29, wherein the first polarization is orthogonal to the second polarization.
  • 31. The antenna of claim 29, wherein the phase shifter pair includes a common drive.
  • 32. The antenna of claim 29, wherein the dual dipole element angles inwardly.
  • 33. A dynamically variable beamwidth and variable azimuth scanning antenna comprising:a plurality of spaced-apart active radiating columns each having a respective column signal node, the columns collectively defining a beam having a beamwidth and an azimuth scan angle correlated to phase shifts and power levels between the respective column signal nodes and a feed node; a plurality of continuously adjustable mechanical phase shifters each having an independent remotely controlled drive and being directly electrically connected to a respective radiating column between the column signal node thereof and the feed node, the phase shifters being independently operable to vary the phase shift between the respective column signal nodes and the feed node to thereby vary at least one of the beamwidth and the azimuth scan angles defined by the plurality of active radiating columns; and a plurality of adjustable power dividers electrically connected to the plurality of spaced-apart active radiating columns, the power dividers being operable to vary the power levels between respective column signal nodes and the feed node to thereby vary at least one of the beamwidth and the azimuth scan angles defined by the plurality of active radiating columns.
  • 34. The antenna of claim 33, wherein the power dividers are remotely adjustable.
  • 35. The antenna of claim 33, wherein the plurality of power dividers are isolated.
  • 36. The antenna of claim 33, wherein the plurality of power dividers are non-isolated.
  • 37. The antenna of claim 33, wherein the plurality of radiating columns include a dual dipole element.
  • 38. A method of dynamically varying the beamwidth of an antenna comprising:exciting a plurality of spaced-apart active radiating columns at respective column signal nodes so that the columns collectively define a beam, wherein plurality of columns includes a dual polarized dipole element; varying the phase of signals to the plurality of columns with a plurality of continuously adjustable mechanical phase shifters and defining a beamwidth with the phase shifts; independently remotely controlling the phase shifters for the columns through respective independent remotely controlled drives of the phase shifters to independently vary the phase shifts between the respective column signal nodes and thereby vary the beamwidth of the beam.
  • 39. A method of dynamically varying the beamwidth of an antenna comprising:exciting a plurality of spaced-apart active radiating columns at respective column signal nodes, each including a dual dipole element, so that the columns collectively define both first and second beamwidths, as well as first and second azimuth scan angles, corresponding to the respective first and second polarizations of the dual dipole elements, wherein the respective beamwidths and azimuth scan angles correlate to phase shifts between as feed node and each radiating column of the plurality of columns; varying the phase of signals to the plurality of columns with a plurality of continuously adjustable mechanical phase shifters to affect at least one of the respective beamwidths and azimuth scan angles with the phase shifts; and independently remotely controlling the phase shifters for the columns through respective independent remotely controlled drives of the phase shifters to independently vary the phase shifts between the respective column signal nodes.
  • 40. The method of claim 39, further comprising orienting the first and second polarizations orthogonally.
  • 41. The method of claim 39, further comprising electronically communicating with the antenna using signals, each signal associated with a respective independently controlled drive and used to actuate the drive, thereby adjusting the phase shifter, and varying the beamwidth of the antenna.
  • 42. A method of dynamically varying the beamwidth of an antenna comprising:exciting a plurality of spaced-apart active radiating columns at respective column signal nodes, each including a dual dipole element, so that the columns collectively define both first and second beamwidths corresponding to the respective first and second polarizations of the dual dipole elements, wherein the respective beamwidths correlate to phase shifts between as feed node and each radiating column of the plurality of columns; varying the phase of signals to the plurality of columns with a plurality of continuously adjustable mechanical phase shifters to affect the respective beamwidths with the phase shifts; and independently remotely controlling the phase shifters for the columns through respective independent remotely controlled drives of the phase shifters to independently vary the phase shifts between the respective column signal nodes.
  • 43. The method of claim 42, further comprising further defining at least one of the beamwidths and the azimuth scan angles by varying the power level of signals to the plurality of columns with a plurality of adjustable power dividers.
  • 44. A method of dynamically varying the azimuth scanning angle of an antenna comprising:exciting a plurality of spaced-apart active radiating columns at respective column signal nodes, each column including a dual dipole element, so that the columns collectively define both first and second beamwidths, as well as first and second azimuth scan angles, corresponding to the respective first and second polarizations of the dual dipole elements, wherein the respective azimuth scan angles correlate to phase shifts between as feed node and each radiating column of the plurality of columns; varying the phase of signals to the plurality of columns with a plurality of continuously adjustable mechanical phase shifters to affect the respective azimuth scan angles with the phase shifts; and independently remotely controlling the phase shifters for the columns through respective independent remotely controlled drives of the phase shifters to independently vary the phase shifts between the respective column signal nodes.
  • 45. The method of claim 44, further comprising further defining at least one of the beamwidths and the azimuth scan angles by varying the power level of signals to the plurality of columns with a plurality of adjustable power dividers.
  • 46. A method of dynamically varying the beamwidth of an antenna comprising:receiving a receive signal from a feed node in a receive port of a first power divider; dividing the receive signal into first and second divided signals; communicating the first divided signal via a first transmit port of the first power divider to a receive port of a second power divider; communicating the second divided signal via a second transmit port of the first power divider to a receive port of a third power divider; dividing the first divided signal at the second power divider into third and fourth divided signals; communicating the third divided signal via a first transmit port of the second power divider to a receive port of a fourth power divider; communicating the fourth divided signal via a second transmit port of the second power divider to a first antenna element of a plurality of antenna elements; dividing the third divided signal at the fourth power divider into fifth and sixth divided signals; communicating the fifth divided signal to a second antenna element of the plurality of antenna elements; communicating the sixth divided signal to a third antenna element of the plurality of antenna elements; dividing the second divided signal at the third power divider into seventh and eighth divided signals; communicating the seventh divided signal via a first transmit port of the third power divider to a fourth antenna element of the plurality of antenna elements; and communicating the eighth divided signal via a second transmit port of the third power divider to a fifth antenna element of the plurality of antenna elements.
CROSS REFERENCE TO RELATED APPLICATION

This is a continuation-in-part of presently pending U.S. application Ser. No. 10/255,747, entitled “Dynamically Variable Beamwidth and Variable Azimuth Scanning Antennas,” which was filed by on Sep. 26, 2002, the disclosure of which is hereby incorporated by reference in its entirety.

US Referenced Citations (59)
Number Name Date Kind
2897460 LaRrosa Jul 1959 A
2961620 Sommers Nov 1960 A
2961622 Sommers Nov 1960 A
3005168 Fye Oct 1961 A
3081440 Augustine et al. Mar 1963 A
3114121 Jordan Dec 1963 A
3139597 French et al. Jun 1964 A
3181091 Augustine et al. Apr 1965 A
3440573 Butler Apr 1969 A
3656179 DeLoach Apr 1972 A
3742400 Friend Jun 1973 A
3938162 Schmidt Feb 1976 A
3946396 Smith et al. Mar 1976 A
3999182 Moeller et al. Dec 1976 A
4129872 Toman Dec 1978 A
4178581 Willey, Sr. Dec 1979 A
4314378 Fowler et al. Feb 1982 A
4425567 Tresselt Jan 1984 A
4602227 Clark et al. Jul 1986 A
4626858 Copeland Dec 1986 A
4916454 Bull et al. Apr 1990 A
5214436 Hannan May 1993 A
5281974 Kuramoto et al. Jan 1994 A
5311198 Sutton May 1994 A
5343173 Balodis et al. Aug 1994 A
5499005 Gu et al. Mar 1996 A
5504466 Chan-Son-Lint et al. Apr 1996 A
5512914 Hadzoglou et al. Apr 1996 A
5563610 Reudink Oct 1996 A
5629713 Mailandt et al. May 1997 A
5771017 Dean et al. Jun 1998 A
5798675 Drach Aug 1998 A
5801600 Butland et al. Sep 1998 A
5832389 Dent Nov 1998 A
H1773 Cheston et al. Jan 1999 H
5861844 Gilmore et al. Jan 1999 A
5889494 Reudink et al. Mar 1999 A
5905462 Hampel et al. May 1999 A
5936591 Yamasa et al. Aug 1999 A
5940030 Hampel et al. Aug 1999 A
5943016 Snyder, Jr. et al. Aug 1999 A
5949303 Arvidsson et al. Sep 1999 A
5974335 Talisa et al. Oct 1999 A
6037912 DeMarre Mar 2000 A
6070090 Feuerstein May 2000 A
6075424 Hampel et al. Jun 2000 A
6088003 Bassirat Jul 2000 A
6094165 Smith Jul 2000 A
6094166 Martek et al. Jul 2000 A
6097267 Hampel Aug 2000 A
6172654 Martek Jan 2001 B1
6181091 Heeren et al. Jan 2001 B1
6198455 Luh Mar 2001 B1
6246674 Feuerstein et al. Jun 2001 B1
6268828 Martek Jul 2001 B1
6317100 Elson et al. Nov 2001 B1
6323823 Wong et al. Nov 2001 B1
6333683 Hampel Dec 2001 B1
20040061653 Webb et al. Apr 2004 A1
Foreign Referenced Citations (1)
Number Date Country
55-102901 Aug 1980 JP
Non-Patent Literature Citations (1)
Entry
Jones, William T., “A Continuously Variable Dielectric Phase Shifter”, IEEE Transactions on Microwave Theory and Techniques, Manuscript received Nov. 16, 1970; revised Feb. 11, 1971, (Aug. 1971), pp. 729-732.
Continuation in Parts (1)
Number Date Country
Parent 10/255747 Sep 2002 US
Child 10/400886 US