This invention relates to a mattress having an adjustable contour.
Standard off-the-shelf mattresses and pillows are not designed to satisfy individual needs for contour and hardness and accordingly fail to provide adequate support to the spine and neck of the user. In particular, many elderly people have trouble finding a mattress and pillow on the market which would fit 100% their needs for relief from shoulder pain, neck pain, back pain resulting from improper support to their body because of the less-than-optimum contour and hardness of their mattresses.
The prior art includes air-bag-type mattresses for pressure sore relief and with low contact pressure for comfort. There are also adjustable bed support frames (like those commonly used in hospitals) available on the market.
However, there is no tailor made mattress and pillow available in the market place for adapting a mattress to fit individual needs in the manner of tailor made shoes and clothing.
Consequently, there is a need for a mass production mattress and pillow that are cost affordable by the public but also allow the user to adjust the contour by the user as they wish.
The present invention aims to provide an improved mattress. More particularly, the present invention aims to provide an improved mattress that enables custom modification of the mattress contour in accordance with the preferences and needs of the individual user. The term “contour” is used herein to mean a profile of an upper surface of a mattress. The contour is variable in accordance with the operation of multiple mattress height actuators and is user adjustable. Mattress contour may be adjustably variable in just one dimension, along the length of the mattress, or in two dimensions, including both length and width.
The present invention aims to provide a manually adjustable electro-mechanical mattress that allows the user to adjust and change the contour of the mattress and pillow to get the best support he or she wishes.
The present invention particularly contemplates a mattress system provided with multiple zones along its full length or partial length (see
An adjustable contour mattress system in accordance with the present invention comprises a support frame, a mattress, a multiplicity of actuators, a control unit and a remote control. The support frame has at least one lower panel member along a bottom periphery of the frame, while the mattress has an at least partially resilient upper layer and is provided with a multiplicity of height-adjustable zones. The actuators equal in number to the mattress zones and are disposed within the mattress between the lower panel member and the upper layer. The control unit is operatively connected to the actuators for operating same to alternately raise and lower respective zones of the upper layer. The remote control is operatively connected to the control unit and includes command input elements enabling an individual user to selectively operate the actuators independently of other ones of the actuators, whereby the user can adjust heights of the zones independently of one another. The control of zone height may be effectuated in real time, that is, while the user is on the mattress. Alternatively, or additionally, user adjustment of mattress zone height may be implemented via electronic storage of user-adjusted mattress contours and subsequent operation of mattress height actuators pursuant to the stored mattress contour. Typically, mattress contour adjustment is effectuated while the user is lying on the mattress. Contour adjustments may be stored as “canned” contours per user direction.
The control unit and the remote control may be incorporated into the same housing, which may be a handheld device or a tabletop console. The remote control and the control unit may be operatively connected to the actuators via electrical wires or wireless transmission links. Where a handheld remote and a control unit are provided in separate casings, the handheld may be operatively connected to the control unit via a hard-wired or a wireless transmission path.
It is contemplated that the actuators include mechanical linkages, preferably electrically powered. Each of the actuators may include a motor with a speed reduction gear box operatively connected to a screw shaft for alternately rotating the shaft in opposite directions. The screw shaft is linked to the driving gear box and a screw nut at each end.
Alternatively, each of the actuators may include a scissor linkage, at least one camming member, a screw jack actuator, or a rack and pinion assembly.
In another alternative embodiment the actuators are linear actuator, for instance, hydraulic cylinders, pneumatic cylinders, or motorized ball screw linear actuators.
A method for adjusting a mattress comprises, in accordance with the present invention, providing a mattress having a multiplicity of height-adjustable zones and a multiplicity of actuators equal in number to the zones and disposed within the mattress, operating the actuators to elevate the zones to respective heights, and operating a remote control to selectively adjust an individual one of actuators to adjust the height of the respective mattress zone.
As depicted in
Control unit 16 and remote control 18 may be incorporated into the same housing 28, which may be a handheld device casing or a tabletop console cabinet. Alternatively, remote 18 and control unit 16 may be provided in separate casings, the handheld may be operatively connected to the control unit via a hard-wired or a wireless transmission path 34 (
As shown in
Linkages 36 elevate the respective height-adjustable zone 24 when the screw nuts 38 are moved inward (towards each other, see
As illustrated in
As shown in
As depicted in
In
Remote control 18 and/or a console (not separately shown) of control unit 16 may be provided with a display (not shown) that provides menu selections or options, instructions, messages and recommendations to the user USR. Control unit 16, via a keypad or touch screen interface 114 of the remote control 18 (see
Control unit 16 typically stores mattress contours or sets of zone heights for the following basic sleep postures: flat on the stomach, flat on the back, on the left side, on the right side. Modifications of these may include respective tilts for the head and inclinations of the thigh. A modification of the back-flat pose is a bend at the waist that approximates a sitting posture to a greater or lesser extent.
The widths “W” of the zones 24, 96, 98, 100 may vary and typically range from 1 inch to 24 inches. The length “L” of the “grid” zones 96 (
The vertical displacement ranges of each zone 24, 96, 98, 100 may vary and range from 1 inch to 10 inches. Control unit 16 may be programmed to limit height differences between adjacent zones where large differences in height would be impractical or impose undue stress on the mattress upper layer 22 and the user USR.
Height adjustment of mattress zones underneath a pillow 116, 118 (
Any desired pillow and mattress contour could be achieved by the combined position of the individual zones 24, 96, 98, 100 (see
A mattress 12 as described herein may incorporate stuffed or foam sections 120 that are not adjustable in height.
As depicted in
Control unit 16 and remote control 18 may incorporate or comprise one or more microprocessors. Thus, CPU 124 may be implemented by a microprocessor. In that case, CPU 124 comprises generic digital processing circuits modified by programming from instruction memory 126 to execute the height adjustment functions described herein. Alternatively, control unit 16 and/or remote 18 may comprise integrated circuits with component parts hard-wired for processing user selections of mattress zone heights, storing encoded mattress contour data incorporating user height adjustments (e.g., in data store 132), and issuing signals to actuators 128 for controlling mattress contour pursuant to user input. A combination of hard-wired and generic program-modified circuits is yet another alternative. Such alternative control unit embodiments are well within the ken of those skilled in the art.
As depicted in
In response to a user's contour selection (e.g., back, right side, etc.), received from remote control 18 via height adjustment module 152, contour selection module 128 extracts the appropriate contour data from store 130. Contour selection module 128 checks whether the user previously modified the contour data for the selected posture, by accessing data store 132. Contour selection module 128 forwards the contour information, with adjusted height data if available, to actuator activation module 150 for operation of actuators 128. Actuator activation module 150 periodically inquires with height adjustment module 152 as to whether any mattress zone height is to be modified from the stored value. Height adjustment module 152 communicates with remote control 18 to field any requests from the user for adjustment of the current mattress profile, as well as requests to store adjustments. In the event of the latter type of request, height adjustment module 152 accesses store 132 to change the appropriate height or contour information stored therein. CPU 142 of remote control 18 includes modular components for energizing display 144 and collecting requests input by the user via keypad 146.
As indicated above, contour selection module 148, actuator activation module 150, and height adjustment module 152 may be implemented by generic digital processing circuits modified by programming from instruction memory 126 to execute the height adjustment functions described herein. Or contour selection module 148, actuator activation module 150, and height adjustment module 152 may comprise hard-wired integrated circuits or a combination of hard-wired and generic program-modified circuits.
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. For example, the control unit and the remote controller may be pre-programmed with different zone height arrays each corresponding to a respective sleep posture or position of an average user. During an initial use of the mattress system, a user selects a zone height array of prospective interest and lies down on the bed (not necessarily in that order). The user then selectively adjusts the zone heights in accordance with the user's preferences. Upon discovering a comfortable configuration, the user may instruct the control unit via the remote control (or a separate console or keypad) to store the configuration for future use.
Adjustment of mattress zone heights may be accomplished by other types of actuators, different from the electromechanical actuators discussed hereinabove. For instance, a mattress may incorporate multiple pressurized compartments operatively connected via respective valves to a source of compressed air, as described in U.S. Pat. No. 7,107,642 the disclosure of which is hereby incorporated by reference. Pursuant to the present invention, the individual user interacts with a control unit to adjust the heights (or pressures) of individual mattress compartments to thereby construct a customized mattress contour, which is stored in encoded format in a memory. During subsequent use of the mattress adjustment apparatus, the control unit operates the valves to increase or decrease the pressures in the individual compartments pursuant to the stored customized mattress contour data.
Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
Number | Date | Country | |
---|---|---|---|
61459047 | Dec 2010 | US |