Information
-
Patent Grant
-
6354561
-
Patent Number
6,354,561
-
Date Filed
Tuesday, June 1, 199925 years ago
-
Date Issued
Tuesday, March 12, 200222 years ago
-
Inventors
-
-
Examiners
- Nguyen; Nam
- Luk; Emmanuel S.
-
CPC
-
US Classifications
Field of Search
US
- 425 150
- 425 195
- 425 2
- 249 155
- 249 158
-
International Classifications
-
Abstract
The invention relates to an adjustable casting mold with a plurality of axially displaceable molding pins. Each molding pin has a self-locking threaded mechanism by way of which the molding pin is supported on a carrier plate. The carrier plates on which in each case a plurality of adjustable molding pins are mounted are, in turn, connected to a molding-box housing member to be adjustable in a different manner perpendicular to the mold parting surface.
Description
The invention relates to an adjustable casting mould and a device for adjusting the mould surface thereof.
BACKGROUND OF THE INVENTION
Known casting moulds include on the one hand those in which a sand moulding box is prepared each time a workpiece is cast. These sand moulding boxes are well suited for the small-batch manufacture of products. However they have drawbacks concerning the disposal of the used moulding sand. For example, the process of casting four propeller blades for a marine propeller entails 80 m
3
of moulding sand which is to be disposed of. These problems can only be partly solved by reprocessing used moulding sand. Reprocessing is also expensive. The preparation of the sand moulding boxes is labour-intensive and time-consuming.
In addition, moulds which can be used many times are known for the large-batch manufacture of castings which are not overlarge. However these casting moulds are very expensive to produce, which means that it is out of the question to use them for small-batch production.
In order to produce a casting mould with an adjustable mould surface, DE 41 12 736 C2 has already proposed rod-shaped moulding pins which can be moved axially relative to one another so as to be clamped together in a frame, with the end faces of the variably adjusted moulding rods predetermining a staircase curve mould surface of adjustable geometry.
One disadvantage of an adjustable casting mould of this kind lies in the fact that the various moulding pins cannot be firmly fixed in position until they have all been brought into the desired axial position. The moulding pins may move under disturbing influences until they are thus fixed. Moreover, the process of fixing the positions of the moulding pins by clamping the entire pack of moulding pins together, in which case they are just fixed through pure frictional engagement, is not without problems: Firstly, the clamping forces under casting conditions may differ considerably from those under adjustment conditions on account of differing thermal expansion of the moulding pins and clamping frame. Secondly, the clamping forces must be cleanly transmitted from one moulding pin to the adjacent moulding pin in the moulding pin pack. This means that the side faces of the moulding pins must lie exactly flat against one another. The moulding pins must therefore be very accurately machined and, if re-used, adequately cleaned. However it is impossible to produce adjustable casting moulds for very large workpieces even if appropriate precautionary measures are observed, as the moulding pins—which are only held by frictional engagement—cannot take relatively high loads in the axial direction and may move in uncontrolled fashion under the effect of the weight of relatively large quantities of molten metal.
SUMMARY OF THE INVENTION
The object of the invention is therefore to develop an adjustable casting mould according to the preamble of claim
1
such that the position of the individual moulding pins is more securely fixed, even if the mould has large dimensions.
This object is achieved according to the invention by an adjustable casting mould.
The individual moulding pins of this mould are each supported by an associated stanchion which is adjustable in length. As each moulding pin has its own support, which is independent of the support of adjacent moulding pins, the concept according to the invention enables casting moulds of any desired size to be produced without any problems.
The concept according to the invention also enables groups of moulding pins to be assembled into sub-units which can be handled and transported without any risk of the adjusted mould parting plane changing, while still ensuring that the mould surface is substantially continuous, so as to be free from joints, after the various moulding pin groups have been positioned side by side.
Advantageous developments of the invention are presented in subclaims.
The use of a screw drive to support the moulding pins is of advantage with regard to a simple, precise adjustment of the end faces of the moulding pins. This adjustment may also be performed in a particularly simple manner by using a robot. A stanchion of this kind, adjustable in length, is also particularly insensitive to high temperatures.
The development of the invention is of advantage with regard to a good, reliable alignment of the moulding pins irrespective of their axial position.
The development of the invention ensures that the screw drive which is used to adjust a moulding pin is protected against high temperatures under casting conditions.
If the threaded hole or spindle nut of the screw drive is provided on the guide section, the screw drive can be adjusted particularly easily to the head, which always occupies the same axial position, of the adjusting bolt.
The development of the invention has the advantage of the position of the mould surface not changing significantly if the temperature prevailing during the casting operation differs from the temperature which was taken as a basis when predetermining the desired positions for the various moulding pins.
The development of the invention enables the initially stepped mould surface to be converted into a smooth mould surface through mechanical reworking.
The development of the invention enables the material of which the volume of the moulding pins consists to be selected so as to be particularly favourable with regard to its thermal properties or machinability, while still guaranteeing that the moulding pins are mechanically held together as desired. If the sheath is thin, it does not represent a high resistance for the machining tool should any reworking of a stepped mould surface by machining be carried out.
If groups of moulding pins are provided on carrier plates, these groups of moulding pins can be adjusted on easily surveyed, small devices, particularly using automatic machines. The use of groups of carrier plates bearing moulding pins is also of advantage with regard to easily fastening the moulding pins in the moulding box and with regard to providing moulding boxes of different sizes using uniform basic components. Because the carrier plates are in turn mounted on the frame of the moulding box so as to be adjustable in the axial direction of the moulding pins, it is also unnecessary to provide an excessively long axial displacement path for the individual moulding pins, although it is still possible to produce large castings having different dimensions parallel to the longitudinal axis of the moulding pins.
The development of the invention is of advantage with regard to easily mounting the carrier plates on the moulding box frame such that they can bear loads.
A casting mould enables the individual carrier plates and the moulding pin groups borne by them to be very easily connected to the moulding box frame, in which case the positioning of the moulding pin groups flush side by side automatically takes place in two directions perpendicular to one another (in the first instance through abutment, secondly through the spacing of the rails).
The development of the invention enables sub-regions of the mould surface, in which different demands are made on the variability of the mould surface, to be formed economically. Thus edge regions of the moulding box parting plane, which only serve to close the mould cavity, can in the extreme case simply be closed by carrier plates bearing just one cuboid moulding pin. These moulding pins then only need to be adjusted to the mould parting plane, this being the only adjustment operation required. Carrier plates which are provided with sprue channels and vent channels may then also be mounted in such edge regions of the moulding box.
The development of the invention is also of advantage with regard to easily introducing the moulding pins into the moulding box and easily removing them from the latter again.
The development of the invention enables the temperature at the moulding box frame and therefore at the mechanism for suspending and bearing the moulding pins to be maintained at a low level.
A casting mould has a substantially smooth mould surface. Where large casting moulds are concerned, the end faces of the moulding pins are preferably machined after the axial position of the moulding pins of a carrier plate has been adjusted in each case separately for such a moulding pin group. CNC machines with long traversing paths are therefore unnecessary. However, where such machines are available, it is also possible to rework the stepped surfaces formed by the moulding pin end faces to form a mould surface which is smooth throughout at the actual casting mould.
An uninterrupted mould surface can also be achieved by smearing the stepped surface formed by the moulding pin end faces with a heat-resistant mouldable material, whereby a substantially continuous mould surface is likewise obtained. If a casting mould thus smeared is re-adjusted, the moulding material applied to the end faces of the moulding pins will generally separate automatically if the moulding pins are displaced unequally. This may be further assisted by spraying the moulding pin end faces with a parting compound before the mouldable material is applied.
The development of the invention is of advantage with regard to minimising the weight of the moulding pins and/or their displacement mechanism, which facilitates handling of the moulding pins and entire moulding pin groups. If an end section of the moulding pins remains solid in this case, it is also possible to machine the end faces of such moulding pins to produce a continuous mould surface.
The development of the invention enables the end faces of the individual moulding pins to be automatically adjusted to the desired mould surface. This is of advantage in particular where very large moulds are concerned and for the frequently varying manufacture of different products.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention is illustrated in detail in the following on the basis of embodiments and with reference to the drawings, in which:
FIG. 1
is a vertical section through a casting mould for a propeller blade;
FIG. 2
is a horizontal section through the casting mould shown in
FIG. 1
along the intersection line II—II in the latter;
FIG. 3
is a front view of two adjacent moulding pin units of the casting mould shown in
FIGS. 1 and 2
;
FIG. 4
is an enlarged side view of a moulding pin unit in which two moulding pins are reproduced in a completely inserted position and one of maximum extension, respectively;
FIG. 5
is a section through the moulding pin unit shown in
FIG. 4 and a
part of an adjacent moulding pin unit along the intersection line V—V of
FIG. 4
;
FIG. 6
is a plan view onto the top side of the moulding pin unit shown in
FIG. 4
;
FIG. 7
is a diagrammatic plan view onto a moulding box of the casting mould shown in FIG.
1
and the mould surface predetermined by this;
FIG. 8
is a diagrammatic representation of a device for automatically positioning the moulding pins of a moulding pin unit in the axial direction and
FIG. 9
is a longitudinal section through a modified moulding pin and its displacement mechanism.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1
reproduces a casting mould for a propeller blade of a marine propeller which consists of a lower moulding box designated as a whole by
10
and an upper moulding box designated as a whole by
12
.
The two moulding boxes
10
,
12
are basically of the same structure, so that it is sufficient to describe one of the moulding boxes in detail. In order to present a clearer picture, reference numbers for components of the two moulding boxes
10
,
12
have only been entered once for one of the moulding boxes.
The moulding boxes each have a bearing box part
14
, the outside of which is fitted with bearing bolts
16
, from which cable straps can be suspended. The box parts
14
also have straps
18
adjacent to the mould parting plane, at which straps the two moulding boxes
10
,
12
can be joined together by means of bolts
20
and nuts
22
in a separable manner.
The inner surfaces of the box parts
14
are covered by heat-insulating linings
24
. Vertical supports
26
extend through the latter, which supports are fastened to the bottom or covering wall of the moulding box part, are arranged in regularly spaced rows and each of which bears rails
28
. The cross-sectional shape of the rails is similar to that of an I-beam. As can be seen from
FIG. 3
, running walls
30
are welded onto the vertical webs of the rails
28
. These walls co-operate by way of their top side and underside with vertically spaced running pins
32
(or wheels), which are part of a running head designated as a whole by
34
. The latter also includes a fastening plate
36
, which is provided with locating openings
38
.
Mounting sections
42
of moulding pin units, which are designated as a whole by
44
, can be fastened to the latter by means of locating pins
40
, for which purpose the mounting sections
42
are provided with a set of locating openings
46
, various of which can selectively be moved into a position of alignment with the locating openings
38
. The moulding pin units
44
can thus be connected to the running heads
34
in different vertical positions and suspended via these from the rails
28
.
As shown in
FIGS. 1 and 2
, the spacing of the rails
28
is exactly equal to the transverse dimension of a moulding pin unit
44
. If moulding pin units
44
are inserted in succession perpendicularly to the plane of the drawing in the rails
28
, lying side by side and extending perpendicularly to the plane of the drawing in
FIG. 3
, a mould surface curved in stepped fashion in two directions can be produced according to the different vertical positions of the moulding pin units. The lower end faces at the back of the moulding pin units lying in the plane of the drawing have been omitted from
FIG. 1
to provide a clearer view. Of course these end faces advance towards the edge of the moulding boxes and in the same way towards the mould parting plane perpendicularly to the plane of the drawing, as represented for the lateral direction in FIG.
1
.
In order that the rails and running heads
34
, which position the moulding pin units, do not need to absorb large tilting moments under casting conditions (in this case the clearance between the running pin
32
and the running wall
30
would have to be very small, which would have a detrimental effect on the displaceability of the running heads
34
), the circumferential walls of the box parts
14
also bear lateral support rails
48
, which act in a region of the edge moulding pin units
44
which is adjacent to the fastening plate
36
or a region which is adjacent to the end faces of these moulding pin units. These support rails may be preloaded by springs or capable of being advanced towards the interior of the box by tension screws which are not shown in detail in the drawings.
Further lateral support rails
50
engage in the outside of the edge rails
28
. They are in turn borne by the box part
14
.
The interior of the casting mould is divided into two sections in the embodiment considered here: One section, which is located on the left in
FIG. 2
, contains the actual moulding space, which has a finely stepped mould surface complying with the product surface and is formed by a plurality of moulding units
44
having small dimensions, as described above. A mould section located on the right in
FIG. 2
contains those parts of the mould cavity relating to the sprue. This section of the casting mould does not require a precisely predetermined mould surface, so that moulding pin units
52
whose edge dimensions are in each case twice the edge dimensions of the moulding pin units
44
are used here. In the embodiment under consideration here rails
54
, on which the moulding pin units
52
are mounted in a manner similar to that described in detail above for the moulding pin units
44
in connection with the rails
28
, are mounted in a direction perpendicular to the direction in which the rails
28
extend. The moulding pin units
52
can be fitted and removed through a pivotable door provided in a side wall of the box part.
The moulding pin units
52
have predominantly one-piece, cuboid moulding pins
58
, which contact one another with their end faces at the mould parting plane. Only the three central moulding pins of the row of moulding pin units
52
located on the left in
FIG. 2
are formed with sprue channels and distribution channels, which are not shown, for molten metal, these leading into the moulding space
60
defined by the moulding pin units
44
(cf. FIG.
1
).
The result of mounting the moulding pin units
44
on the rails
28
with their locating openings
46
aligned with the locating openings
38
in differing positions is a relatively roughly graduated stepped mould surface
62
, as shown in FIG.
1
. In order to enable the mould surface
62
to be more precisely adjusted to a desired workpiece surface, the moulding pin units
44
each comprise a plurality of individual moulding pins
64
which are arranged in the form of a matrix and can be displaced independently of one another in the axial direction, as described in greater detail in the following. The step between adjacent moulding pins
44
, which is large in the figure, can thus be broken down into a plurality of smaller steps between adjacent moulding pins
64
. This results in a precise approximation of the mould surface
64
to the workpiece contour, as indicated in the right-hand part of FIG.
3
.
The moulding pins
64
have (cf.
FIG. 4
) a core
66
which has a square cross section and is surrounded by a sheath
68
of just a slight wall thickness (its wall thickness is exaggerated in
FIG. 4
just for illustration purposes). The core
66
consists of a material which only has a low coefficient of thermal expansion, at least in the temperature range occurring at the moulding pins under casting conditions, and preferably only a low coefficient of thermal expansion in the entire temperature range between ambient temperature and casting temperature. Graphite, for example, as used to produce electrodes, is a material of this kind. Another material which is suitable as regards thermal and mechanical properties is wood. However graphite is preferred, as this can easily be moulded industrially into rods of the desired geometry using the technology developed for graphite electrodes.
The graphite cores
66
are joined to the sheath
68
via transverse pins
70
such that they can be separated. The sheath
68
is joined to an inner telescopic part
74
via a weld
72
, and an insulating piece
76
is arranged in the last facing end section of the sheath
68
in order to thermally isolate the telescopic part
74
and the graphite core
66
.
The inner telescopic part
74
cooperates with an outer telescopic part
78
, which is likewise cylindrical and the upper end of which is welded to a carrier plate
80
. The inner telescopic part
74
and the outer telescopic part
78
together form a telescopic guide. A spindle nut
82
is welded into the upper end of the inner telescopic part
74
. This co-operates with an adjusting bolt
84
, the upper end of which bears a bearing disc
86
co-operating with the underside of the carrier plate
80
. Together with a head
88
of the adjusting bolt
84
, the bearing disc forms a radial/axial bearing. By turning the adjusting bolt
84
of a moulding pin
64
, the end face of the latter can therefore be easily and precisely displaced in the axial direction between a completely inserted (left-hand half of
FIG. 4
) and a completely extended (right-hand half of
FIG. 4
) position.
The pitch, the profile and the fit of the thread of the adjusting bolt
84
and the spindle nut
82
, as well as the material of the latter two parts, are selected such that the screw drive formed by them is self-locking under all casting conditions under which the casting mould is to be used, in the load-free state and under the shocks to which the casting mould is exposed.
As is obvious from the drawings, the moulding pins
64
each have a square cross section in the embodiment under consideration here, and each moulding pin unit
44
comprises a grid arrangement of 10×10 moulding pins and is therefore in turn likewise square.
Precise adjustment of the contour of a mould surface
62
can thus be carried out by displacing the various moulding pins
64
and rough adjustment of the contour of a mould surface
62
by locating the individual moulding pin units
44
at the associated running heads
34
. It is thus also possible to produce workpieces whose surfaces vary considerably in the vertical direction with this limited displacement path of the individual moulding pins
64
.
FIG. 7
is a diagrammatic view of the profile of a propeller vane
90
for a marine propeller. The moulding pins
64
of all moulding pin units lying outside of the vane contour are fully advanced to produce this vane. The moulding pin units used here may alternatively also be simplified moulding pin units which simply comprise a single graphite block which is dimensioned such that the end face of the block lies in the mould parting plane when the moulding pin unit is appropriately located. As regards the moulding pin units
44
which are intersected by the peripheral contour of the propeller vane
90
or lie within this, the individual moulding pin units
44
are located and the moulding pin end faces axially adjusted so as to obtain a finely stepped mould surface which lies on the outside of the desired workpiece surface along its entire extent. The moulding pin units indicated by broken lines in
FIG. 7
may again be formed by single-block moulding pin units, in the case of which the end faces of the blocks lie in the mould parting plane. Some of these last-mentioned moulding pin units are machined so as to produce a sprue channel.
The moulding boxes adjusted as described above are assembled to cast a workpiece and separated from one another again once the workpiece has solidified. The removed workpiece has a finely stepped surface from which just small quantities of material need to be removed by cutting in order to achieve the desired surface.
In a modification of the embodiment described above the surface of the individual moulding pin units may additionally be machined with a multiaxis CNC milling machine following the axial adjustment of the moulding pins
64
, so that the end face of a moulding pin unit corresponds with a tolerance of 0.1 to 0.2 mm in practice to an associated region of the desired workpiece surface. After being inserted in the box parts
14
, the moulding pin units
44
thus machined then form a smooth mould surface
62
which closely approaches the desired workpiece surface.
If long-stroke multiaxis CNC machines are available, the shaping of the mould surface
62
by re-milling can also be carried out after the pre-adjusted moulding pin units
44
have been inserted in the box parts
12
and
14
.
In a further modification a continuous mould surface can also be achieved by smoothing the finely stepped mould surfaces obtained after fitting pre-adjusted moulding pin units
44
into the box parts
14
of the moulding boxes
10
,
12
with a pasty material (e.g. graphite slurry), e.g. using rubber scrapers or similar. A very good approximation of the mould surface
62
to the desired workpiece surface is thus obtained, although the moulding pins
64
remain unchanged.
A casting mould produced with the use of graphite moulding pins, as described above, can be used for the sequence casting of a relatively small number of workpieces, e.g. for casting three to five propeller vanes for a marine propeller. The moulding pin units can continue to be used afterwards to produce casting moulds for other workpieces.
The axial adjustment of the moulding pin end faces can be automatically carried out in a simple manner and allowing for individual wear of the moulding pins with a device as reproduced diagrammatically in FIG.
8
.
A C-shaped bow part
92
can be displaced by coordinate drives
94
,
96
,
97
, which are only indicated diagrammatically, in the x, y and z directions. A gap sensor
98
, which is borne by the lower arm of the bow part
92
, can be positioned below the end faces of the various moulding pins
64
of a moulding pin unit
44
one after the other through displacement in the x and y directions. This is carried out under the control of a control unit
100
, which operates subject to a master control
102
. The upper arm of the bow part
92
bears a boss
104
, in vertical alignment with the gap sensor
98
, which can be turned through predetermined angles in one or the other direction by a servomotor
106
.
The servomotor
106
is controlled by a control unit
108
, which receives the output signal of the gap sensor
98
at a first input and a desired position signal, provided by a mould surface memory
110
, for the end face of the moulding pin under consideration at a second input. A set of data corresponding to the finely stepped mould surface
62
is stored in the mould surface memory
110
. The mould surface memory
110
is loaded via an interface associated with the master control
102
according to data derived from CAD data for the workpiece to be produced (provision of overdimension required, step formation).
The mould surface memory
110
is on the one hand addressed according to the subsequent position of the moulding pin unit
44
in the mould surface
62
. For this purpose a read head
112
reads a machine-readable coding
114
applied to the side of the carrier plate
80
. This forms a partial address for the mould surface memory
110
. The other address parts were formed by the signals which correspond to the x and y positions of the bow part
92
and which are delivered by the control unit
110
to other address terminals of the mould surface memory
110
. The mould surface memory
110
thus provides a desired position signal corresponding to the desired position of the end face of the moulding pin which lies directly before the gap sensor
98
.
In a modification of the embodiment described above the operation can also be carried out with moulding pin units
44
which are not initially individualised by a coding, and the read head
112
can be replaced by a write head, e.g. an ink-jet write head, which writes an instruction on the carrier plate
80
as to where the moulding pin unit
44
should be fitted in the box part, e.g. a specification “third rail, sixth position”. In the case of the y-displacement of the carrier plate, such man-readable information can be applied during the adjustment of the moulding pin row adjacent to the write head. It is also possible to alternatively or additionally write the information on the carrier plate in machine-readable form.
In the embodiment according to
FIG. 9
the same reference numbers have again been given to those components involved in mounting the moulding pins which have already been discussed in terms of their equivalent functions with reference to
FIGS. 1
to
4
.
A graphite moulding pin
64
of short axial construction has a sleeve-shaped recess
116
, by means of which it is inserted directly in the end of the inner telescopic part
74
and secured therein by the pin
70
. The adjusting bolt
84
is formed as a hollow bolt and comprises radial feed openings
118
in its section which lies in the carrier plate
80
. These openings communicate via a ring groove
120
, which has a flow cross section which is large in comparison with the total area of the feed openings
118
, with a feed channel
122
extending in the longitudinal direction of the plate and intersecting the successive ring grooves of a row of moulding pins.
The axial channel
124
formed in the adjusting bolt
84
leads freely into the telescopic part
74
. The spindle nut
82
is formed with a plurality of axial passages
126
distributed in the circumferential direction, and waste air openings
124
, distributed in the circumferential direction, are provided in the upper end section of the telescopic part
78
.
The feed channels
128
of successive moulding pin units
44
are thus connected when the latter are brought into abutment in a rail
28
. If the ends of the feed channels
128
associated with the various rails
28
are connected to a compressed-air source, compressed air will flow through the channels
124
of the various adjusting bolts
84
into the interior of the inner telescopic part
74
, be reflected by the rear end face of the graphite moulding pin
64
and flow via the passages
126
into the space above the moulding pins
64
lying next to one another in abutment so as to be fluid-tight. The waste cooling air can flow off through openings, which are not shown in the drawings, provided in the side walls of the box parts
14
.
In the embodiment according to
FIG. 9
the moulding pins
64
are not surrounded by a sheath and therefore alone form the mould surface
62
. This is of advantage with regard to particularly easy precision-machining of the mould surface. The mould can be restored to a new state with just a little waste by replacing the moulding pins, which are only of a low volume.
In the embodiment according to
FIG. 9
the moulding pin
64
also has greater radial dimensions than the telescopic parts
74
,
78
. This is of advantage with regard to reducing the number of telescopic guides and screw drives required overall, if a somewhat rougher graduation of the mould surface is acceptable.
In the embodiments described above a threaded spindle and a spindle nut co-operating with the latter in each case formed a self-locking screw drive for adjustably supporting a moulding pin or a moulding pin group. Other stanchions which are adjustable in length and which may also be used when the support has a good thermal shield against the mould cavity are hydraulic or pneumatic working cylinders with a locking device or other linear drives, e.g. racks moved by pinions.
Claims
- 1. Adjustable casting mould, with a box part and with a plurality of abutting moulding pins which define a mould surface and are borne by the box part, wherein the moulding pins are each supported by an extensible stanchion that adjusts said plurality of moulding pins in the axial direction and wherein at least one mould surface comprises a plurality of carrier plates, each bearing a group of extensible stanchions, said carrier plates in turn being fastened to the box part with means for adjusting said carrier plates in the longitudinal direction of the pins.
- 2. Casting mould according to claim 1, wherein the extensible stanchion comprises a self-locking screw drive.
- 3. Casting mould according to claim 1, wherein the moulding pins are each connected to a guide section which runs in a stationary guide part.
- 4. Casting mould according to claim 3, wherein the guide sections are each connected to the moulding pins via an insulating piece.
- 5. Casting mould according to claim 3, wherein said extensible stanchions each comprise an adjusting bolt, which co-operates with a spindle nut borne by the guide section, and extends through the guide part, and wherein the adjusting bolts are each connected via an axial/radial bearing to a carrier plate of said carrier plates, which in turn is mounted on the box part.
- 6. Casting mould according to claim 1, wherein the moulding pins are made of a material with a low coefficient of thermal expansion.
- 7. Casting mould according to claim 1, wherein the moulding pins are made of a material which is easily machined as compared to metal.
- 8. Casting mould according to claim 6, wherein the moulding pins are surrounded at least partly by a sheath comprising a heat-resistant material which is mechanically strong.
- 9. Casting mould according to claim 1, wherein said means for adjusting said carrier plates are connected to mounting sections comprising a plurality of locating openings, the latter being spaced in the longitudinal direction of the pins, and comprised a fastening part borne by the box part via locating pins.
- 10. Casting mould according to claim 1, wherein the carrier plates are connected to running heads which run in rails borne by the box part.
- 11. Casting mould according to claim 1, comprising moulding pin units of different sizes in different regions of the mould, which units each are comprised of a carrier plate of said carrier plates and said plurality of moulding pins or a single moulding pin borne by the carrier plate.
- 12. Casting mould according to claim 1, wherein the box part comprises a door in at least one of the side walls of the box part.
- 13. Casting mould according to claim 1, wherein the box part comprises a heat-resistant lining of low thermal conductivity on the inside of the box part.
- 14. Casting mould according to claim 1, wherein the end faces of the moulding pins are machined to form a continuous mould surface.
- 15. Casting mould according to claim 1, wherein a stepped surface formed by the moulding pin end faces is at least partly coated by a heat-resistant mouldable material to form a continuous mould surface.
- 16. Casting mould according to claim 1, wherein the moulding pins or the extensible stanchions carrying said moulding pins are formed at least in sections as hollow parts.
- 17. Casting mould according to claim 16, wherein the hollow parts are connected to a supply line for coolant.
- 18. Device for adjusting the mould surface of a casting mould according to claim 1, comprising a gap sensor, which is movable in a reference plane and produces an output signal associated with the gap between the end face of the moulding pin positioned in front of it at the time and the reference plane, a mould surface memory, which is addressed according to the position of the gap sensor, a control unit, which receives the output signals from the gap sensor and the mould surface memory, and a drive unit, which is controlled by the control unit, is coupled to the gap sensor to move with it in relation to the moulding pin arrangement and acts on a screw drive of the moulding pin positioned in front of the gap sensor, as a result of all of which the end face of the moulding pin is moved into a position corresponding to the desired point of the workpiece mould surface.
- 19. Casting mould according to claim 6, wherein the moulding pins are made of one of graphite and wood.
- 20. Casting mould according to claim 7, wherein the moulding pins are made of one of graphite and wood.
- 21. Casting mould according to claim 8, wherein the sheath comprises steel.
- 22. Casting mould according to claim 15, wherein a parting compound is disposed in between said heat-resistant mouldable material and said surface of the moulding pins.
Priority Claims (1)
Number |
Date |
Country |
Kind |
196 37 930 |
Jul 1996 |
DE |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/EP97/03504 |
|
WO |
00 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO98/02262 |
1/22/1998 |
WO |
A |
US Referenced Citations (12)
Foreign Referenced Citations (1)
Number |
Date |
Country |
WO8602877 |
May 1986 |
WO |