The invention generally relates to adjustable belay optical systems and methods. In particular, the present invention relates to adjustable belay glasses.
Various multi-person activities include one stationary person controlling a rope that is attached to a second person who is ascending or descending a structure. The most common application is the activity of rock climbing, in which the stationary person is designated as the belayer and the ascending/descending person is designated as the climber. The belayer uses a belay device to feed and retract a rope that then extends above where it couples to the climber. The belay device is coupled to the belayer via a harness and the rope is likewise coupled to the climber via a harness. The act of belaying involves the belayer watching the climber and feeding or retracting the intercoupled rope through the belay device accordingly. The belayer must physically watch the climber to properly control the rope in a manner than allows the climber to efficiently ascend or descend the structure or rock face.
One of the major problems is that humans are not anatomically designed to look upward for long periods of time without straining or misaligning certain body parts. The prolonged act of looking upward by a belayer may result in a condition referred to as “belayer's neck”. Alternatively, a belayer may look away from the climber, compromising safety in an effort to prevent “belayer's neck”. One common solution to the “belayer's neck” problem is the use of prism-based glasses (hereinafter referred to as belay glasses). Belay glasses are analogous to conventional reading glasses in that they allow a user to look in a particular direction without moving their head. For example, belay glasses allow the belayer to see upward at a particular angle without necessarily requiring the belayer to tilt their head. A belayer may theoretically maintain a neutral neck position while continuously watching a climber, thus providing an optimal belay.
Although belay glasses have become widely adopted in the rock climbing industry, existing belay glasses suffer from a fundamental limitation that prevent optimal performance. It should be understood that belay glasses provide an additional field of view while obstructing part of the user's normal field of view (i.e. a belayer can still see peripherally around the belay glasses). Conventional belay glasses include a set of prisms mounted on a glasses frame such that the prisms are positioned in front of each user's eye. The prisms may be both 60° Bauerfeind prisms, meaning that a user looking horizontally will receive a field of view that is 30° below vertical. Unfortunately, the fixed field of view prevents optimal belaying in many circumstances. For example, modern rock climbing involves climbers ascending faces that vary significantly in steepness and the optimal belay position may vary in distance from the face. Therefore, a fixed angle which only displays a field of view that is 30° below vertical will inevitably force the belayer to either move their neck and potentially cause “belayer's neck”, stand in a suboptimal position in relation to climbing structure/face, and/or compromise the act of belaying in some other manner.
Therefore, there is a need in the industry for adjustable belay optical systems and methods.
The present invention relates to adjustable optical systems and methods. One embodiment of the present invention relates to a system for user-adjustable optical field of view alteration. The system includes a support member, an optical system, and an adjustment system. The support member releasably secures the system to a user's face, including a frame over the user's nose and two temples extending back from the frame over the user's ears. The optical system is positioned on the frame substantially in front of the user's eyes. The optical system displays an altered field of view to the user's eyes that is different that the direct field of view seen by the user. The adjustment system adjusts the altered field of view by rotating a portion of the optical system with respect to the support member about an axis of rotation.
Embodiments of the present invention represent a significant advance in the field of user-adjusted optical field of view alteration. Conventional belay glasses and reading glasses alter a user's field of view for minimizing neck strain but fail to provide adjustability and are therefore inherently limited in their application. A set of conventional belay glasses or reading glasses will only optimally alter the field of view for a particular situation rather than the entire activity. Since the act of rock climbing and belaying involve a wide variety of climbing surfaces and belay regions, a fixed field of view alteration will not permit a belayer to optimally watch the climber during ascents of faces that exceed a particular angle or in situations that require the belayer to stand closer to/further from the climbing surface. Likewise, reading glasses are only designed for a particular anatomical orientation in which a user lies/sits and reads a book without looking down.
These and other features and advantages of the present invention will be set forth or will become more fully apparent in the description that follows and in the appended claims. The features and advantages may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. Furthermore, the features and advantages of the invention may be learned by the practice of the invention or will be obvious from the description, as set forth hereinafter.
The following description of the invention can be understood in light of the Figures, which illustrate specific aspects of the invention and are a part of the specification. Together with the following description, the Figures demonstrate and explain the principles of the invention. In the Figures, the physical dimensions may be exaggerated for clarity. The same reference numerals in different drawings represent the same element, and thus their descriptions will be omitted.
The present invention relates to adjustable optical systems and methods. One embodiment of the present invention relates to a system for user adjustable optical field of view alteration. The system includes a support member, an optical system, and an adjustment system. The support member releasably secures the system to a user's face, including a frame over the user's nose and two temples extending back from the frame over the user's ears. The optical system is positioned on the frame substantially in front of the user's eyes. The optical system displays an altered field of view to the user's eyes that is different that the direct field of view seen by the user. The adjustment system adjusts the altered field of view by rotating a portion of the optical system with respect to the support member about an axis of rotation. Also, while embodiments are described in reference to belay glasses, it will be appreciated that the teachings of the present invention are applicable to other areas including but not limited to reading glasses and other activities which would benefit from an altered field of view.
The following terms are defined as follows:
Belay—the act of controlling a rope extending to another individual.
Belayer—the person performing the act of belaying.
Field of view—a restricted visual field within which a user may view. The term field of view is used throughout this application in reference to human optical viewing rather than any type of device or animal. Likewise, although human field of view is three dimensional, it will be appreciated that the field of view throughout this application in terms of a two-dimensional range. The system(s) of this application alter the vertical field of view orientation rather than a user's entire field of view (i.e. peripheral).
Altered field of view—an alternative field of view from that which the user's eyes see without neck movement. For example, if a user's neck is neutral, the user has a basic horizontal field of view in front of the user's eyes. An altered field of view would be a field of view oriented a specific angle up or down from the horizontal field of view of the user. Therefore, showing a user an altered field of view that is 30 degrees from vertical is altered 60 degrees from a user's horizontal field of view.
Anatomical reference vicinities—various anatomical terms are referenced on a user's face including but not limited to the face, nose, eyes, ears, etc. These terms are used for reference purposes only, and nothing herein constitutes any claim to human nature. In the claims, each anatomical term is referenced with the term “vicinity” to indicate that the system is disposed in relation to an anatomical region but does not in any way claim the human region.
Vertical and Horizontal—all orientations used throughout the application are in reference to a user's visual perception. Therefore, a vertical orientation is oriented vertically with respect to a user's eye (i.e. up-down) and a horizontal orientation is oriented horizontally with respect to a user's eye (i.e. side-side).
Axis of rotation—an axis about which one member rotates about another member.
For example, in the description below, various components are rotatable about other components about an axis of rotation.
Pivotable coupling—a coupling in which the axis of rotation is disposed substantially on one side of a rotating member and which is permitted to rotate towards and away from a fixed member. In contrast, a rotatable coupling is broader than a pivotable coupling because it does not require any proximity between the axis of rotation and the rotating member.
Reference is initially made to
The system 100 further includes an optical system 130 which receives and displays an altered field of view for the user. The optical system 130 may includes two prisms 132 and two mirrors 134. It is well known that prisms receive and redirect light via reflection and refraction. In accordance with embodiments of the present invention, the optical system 130 and in particular the prisms 132 are configured to alter the field of view seen by the user. The prisms 132 and mirrors 134 operate in conjunction to provide an adjustable alteration of the field of view seen by the user. The mirrors 134 may replace or augment a reflective bottom surface of the prism and are configured to pivotably rotate away from the prims to adjustably alter the field of view displayed to the user. The rotation of the mirrors 134 with respect to the prisms 132 will be further described below in reference to the adjustment system 140. Although illustrated as two prisms 132 and two mirrors 134, it will be appreciated that alternative embodiments may utilize a single prism and/or a single mirrors as will be described in the alternative embodiments below. The optical system 130 is coupled to the frame 122 of the support member 120 so as to be disposed in front of each of the user's eyes. The two prisms 132 and two mirrors 134 are balanced and matched to minimize aberrations which may otherwise occur if discrepancies are present between the two mirrors 132 and prisms 134. Various alternative or optional balancing configurations are described below.
Various types of prisms and mirrors may be used in accordance with the present invention, but the illustrated embodiment includes a standard 30/60/90 prism and a set of mirrors. The region between the prisms 132 and mirrors 134 is filled with air in the illustrated embodiment, but it will be appreciated that alternative liquids or gases may be used to minimize aberrations. Likewise, the mirrors 134 and one or more of the surfaces of the prisms 132 may include optical coatings for purposes of minimizing reflections, glare, aberrations, etc.
The system 100 includes an adjustment system 140 configured to adjust the altered field of view displayed to the user. The illustrated adjustment system 140 may include a lever 142, a mirror holder 144, a bottom cap 146, and an axis of rotation 148. The adjustment system 140 is configured to allow a user to adjust the pivotal angle between the mirrors 134 and the prisms 132 so as to adjust the field of view displayed to the user. In particular, the mirrors 134 are coupled to a mirror holder 144 which may be supported by a bottom cap 146. The mirror holder 144 is rotatably, and in particular, pivotably coupled to the frame 122 about the axis of rotation 148. The bottom cap 146 may be fixably coupled to the frame 122 so as to support the mirror holder 144. This configuration allows the mirrors 134 to be rotated/pivoted away from the prisms 132 about the axis of rotation 148. It will be appreciated that a particular angle is formed between the mirrors 134 and the prisms 132 since the axis of rotation 148. As discussed in reference to
Reference is next made to
Reference is next made to
Various non-illustrated alternative or optional mechanisms may be incorporated into the adjustment system 140 to permit the user to selectively control the mirror-prism angle. For example, various direct, indirect, magnetic, geared, electrical, independent, and dependent mechanisms may be used independently or in combination with one or more of the other mechanisms. Likewise, various non-illustrated prism and mirror systems may be incorporated into the optical system 130 to minimize aberrations or distortion. For example, a sealed region between the mirror(s) and prism(s) may incorporate a liquid or gas that is matched to the type of glass used in the prism. Various non-illustrated mirror alignment systems or mechanisms may also be incorporated into the optical system 130 to minimize aberrations or distortion. The user may be allowed to manually adjust each mirror-prism angle independently. Various types of couplings could extend between the mirrors to permit rotation and maintain consistent alignment. The surfaces of the prisms 132 may also include various coatings or curvatures to minimize aberrations or distortion. Various non-illustrated support member configurations may also be incorporated in accordance with embodiments of the present invention for particular applications. Various peripheral blocking structures may be incorporated if the user's peripheral vision is intended to be blocked. The temples or ear pieces may be configured to fold or bend toward the frame to facilitate compact storage. Finally, a set of sunglass lenses, magnifying lenses, or corrective lenses may optionally couple to the prisms to prevent glare.
It should be noted that various alternative system designs may be practiced in accordance with the present invention, including one or more portions or concepts of the embodiment illustrated in
This application claims priority to U.S. provisional application Ser. No. 65/753,787 filed 10/31/18, the contents of which are incorporated by reference.