The present disclosure relates generally to ceiling panels, for example, suitable for forming a ceiling surface to cover the functional or living space of a room. The present disclosure relates more particularly to an adjustable ceiling panel for attachment to a ceiling grid, a method of making such a ceiling panel and a ceiling system that includes such a ceiling panel.
Many ceiling systems have several different well-known configurations. One common system is in the form of a ceiling surface that is formed by ceiling tiles supported by a metal grid. The grid is suspended below a structural ceiling of a room to create a plenum, or air space, between the panels and the structural ceiling. The lower sides of the panels are viewed from below as a dropped ceiling of the room. A similar system uses larger panels, such as gypsum panels, that are attached to the grid and form a continuous ceiling surface below the plenum. Further, some systems include baffles that hang down vertically from either a grid or directly from the structural ceiling. Such baffles may be used, for example, for sound attenuation.
These common ceiling systems are both attractive and functional, but they provided limited design choice. Many of these ceiling systems vary only in their color or texture, and therefore provide a very familiar aesthetic. If an alternative design aesthetic is desired, the builder or architect may consider a custom ceiling installation the only available option.
Accordingly, the present inventors have determined that a ceiling system that provides an alternative configuration to common installations would be desirable to architects and builders.
In one aspect, the present disclosure provides a ceiling panel comprising:
a panel body including an upper surface, a lower surface, a first end, a second end, a first lateral side, and a second lateral side; and
a bracket extending upward from the upper surface of the panel body and offset from a center of gravity of the panel body toward the first end, the bracket including an upper fastener configured to attach the ceiling panel to a frame element of a ceiling grid,
wherein an angle of the panel body is adjustable with respect to the attachment of the upper fastener of the bracket.
In another aspect, the disclosure provides a method of making a ceiling panel according to the disclosure, the method comprising:
forming the panel body;
forming the fin of the lower fastener of the bracket on the upper surface of the panel body; and
attaching the upper fastener of the bracket to the fin of the lower fastener of the bracket.
In another aspect, the disclosure provides a ceiling system comprising:
a ceiling grid formed by a plurality of frame elements including a first frame element;
a first ceiling panel according to the disclosure attached to the first frame element; and
a second ceiling panel according to the disclosure attached to the first frame element.
Additional aspects of the disclosure will be evident from the disclosure herein.
The accompanying drawings are included to provide a further understanding of the methods and devices of the disclosure, and are incorporated in and constitute a part of this specification. The drawings are not necessarily to scale, and sizes of various elements may be distorted for clarity. The drawings illustrate one or more embodiment(s) of the disclosure, and together with the description serve to explain the principles and operation of the disclosure.
As described above, the present inventors have noted that conventional ceiling panel systems have limited variation in their design. The present inventors have determined that a ceiling system that provides an alternative configuration to common installations would be desirable to architects and builders.
Accordingly, one aspect of the disclosure is a ceiling panel including a panel body and a bracket configured to attach the ceiling panel to a frame element of a ceiling grid. The panel body includes an upper surface, a lower surface, a first end, a second end, a first lateral side, and a second lateral side. The bracket extends upward from the upper surface of the panel body and is offset from a center of gravity of the panel body toward the first end. The bracket including an upper fastener configured to attach the frame element. Further, an angle of the panel body is adjustable with respect to the attachment of the upper fastener of the bracket.
The description of the bracket as being laterally offset from the center of gravity of the panel body, as set forth herein, means that the center of the bracket is offset from the center of gravity of the panel body. For example, in some embodiments, the entire bracket is disposed at a distance from the center of gravity of the panel body. In other embodiments, a portion of the bracket overlaps with the center of gravity of the panel body, but the center of the bracket is spaced from the center of gravity of the panel body. For example, in some embodiments, the center of the bracket is substantially spaced from the center of gravity of the panel body, such as a separation of at least one inch.
Such a ceiling panel is shown perspective view in
Bracket 140 includes an upper fastener 142 that is configured to attach to the frame element so as to secure the ceiling panel 110 to the frame element. Moreover, the orientation of ceiling panel 110 is variable so as to allow for different configurations of ceiling panel 110 with respect to the frame element. In particular, the angle of panel body 112 is adjustable with respect to the upper fastener 142 of bracket 140. Accordingly, bracket 140 may be attached to the frame element in a particular configuration while the angle of the panel body 112 can be adjusted to provide a particular design aesthetic.
In some embodiments, the angle of the panel body is adjustable about an axis extending in the lateral direction. The lateral direction, as described herein, refers to the direction in which the panel extends from the first lateral side to the second lateral side. In particular, as set forth herein, the panel body extends in a longitudinal direction from the first end to the second end and in a lateral direction from the first lateral side to the second lateral side. In some embodiments, the panel body is rotatable about an axis that runs in the lateral direction, such that the angle of the panel body is adjustable about the lateral direction.
The configuration of ceiling panel 110 provides several unique design features compared to typical ceiling panels. For example, the attachment of ceiling panel 110 using bracket 140 allows the panel body 112 to have a shape that is not configured by the shape of a ceiling grid that contains the frame element. Most ceiling grids are formed of perpendicular frame elements that form a rectangular grid. Typical ceiling panels are designed such that the outer edges of the panel rest on the frame elements. Accordingly, the panel body of most ceiling panels has a rectangular shape that matches the openings between frame elements of the corresponding ceiling grid. By using the bracket 140 of ceiling panel 110, the panel body 112 can have any of a variety of different shapes and is not limited by the shape of openings of the ceiling grid.
As another example, the attachment of ceiling panel 110 using bracket 140, which is offset from the center of gravity 126 of panel body 112, allows the ceiling panel 110 to overlap an adjacent ceiling panel having a similar configuration. Likewise, the panel body 112 can also be overlapped by another adjacent ceiling panel. For example, the second end 120 of panel body 112 can be positioned to lie beneath an adjacent ceiling panel positioned at the second end and the first end 118 of panel body 112 can be positioned to lie above another adjacent ceiling panel positioned at the first end. A system including such overlapping ceiling panels is described in more detail below.
In certain embodiments of the ceiling panel as otherwise described herein, the panel body is curved. For example, in some embodiments the upper and lower surfaces of the panel body are curved such that the panel body has the overall form of a curved surface. For example, as shown more clearly in the side view of
In certain embodiments of the ceiling panel as otherwise described herein, the lower surface of the panel body is concave. For example, as shown more clearly in
In certain embodiments of the ceiling panel as otherwise described herein, the lower surface of the panel body is convex. For example, in some embodiments, the panel body has the form of a sheet or shell and the lower surface is convex while the upper surface is concave. Accordingly, the outer perimeter of the panel body of such embodiments curves upward and around the bracket. Again, in other embodiments, the thickness of the panel body varies, for example such that the panel body is thickest toward the center where the convex lower surface has curved outward from the surrounding perimeter.
Still, in other embodiments, a curve of the lower surface of the panel body has at least one inflection point. For example, in some embodiments, the panel body has undulating upper and lower surfaces. Further still, in some embodiments the panel body is planar and neither the upper surface nor the lower surface is curved.
In certain embodiments of the ceiling panel as otherwise described herein, an outer edge of the panel body is rounded. For example, in some embodiments, the outer edge of the panel body is rounded in sections around the circumference of the panel body. Further, in some embodiments, the outer edge includes straight sections. Moreover, in some embodiments, the outer edge includes sharp corners. For example, in some embodiments, the panel body includes an outer edge that has both rounded and sharp corners. The term outer edge as used herein is the outermost edge of the panel body. In some embodiments, the outer edge of the panel body is the outermost extension of the ceiling panel. In ceiling panel 110, the panel body 112 includes an outer edge 128 that is rounded in sections around its periphery. These rounded sections are connected by substantially straight sections.
In certain embodiments of the ceiling panel as otherwise described herein, a width of the panel body tapers along a longitudinal direction extending from the first end to the second end. For example, the width of panel body 112 of ceiling panel 110 tapers inward from the first end 118 to the second end 120 such that the width of the panel body 112 is wider at the first end 118 than the second end 120. The tapered width of the panel body allows the panel bodies of neighboring ceiling panels to fit together more closely than panel bodies of other shapes. For example, adjacent tapered panel bodies that extend in opposing directions may be positioned at a similar height and overlap one another, whereas the outer edges of panel bodies of other shapes, such as rectangles, may prevent overlapping of adjacent panels. Further, the tapered width of the panel body also allows variation in the visibility of structures behind the panel body. For example, where a group of ceiling panels with tapered panel bodies are arranged so as to overlap one another, the inward taper allows the laterally outer portion of the covered ceiling panel to be viewed. In other words, where the narrower end of one ceiling panel covers the wider end of another ceiling panel, the lateral outer edges of the wider end of the covered ceiling panel will extend beyond the lateral outer edges of the narrower end of the foremost ceiling panel.
In certain embodiments of the ceiling panel as otherwise described herein, the entire lower surface is unencumbered. The description of a surface or section of the panel body as being unencumbered, as set forth herein, means that this surface or section is void of any attachments or protrusions and does not include any protruding articles or objects attached thereto. For example, an unencumbered lower surface of the panel body is void of any ornamental or structural elements that extend outward from the lower surface. For example, in some embodiments, the lower surface of the panel body is smooth It should be understood, however, that the term unencumbered does not preclude thin coatings such as paint or overlays such as a fabric or plastic overlay. As shown in
In certain embodiments of the ceiling panel as otherwise described herein, the area of the upper surface that surrounds the bracket is unencumbered. Specifically, in some embodiments, the entire area of the upper surface that extends from the bracket to the outer edge of the panel body is free of any protruding articles or objects and void of attachments. For example, as shown in
In certain embodiments of the ceiling panel as otherwise described herein, a perimeter of the panel body along the first lateral side, second end, and second lateral side is free and unattached. The term perimeter of the panel body, as used herein, includes the outer edge of the panel body as well as an area adjacent to the outer edge, for example, within 1 inch of the outer edge. For example, as shown in
In certain embodiments of the ceiling panel as otherwise described herein, the panel body has a substantially uniform thickness. For example, in some embodiments, the panel body is made from a sheet or plate of a uniform thickness. The term thickness, as used herein, refers to the local material thickness of the panel body, and not the overall depth of the panel body. Thus, a panel body comprising a sheet of material of a relatively small thickness may be curved and bent such that the overall depth dimension of the panel body is significantly larger than the local thickness of the panel body. Further, the term substantially uniform refers to a thickness that varies no more than 20%, e.g., no more than 10%, e.g., no more than 5%. In ceiling panel 110, panel body 112 is formed as a curved thin sheet that has a substantially uniform thickness.
In certain embodiments of the ceiling panel as otherwise described herein, the panel body is formed of a single material. For example, in some embodiments, the panel body is integrally formed as a single piece made of one material. It should be understood that, where the panel body is formed of a single material it may still be covered with a coating or an overlay.
In certain embodiments as otherwise described herein, the panel body is formed of sheet metal. The term metal strip, as used herein, is not limited to any particular thickness and may include materials conventionally referred to as metal foil or metal plate. In other embodiments, the panel body is formed of another material, such as wood or plastic.
In certain embodiments of the ceiling panel as otherwise described herein, the panel body is formed of a laminate. For example, in some embodiments the panel body is formed of layers of material that are bonded to one another. For example, in some embodiments, the panel body is formed of layers of plastic material. Further, in some embodiments the panel body is formed of a wood laminate. Further still, in some embodiments, the panel body is formed of layers of different materials.
In certain embodiments of the ceiling panel as otherwise described herein, the panel body is formed of more than one material. For example, in some embodiments the panel body includes a section formed of one material and another section formed of a second material. In some embodiments, the panel body includes a structural element of a first material that is covered by a second material, such that only the second material is visible. For example, in some embodiments the panel body includes a frame formed by a first material, and the lower surface of the panel body is formed by a second material. Such a ceiling panel is shown in a schematic top view in
In other embodiments the panel body is formed by two or more materials and both materials are viewable. For example, in some embodiments a first portion of the lower surface of the panel body is formed by one material and a second portion of the lower surface is formed by another material. Other configurations using multiple materials are also possible.
In certain embodiments of the ceiling panel as otherwise described herein, the lower surface of the panel body is covered by a coating. For example, in some embodiments the lower surface of the panel body is covered by at least one layer of paint. The term layer of paint, as used herein, includes primer and pigmented paints. Other coatings are also possible, such as reflective coatings or moisture barriers. Further, in some embodiments, both the upper and lower surfaces are covered by a coating.
In certain embodiments of the ceiling panel as otherwise described herein, the lower surface of the panel body is covered by an overlay. For example, in some embodiments, the lower surface of the panel body is covered by a layer of fabric, such as felt. In other embodiments, the lower surface of the panel body is covered with a polymer sheet. In some embodiments the overlay has a single color. In other embodiments, the overlay is ornamented with a graphic design that includes various shades or colors. In some embodiments, the overlay is attached to the lower surface of the panel body with an adhesive. For example, in some embodiments, the overlay is a decal.
In certain embodiments of the ceiling panel as otherwise described herein, at least a portion of the panel body is transparent. For example, in some embodiments, the panel body includes a frame formed of an opaque material and the lower surface is covered by a transparent fabric or plastic. In other embodiments, the entire panel body is formed of a transparent material. Forming a portion of the panel body as transparent allows the panel body to allow light through, such as from a light source. Thus, lighting may be provided behind (or above) a ceiling panel that includes a partially or wholly transparent panel body without blocking light from the underlying space.
In certain embodiments of the ceiling panel as otherwise described herein, the panel body forms a diffuser. For example, in some embodiments, the ceiling panel cooperates with a light source to spread light throughout the underlying surface. Thus, such a ceiling panel acts as a part of the lighting design of the architectural space. In some embodiments, the entire panel body is formed as a diffuser. In other embodiments, only a portion of the panel body forms a diffuser.
In certain embodiments of the ceiling panel as otherwise described herein, the upper fastener of the bracket includes a support flange configured to hook over a horizontal flange of the frame member of the ceiling grid. For example, as shown in
In certain embodiments of the ceiling panel as otherwise described herein, the upper fastener of the bracket includes an upper web plate configured to connect to a vertical web of the frame member of the ceiling grid. For example, upper fastener 142 of bracket 140 of ceiling panel 110 also includes an upper web plate 146 that is configured to connect to a vertical web 196 of frame member 192 of ceiling grid 190. In particular, the surface of upper web plate 146 of upper fastener 142 is secured to the surface of vertical web 196 of frame member 192.
Frame member 192 of ceiling grid 190, as shown in
Further, in some embodiments, the upper fastener does not include both a horizontal support flange and an upper web plate. For example, in some embodiments, the upper fastener includes a support flange without an upper web plate. Likewise, in other embodiments the upper fastener includes an upper web plate without a support flange. Still, other structures for securing the upper fastener to a frame member are also possible.
In some embodiments, the upper fastener is configured to secure to the frame member using mechanical fasteners, such as screws or bolts. For example, upper fastener 142 of bracket 140 of ceiling panel 110 includes holes for attaching the upper fastener to a frame member. In particular, the upper web plate 146 of upper fastener 142 includes holes for securing the upper fastener 142 to the vertical web 196 of frame member 192. In other embodiments, the upper fastener is configured to be secured to the frame member using mechanical fasteners that pass through the support flange of the upper fastener. Further, in some embodiments, the upper fastener is configured to be secured to the frame member using mechanical fasteners that pass through both the support flange and the upper web plate.
In other embodiments, the upper fastener is configured to be secured to the frame member using another structure. For example, in some embodiments, the upper fastener includes downwardly extending tabs configured to hook into slots in the frame member. On the other hand, in some embodiments, the upper fastener includes slots configured to secure over upwardly extending tabs in the frame member. Other systems and structures for securing the upper fastener to the frame member are also possible.
In some embodiments, the upper fastener includes opposing portions that cooperate with opposite sides of frame member. For example, upper fastener 142 of bracket 140 of ceiling panel 110 includes two opposing attachment legs 148. The attachment legs 148 are mirror images of one another and each includes a support flange 144 and an upper web plate 146. Thus, the support flange 144 of each attachment leg 148 extends over one of the horizontal flanges 194 of frame element 192, and the upper web plates 146 of the attachment legs 148 attach to opposing sides of the vertical web 196 of the frame element 192.
In certain embodiments of the ceiling panel as otherwise described herein, the upper fastener of the bracket includes a channel configured to surround a portion of the frame member of the ceiling grid. For example, the attachment legs 148 of upper fastener each include connecting plates 150 that extend from support flange 144 to lower web plate 152. The support flange 144 and connecting plates 150 form a channel 154 that surrounds the horizontal flange 194 of frame member 192. Other configurations of providing a channel that surrounds a portion of a frame member are also possible.
In certain embodiments of the ceiling panel as otherwise described herein, the panel body has a length from the first end to the second end that is at least 6 inches, e.g., at least 12 inches, e.g., at least 18 inches. In some embodiments, the panel body has a length from the first end to the second end that is no more than 120 inches, e.g., no more than 60 inches, e.g., no more than 48 inches. For example, in some embodiments, the panel body has a length that is in a range from 6 inches to 120 inches, e.g., from 12 inches to 60 inches, e.g., from 18 inches to 48 inches.
In certain embodiments of the ceiling panel as otherwise described herein, the panel body has a width from the first lateral side to the second lateral that is at least 6 inches, e.g., at least 12 inches, e.g., at least 18 inches. In some embodiments, the panel body has a width from the first lateral side to the second lateral that is no more than 120 inches, e.g., no more than 60 inches, e.g., no more than 48 inches. For example, in some embodiments, the panel body has a width that is in a range from 6 inches to 120 inches, e.g., from 12 inches to 60 inches, e.g., from 18 inches to 48 inches.
In certain embodiments of the ceiling panel as otherwise described herein, the panel body has a thickness of no more than 25 mm, e.g., no more than 10 mm, e.g., no more than 5 mm, e.g., no more than 2 mm. As explained above, the term panel body thickness refers to the local material thickness of the panel body. In other embodiments, the thickness of the panel body is greater than 25 mm.
In certain embodiments of the ceiling panel as otherwise described herein, the bracket further comprises a lower fastener that attaches to the upper fastener. For example, bracket 140 of ceiling panel 110 includes a lower fastener 160 extending from the panel body 112 that attaches to the upper fastener 142. In other embodiments, however, the upper fastener of the bracket is secured directly to the panel body.
In certain embodiments of the ceiling panel as otherwise described herein, the attachment between the upper fastener and lower fastener is adjustable and provides the adjustability of the angle of the panel body. For example, in some embodiments, at least one of the upper fastener and the lower fastener includes a plurality of openings for selectable connection with the other of the upper fastener and lower fastener. In bracket 140 of ceiling panel 110, both upper fastener 142 and lower fastener 160 include a plurality of openings for attaching to one another using mechanical fasteners, such as bolts. For example, different sets of the openings can be aligned with one another to secure the lower fastener 160 and the upper fastener 142 at various different angles. As a result, the angle of the panel body 112 may be adjusted with respect to the plane of the ceiling grid.
In certain embodiments of the ceiling panel as otherwise described herein, the lower fastener includes a fin that extends upward from the upper surface of the panel body. For example, as shown in
In certain embodiments of the ceiling panel as otherwise described herein, the upper fastener includes a lower web plate that attaches to the fin of the lower fastener. For example, as explained above, upper fastener 142 includes a pair of lower web plates 152 that extend downward from channel 154 and are respectively secured to opposing walls of fin 162 of lower fastener 160. While fin 162 of lower fastener 160 includes a pair of walls, in other embodiments the fin is formed by a single wall.
In certain embodiments of the ceiling panel as otherwise described herein, the lower fastener is integrally formed with the panel body in a single piece. For example, in some embodiments, as in ceiling panel 110, the fin may formed by a section of sheet metal that is bent outward from the panel body. Likewise, in some embodiments the fin or fins and the panel body are formed in a single molded, cast, or machined piece. Alternatively, in other embodiments, the fin or fins of the lower fastener is attached to the panel body. For example, in some embodiments the fin is welded to the panel body. In other embodiments, the fin is formed with a flange that is attached to the panel body, either using mechanical fasteners, an adhesive, or another method.
In another aspect, the disclosure provides a method of forming a ceiling panel according to the disclosure, the method includes forming the panel body, forming a fin of a lower fastener of the bracket on the upper surface of the panel body, and attaching the upper fastener of the bracket to the fin of the lower fastener of the bracket. For example, as shown in
In certain embodiments of the method as otherwise described herein, the panel body and the fin are formed from a single sheet of material. For example, in some embodiments, the panel body and the fin are both formed of bent sheet metal.
In certain embodiments of the method as otherwise described herein, forming the fin includes bending the single sheet of material along a first crease to form a first wall of the fin and along a second crease to form a second wall of the fin. For example, as shown in
In certain embodiments of the method as otherwise described herein, forming the fin includes bringing the first crease and the second crease together such that the lower surface of the panel body curves and the first wall of the fin is adjacent to the second wall of the fin. For example, by bringing first crease 166A of sheet of material 168 together with second crease 166B, such that the first wall 164A is placed adjacent to second wall 164B, the sheet of material 168 will curve to form a panel body while the two walls 164A, 164B form the fin 162 of lower fastener 160 of ceiling panel 110 (as shown in
In another aspect, the disclosure provides a ceiling system including a ceiling grid formed by a plurality of frame elements including a first frame element, a first ceiling panel according to the disclosure attached to the first frame element and a second ceiling panel according to the disclosure also attached to the first frame element. Such a ceiling system is shown in
In certain embodiments of the ceiling system as otherwise described herein, the first ceiling panel is attached to the ceiling grid only by an attachment of the bracket of the first ceiling panel to the first frame element. For example, first ceiling panel 910A is attached to ceiling grid 990 only via the attachment of bracket 940A to first frame element 942A. No other part of ceiling panel 910A is hung from, attached to, or rests on any part of ceiling grid 990.
In certain embodiments of the ceiling system as otherwise described herein, an outer edge of the panel body of the first ceiling panel is free. For example, because first ceiling panel 910A is attached to ceiling grid 990 only via bracket 940A, the entire outer edge of panel body 912A can hang freely without resting on any portion of the ceiling grid, in contrast to typical ceiling panels.
In certain embodiments of the ceiling system as otherwise described herein, a second end of the first ceiling panel overlaps the first end of the second ceiling panel. For example, a portion of panel body 912A of second ceiling panel 910A at the second end 920A of panel body 912A is positioned below a portion of panel body 912B of second ceiling panel 910B at the first end 918B so as to overlap one another. Portions of panel body 912C and panel body 912B overlap similarly.
In certain embodiments of the ceiling system as otherwise described herein, the first ceiling panel and second ceiling panel are both attached to the first frame element at the same angle. For example, both the panel body 912A of first ceiling panel 910A and the panel body 912B of second ceiling panel 910B are both positioned at the same angle. Accordingly, in a row of such panels, the overlap between panels is uniform providing a repeating design.
In contrast, in some embodiments, the first ceiling panel is attached to the first frame element at a first angle and the second ceiling panel is attached to the first frame element at a second angle that is different from the first angle. For example, in some embodiments, the panel body of the first ceiling panel is disposed at a steeper angel than the panel body of the second ceiling panel. Such a ceiling system is shown in
In certain embodiments of the ceiling system as otherwise described herein, the ceiling system further includes a second frame element that is parallel to the first frame element, and a third ceiling panel attached to the second frame element. Such a ceiling system is shown in
In certain embodiments of the ceiling system as otherwise described herein, the third ceiling panel is aligned with the first ceiling panel along the length of the frame elements. For example, in ceiling system 1100, the ceiling panels 1110 are arranged along the frame elements 1192 in columns and are also aligned in rows from one frame element to a neighboring parallel frame element. Thus, as shown, third ceiling panel 1110C is aligned along the length of the frame elements with first ceiling panel 1110A. Ceiling system 1200 is similarly arranged, with the ceiling panels 1210 arranged in aligned rows across the columns formed by frame elements 1292. Thus, third ceiling panel 1210C is aligned along the length of the frame elements with first ceiling panel 1210A.
In certain embodiments of the ceiling system as otherwise described herein, the ceiling panels are offset along the length of the frame elements from one frame element to the next. Accordingly, in some embodiments, the third ceiling panel is offset between the first ceiling panel and the second ceiling panel along the length of the frame elements. For example, such a ceiling system is schematically shown in
In certain embodiments of the ceiling system as otherwise described herein, the first and second ceiling panels project in a first direction and the third ceiling panel projects in a second direction that is opposite the first direction. Such a ceiling system is shown in
As can be seen by comparing
In certain embodiments of the ceiling system as otherwise described herein, the third ceiling panel is disposed at a different angle from the second ceiling panel. For example, as shown in
In certain embodiments of the ceiling system as otherwise described herein, the first frame element is disposed at a first elevation and the second frame element is disposed at a second elevation. For example, in some embodiments, the ceiling grid includes a first group of frame elements disposed in a first plane at a first elevation and a second group of frame elements disposed in a second plane at a second elevation. Accordingly, the ceiling panels in such an embodiment can overlap significantly. For example, such an embodiment is shown in
In certain embodiments of the ceiling system as otherwise described herein, the ceiling system further includes a second frame element that is perpendicular to the first frame element, and a third ceiling panel attached to the second frame element. Such a ceiling system is shown in
In certain embodiments of the ceiling system as otherwise described herein, the first and second ceiling panels extend in opposite directions. For example, in ceiling system 1700, first ceiling panel 1710A and second ceiling panel 1710B extend in opposite directions.
In certain embodiments of the ceiling system as otherwise described herein, the ceiling system further includes a fourth ceiling panel attached to the second frame element. Further, the first, second, third and fourth ceiling panels extend away from a joint between the first frame element and the second frame element. For example, ceiling system 1700 also includes a fourth ceiling panel 1710D attached to the second frame element 1792B. Similar to the first and second ceiling panels, third ceiling panel 1710C and fourth ceiling panel 1710D extend in opposite directions along second frame element 1792B. Moreover, all four of the ceiling panels 1710A, 1710B, 1710C and 1710D extend outward from the joint between first frame element 1792A and second frame element 1792B. Accordingly, the four ceiling panels 1710A, 1710B, 1710C and 1710D create a formation of ceiling panels on the ceiling grid 1790. Other formations of the ceiling panels are also possible by coordinating the angles and directions of the ceiling panels with respect to the ceiling grid.
Various embodiments of the disclosure are provided by the following enumerated embodiments, which can be combined in any number and in any combination that is not logically or technically inconsistent.
Embodiment 1. A ceiling panel comprising:
a panel body including an upper surface, a lower surface, a first end, a second end, a first lateral side, and a second lateral side; and
a bracket extending upward from the upper surface of the panel body and offset from a center of gravity of the panel body toward the first end, the bracket including an upper fastener configured to attach the ceiling panel to a frame element of a ceiling grid,
wherein an angle of the panel body is adjustable with respect to the attachment of the upper fastener of the bracket.
Embodiment 2. The ceiling panel according to Embodiment 1, wherein the angle of the panel body is adjustable about an axis extending in the lateral direction.
Embodiment 3. The ceiling panel according to Embodiment 1 or Embodiment 2, wherein the panel body is curved.
Embodiment 4. The ceiling panel according to any of Embodiments 1 to 3, wherein the lower surface of the panel body is concave.
Embodiment 5. The ceiling panel according to any of Embodiments 1 to 3, wherein the lower surface of the panel body is convex.
Embodiment 6. The ceiling panel according to any of Embodiments 1 to 5, wherein an outer edge of the panel body is rounded.
Embodiment 7. The ceiling panel according to any of Embodiments 1 to 6, wherein a width of the panel body tapers along a longitudinal direction that extends between the first end and second end.
Embodiment 8. The ceiling panel according to any of Embodiments 1 to 7, wherein the entire lower surface is unencumbered.
Embodiment 9. The ceiling panel according to any of Embodiments 1 to 8, wherein the area of the upper surface that surrounds the bracket is unencumbered.
Embodiment 10. The ceiling panel according to any of Embodiments 1 to 9, wherein a perimeter of the panel body along the first lateral side, second end, and second lateral side is free and unattached.
Embodiment 11. The ceiling panel according to any of Embodiments 1 to 10, wherein the panel body has a substantially uniform thickness.
Embodiment 12. The ceiling panel according to any of Embodiments 1 to 11, wherein the panel body is formed of a single material.
Embodiment 13. The ceiling panel according to any of Embodiments 1 to 12, wherein the panel body is formed of sheet metal.
Embodiment 14. The ceiling panel according to any of Embodiments 1 to 11, wherein the panel body is formed of a laminate.
Embodiment 15. The ceiling panel according to any of Embodiments 1 to 11, wherein the panel body includes a frame formed by a first material, and wherein the lower surface of the panel body is formed by a second material.
Embodiment 16. The ceiling panel according to any of Embodiments 1 to 15, wherein the lower surface of the panel body is covered by a coating.
Embodiment 17. The ceiling panel according to any of Embodiments 1 to 15, wherein the lower surface of the panel body is covered by an overlay.
Embodiment 18. The ceiling panel according to any of Embodiments 1 to 17, wherein at least a portion of the panel body is transparent.
Embodiment 19. The ceiling panel according to Embodiment 18, wherein the panel body forms a diffuser.
Embodiment 20. The ceiling panel according to any of Embodiments 1 to 19, wherein the upper fastener of the bracket includes a support flange configured to hook over a horizontal flange of the frame element of the ceiling grid.
Embodiment 21. The ceiling panel according to any of Embodiments 1 to 20, wherein the upper fastener of the bracket includes an upper web plate configured to connect to a vertical web of the frame element of the ceiling grid.
Embodiment 22. The ceiling panel according to any of Embodiments 1 to 21, wherein the upper fastener of the bracket includes a channel configured to surround a portion of the frame element of the ceiling grid.
Embodiment 23. The ceiling panel according to any of Embodiments 1 to 22, wherein the panel body has a length from the first end to the second end that is at least 6 inches, e.g., at least 12 inches, e.g., at least 18 inches.
Embodiment 24. The ceiling panel according to any of Embodiments 1 to 23, wherein the panel body has a length from the first end to the second end that is no more than 120 inches, e.g., no more than 60 inches, e.g., no more than 48 inches.
Embodiment 25. The ceiling panel according to any of Embodiments 1 to 24, wherein the panel body has a width from the first lateral side to the second lateral side that is at least 6 inches, e.g., at least 12 inches, e.g., at least 18 inches.
Embodiment 26. The ceiling panel according to any of Embodiments 1 to 25, wherein the panel body has a width from the first lateral side to the second lateral side that is no more than 120 inches, e.g., no more than 60 inches, e.g., no more than 48 inches.
Embodiment 27. The ceiling panel according to any of Embodiments 1 to 26, wherein the panel body has a thickness of no more than 25 mm, e.g., 10 mm, e.g., no more than 5 mm, e.g., no more than 2 mm.
Embodiment 28. The ceiling panel according to any of Embodiments 1 to 27, wherein the bracket further comprises a lower fastener that attaches to the upper fastener.
Embodiment 29. The ceiling panel according to Embodiment 28, wherein the attachment between the upper fastener and lower fastener is adjustable and provides the adjustability of the angle of the panel body.
Embodiment 30. The ceiling panel according to Embodiment 29, wherein at least one of the upper fastener and the lower fastener includes a plurality of openings for selectable connection with the other of the upper fastener and lower fastener.
Embodiment 31. The ceiling panel according to any of Embodiments 28 to 30, wherein the lower fastener includes a fin that extends upward from the upper surface of the panel body.
Embodiment 32. The ceiling panel according to any of Embodiment to 31, wherein the upper fastener includes a lower web plate that attaches to the fin of the lower fastener.
Embodiment 33. The ceiling panel according to any of Embodiments 28 to 32, wherein the lower fastener is integrally formed with the panel body in a single piece.
Embodiment 34. A method of forming a ceiling panel according to any of Embodiments 28 to 33, the method comprising:
forming the panel body;
forming the fin of the lower fastener of the bracket on the upper surface of the panel body; and
attaching the upper fastener of the bracket to the fin of the lower fastener of the bracket.
Embodiment 35. The method according to Embodiment 34, wherein the panel body and the fin are formed from a single sheet of material.
Embodiment 36. The method according to Embodiment 35, wherein forming the fin includes bending the single sheet of material along a first crease to form a first wall of the fin and along a second crease to form a second wall of the fin.
Embodiment 37. The method according to Embodiment 36, wherein forming the fin includes bringing the first crease and the second crease together such that the lower surface of the panel body curves and the first wall of the fin is adjacent to the second wall of the fin.
Embodiment 38. A ceiling system comprising:
a ceiling grid formed by a plurality of frame elements including a first frame element;
a first ceiling panel according to any of Embodiments 1 to 33 attached to the first frame element; and
a second ceiling panel according to any of Embodiments 1 to 33 attached to the first frame element.
Embodiment 39. The ceiling system according to Embodiment 38, wherein the first ceiling panel is attached to the ceiling grid only by an attachment of the bracket of the first ceiling panel to the first frame element.
Embodiment 40. The ceiling system according to Embodiment 38 or Embodiment 39, wherein an outer edge of the panel body of the first ceiling panel is free.
Embodiment 41. The ceiling system according to any of Embodiments 38 to 40, wherein a second end of the first ceiling panel overlaps the first end of the second ceiling panel.
Embodiment 42. The ceiling system according to any of Embodiments 38 to 41, wherein the first ceiling panel and second ceiling panel are both attached to the first frame element at the same angle.
Embodiment 43. The ceiling system according to any of Embodiments 38 to 42, wherein the first ceiling panel is attached to the first frame element at a first angle and the second ceiling panel is attached to the first frame element at a second angle that is different from the first angle.
Embodiment 44. The ceiling system according to any of Embodiments 38 to 43, further comprising:
a second frame element that is parallel to the first frame element, and
a third ceiling panel attached to the second frame element.
Embodiment 45. The ceiling system according to Embodiment 44, wherein the third ceiling panel is aligned with the first ceiling panel along the length of the frame elements.
Embodiment 46. The ceiling system according to Embodiment 44, wherein the third ceiling panel is offset between the first ceiling panel and the second ceiling panel along the length of the frame elements.
Embodiment 47. The ceiling system according to any of Embodiments 44 to 46, wherein the first and second ceiling panels project in a first direction and the third ceiling panel projects in a second direction that is opposite the first direction.
Embodiment 48. The ceiling system according to any of Embodiments 38 to 43, further comprising a second frame element that is perpendicular to the first frame element, and
a third ceiling panel attached to the second frame element.
Embodiment 49. The ceiling system according to Embodiment 48, wherein the first and second ceiling panels extend in opposite directions.
Embodiment 50. The ceiling system according to Embodiment 49, further comprising a fourth ceiling panel attached to the second frame element,
wherein the first, second, third and fourth ceiling panels extend away from a joint between the first frame element and the second frame element.
Embodiment 51. The ceiling system according to any of Embodiments 43 to 50, the third ceiling panel is disposed at a different angle from the second ceiling panel.
Embodiment 52. The ceiling system according to any of Embodiments 43 to 51, wherein the first frame element is disposed at a first elevation and the second frame element is disposed at a second elevation.
It will be apparent to those skilled in the art that various modifications and variations can be made to the processes and devices described here without departing from the scope of the disclosure. Thus, it is intended that the present disclosure cover such modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application claims the benefit of priority of U.S. Provisional Patent Application No. 63/025,050, filed May 14, 2020, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3221835 | Wenger | Dec 1965 | A |
3310924 | Boynton | Mar 1967 | A |
3590354 | Shiflet | Jun 1971 | A |
3599921 | Cumber | Aug 1971 | A |
4062164 | Cousins | Dec 1977 | A |
4261433 | Propst | Apr 1981 | A |
4441282 | Thual | Apr 1984 | A |
6318671 | Schumacher | Nov 2001 | B1 |
7445188 | Lamparter | Nov 2008 | B2 |
D589633 | Mattingly | Mar 2009 | S |
D651325 | Martin | Dec 2011 | S |
D651728 | Martin | Jan 2012 | S |
9187897 | Bergman | Nov 2015 | B1 |
20030205016 | Gulbrandsen | Nov 2003 | A1 |
20040244323 | Ostenfeldt | Dec 2004 | A1 |
20080190690 | Waters | Aug 2008 | A1 |
20140299407 | Caimi | Oct 2014 | A1 |
20140353079 | Gimpel | Dec 2014 | A1 |
20150240490 | Firinga | Aug 2015 | A1 |
20160053489 | Porter | Feb 2016 | A1 |
20160145860 | Thiede | May 2016 | A1 |
20160333581 | Van Dore | Nov 2016 | A1 |
20180127976 | Gillette | May 2018 | A1 |
20180251978 | Yaphe | Sep 2018 | A1 |
20180283004 | Gillette | Oct 2018 | A1 |
20190017260 | Bou Harb | Jan 2019 | A1 |
20190292774 | Durali | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
2866575 | Sep 2013 | CA |
209837434 | Dec 2019 | CN |
110965692 | Apr 2020 | CN |
111075098 | Apr 2020 | CN |
H05-280134 | Oct 1993 | JP |
Entry |
---|
Copending U.S. Appl. No. 29/757,552, filed Nov. 6, 2020. |
Copending U.S. Appl. No. 29/757,555, filed Nov. 6, 2020. |
Copending U.S. Appl. No. 29/757,558, filed Nov. 6, 2020. |
Copending U.S. Appl. No. 29/757,562, filed Nov. 6, 2020. |
International Search Report and Written Opinion in PCT/US2021/032430, dated Sep. 3, 2021. |
Number | Date | Country | |
---|---|---|---|
20210355680 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
63025050 | May 2020 | US |