The present disclosure relates to a cushion and more particularly to a pillow.
Various devices exist that are intended for use in aligning the cervical spine. For example, McKenzie rolls that can be placed under or inside conventional pillows are prescribed to aid in alignment of the cervical spine. However, since physicians often do not know what type of pillow a McKenzie roll will be placed under, or in, dimensions of a prescribed McKenzie roll may be poorly suited to cervical spine alignment of an individual patient. There are multiple pillows in the marketplace that claim to align the cervical spine. But because of the variabilities in end-user physiology, material selections, sleep position preference, mattress firmness, and personal comfort preferences, no one pillow exists that offers true customization to solve the problem of cervical spine alignment for a wide range of consumers.
The following is a brief summary of subject matter that is described in greater detail herein. This summary is not intended to be limiting as to the scope of the claims.
The present disclosure relates to a cushion and more particularly to a pillow providing cervical alignment by way of an adjustable cervical spine support structure that is positioned along a major axis of the pillow, and that can be rotated around the major axis. The adjustable cervical spine support can have two or more segments having different material properties or different geometries. When the adjustable cervical spine support is rotated around the major axis, a level of support provided by the pillow changes based upon an alignment of the segments of the adjustable cervical spine support with respect to a surface of the pillow. The pillow can further be configured to have surface portions of differing densities such that greater support is provided for a user's cervical spine. In addition, the adjustable cervical support gains additional efficacy by being integrated with a specific geometry for the back sleeping position and a specific geometry for a side sleeping position. As such, in embodiments, the pillow is further differentiated from prior cushion devices by having two dimensionally correct platforms in one pillow—a side sleeping platform and a back sleeping platform.
The above summary presents a simplified summary in order to provide a basic understanding of some aspects of the devices and/or methods discussed herein. This summary is not an extensive overview of the devices and/or methods discussed herein. It is not intended to identify key/critical elements or to delineate the scope of such devices and/or methods. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
Various technologies pertaining to an adjustable cushion are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspect(s) may be practiced without these specific details.
Moreover, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from the context, the phrase “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, the phrase “X employs A or B” is satisfied by any of the following instances: X employs A; X employs B; or X employs both A and B. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from the context to be directed to a singular form. Additionally, as used herein, the term “exemplary” is intended to mean serving as an illustration or example of something, and is not intended to indicate a preference.
The present disclosure relates to a cushion and more particularly to a pillow providing cervical alignment by way of an adjustable cervical spine support structure that is positioned along a major axis of the pillow, and that can be rotated around the major axis. In an embodiment, the cervical spine support may also be fixed and not adjustable. The pillow disclosed herein is further differentiated by its integration into a dimensionally correct pillow geometry and a platform that is specific to a back sleeper and a side sleeper.
In the embodiment of
It is considered that the multi-density segments 204, 206, 208 are also of varying hardness. For example, a first section differs by at least 10% in hardness from a second segment, and the second segment differs by at least 10% from a third segment. The recited differences in hardness may range from 10% to 1000%, such as 20% to 500%, or 100% to 300%. Hardness or firmness may be measured by Indentation Load Deflection (ILD) (also known as Indentation Force Deflection, or IFD) which is determined by mechanical performance testing. In the ILD test, a material sample measuring 15″ by 15″ by 4″ is used and the force in pounds that it takes a 50 square inch circular indenter to compress the material 1 inch (25 percent of its thickness) is recorded. For example, if the sample requires 36 lbs. of pressure to indent it 1 inch, its ILD is 36. In an embodiment, the ILD of the segments of material 204, 206, 208, may range from 8 to 100, for example, 12 to 70, or 20 to 60.
The material for the three segments and for the rest of the pillow may comprise memory foam, polyurethane foam, rubber, other types of particulate and non-particulate polymeric foam, latex, Talaly latex, natural latex, and synthetic latex, chopped foam, feathers, particulate material such as rubber, latex, Talaly latex, natural latex, and synthetic latex, or plastic beads, or natural filler material such as buckwheat husks. If particulate material or feathers are used, they would be contained in an appropriately shaped bag or other suitable container that does not interfere with the firmness of the material being felt from outside the container. In embodiments disclosed herein the material for the cervical spine support and the segments thereof is more firm than the surrounding pillow material. For example, the cervical spine support may comprise relatively firm non-viscoelastic foam, while the surrounding pillow, or at least the portion of the pillow above the cervical spine support, comprises a softer viscoelastic foam material.
In an embodiment, the adjustable cervical spine support 106 is configured to be in a cylindrical shape and fits within a hollow cylinder compartment in the interior of the pillow 100. In an embodiment, sufficient clearance for the adjustable cervical spine support 106 to rotate within the cylindrical compartment is provided. This clearance may have a range, for example, 1 micrometer to 1 cm in circumferential difference, such as 10 micrometers to 1 mm, or 100 micrometers to 5 mm. In another embodiment, there may be no clearance so long as the materials allow the adjustable cervical spine support 106 to rotate within the cylindrical compartment.
In other embodiments, either or both of the cervical spine support 106 or the hollow compartment can have irregularities in shape such that the cervical spine support 106 fits snugly within the hollow compartment when rotated to some positions and rotates freely when rotated to others. For example, the cervical spine support 106 can have protrusions and the hollow compartment can have indentations corresponding to the protrusions. When the cervical spine support 106 is rotated, the protrusions can make contact with the interior of the compartment, causing resistance due to friction, until the protrusions reach the indentations. When the protrusions of the cervical spine support 106 reach the indentations of the compartment as the cervical spine support 106 is rotated, the protrusions no longer make contact with the interior of the compartment. Thus, resistance to rotation of the cervical spine support 106 can be higher in some orientations of the cervical spine support 106 than others. This allows the cervical spine support 106 to rotate easily to one or more desired “settings” while keeping the cervical spine support 106 from rotating to another setting unless intentionally rotated by a user of the pillow 100. This may also affect the firmness of the pillow.
Additional embodiments of the adjustable cervical spine support 106 could have a minimum of two different density sections, and a maximum of four different density sections.
The multi-density segments 204, 206, 208 are attached to the universal joint armature 212 by an adhesive or molding process. They may also be adhered or molded to each other at their respective surfaces running along the major axis 104.
In an example, the lower section 508 and the upper section 510 of the pillow 502 are joined at the interface 512 by a glue or other adhesive material. In an exemplary embodiment, when joined, the lower and upper sections 508, 510 can have a total height of between 4.5 and 6.25 inches, for example, 4.75 to 6 inches, 5 to 5.75, or 5 to 5.5 inches. The total height is measured at the tallest height of the pillow 502 with the pillow 502 laying on a flat surface. Generally, all dimensions disclosed herein are measured at the most extreme point of the dimension if not otherwise stated.
The pillow 502 can include a cavity 514 extending through the pillow 502 along the major axis 506. The multi-density cervical spine support 504 can be disposed inside the cavity 514 and can be rotated inside the cavity 514 by way of a knob (not pictured) attached to an end of the multi-density cervical spine support 504. The multi-density cervical spine support 504 comprises a plurality of segments 516, 518, 520 each having a different density. The multi-density segments 516, 518, 520 can also be of varying hardness. For example, a first segment differs by at least 10% in hardness from a second segment, and the second segment differs by at least 10% from a third segment. The recited differences in hardness may range from 10% to 1000%, such as 20% to 500%, 100% to 300%. In an embodiment, the ILD of the segments of material 516, 518, 520, may range from 8 to 100, for example, 12 to 70, or 20 to 60.
The segments 516, 518, 520 can be joined at their respective interfaces such that the multi-density cervical spine support 504 has a cylindrical shape. For example, the segment 516 can be joined to the segment 518 at an interface 522, the segment 518 can be joined to the segment 520 at an interface 524, and the segment 520 can be joined to the segment 516 at an interface 526. The segments 516, 518, 520 can be joined at the interfaces 522, 524, 526 by suitable adhesives capable of durably adhering the segments 516, 518, 520. These adhesives may be the same or different based on the chemical properties of the material being joined.
The exemplary pillow 502 further comprises a head well portion 528 that makes up at least a part of the upper section 510. In some embodiments, the head well portion 528 can make up at least a part of each of the upper section 510 and the lower section 508. The head well 528 comprises supporting surfaces 530 separated by a plurality of grooves 532. The supporting surfaces 530 can comprise a material having a density and/or a hardness that differs from a density or hardness of either or both of the lower and upper sections 508-510 of the pillow 502. The grooves 532 may function to allow airflow through the head well 528, and other parts of the pillow 502, which can keep a user of the pillow 502 cool. The lower section 508 of the pillow 502 can also have grooves 534 along the lower surface 509 of the pillow 502 in order to promote airflow over the lower surface 509. In exemplary embodiments, the head well 528 can have a height between an upper surface 536 of the support portion 528 and a lower surface 538 of the head well 528 of 0.8 to 2.7 inches, 1 to 2.5 inches, 1.25 to 2.25 inches, or 1.4 to 2 inches. The upper surface 511 of the pillow 502 includes the upper surface 536 of the head well portion 528.
The head well portion 528 is configured for a user's head and neck to rest in the supine position, with the back of the head resting against the upper surface 536 of the head well portion 528 with the neck resting over the multi-density cervical spine support 504. In another use, a user can rest the head and neck on the upper portion 510 of the pillow 502, with the neck, resting over the multi-density cervical spine support 504 and the side of the head resting against the upper surface 511 of the pillow 502. In still another use, a user can turn the pillow 502 over, and the lower surface 509 of the pillow 502 is configured for a user's head and neck to rest in the side-lying position with the neck resting over the multi-density cervical spine support 504.
Referring now to
Referring now to
Referring to
The teachings recited herein are not limited to just pillows, but could also be employed in other types of cushions or cushion-containing furniture, such as chairs, seats used in transportation, mattresses, and hospital furniture.
In an embodiment, the adjustable cervical spine support 106 may be used outside the pillow 100, by itself, for example, as an aid for exercise or for massage. In an embodiment, the multi-density segments 204, 206, 208 may be separated in a plane perpendicular to the major axis 104, in particular, the separation may correspond to the area where flexible joints of the universal joint armature 212 are. In addition, in an embodiment, the multi-density segments 204, 206, 208 may be rotatable rather than fixed in relation to the universal joint armature 212, that is, the segments 204, 206, 208 may be joined to each other and rotate as a whole around the universal joint armature 212.
Referring now to
Provided below in Tables 1 and 2 are exemplary data relating to effects of various pillow design parameters on alignment of subjects' cervical spines in connection with using a pillow constructed in accordance with embodiments of the present disclosure. The data include, for each test subject, a shoulder width, hip width, and a difference between the shoulder width and the hip width (labeled “Physiological Differential”). The data also include, for each subject, a height of the highest point of the subject's head when lying on a test bed frame with the subject's spine in alignment (labeled “Alignment Height”). This “alignment height” was determined in accordance with
The data further include a difference in height of the subject's head between the alignment height and the height for each of a variety of prototype pillows. In the side-lying position (Table 1) the subjects rested their head and neck on the lower surface 535, (i.e, the head-well portion was facing the mattress) of a pillow constructed similarly to pillow 502. The data show the difference in height when the subject's head is resting on the first pillow prototype having a height of 6 inches (labeled “Alignment Height Differential”), the difference in height when the subject's head is resting on a second pillow prototype having height of 5.5 inches (labeled “Differential (Prototype 2)”), and the difference in height when the subject's head is resting on a third pillow prototype having height of 5.25 inches (labeled “Differential (Prototype 3)”). Thus, the smaller the absolute value of the number for the “Differential” data points the closer the subject was to being in correct alignment.
In the supine position (Table 2), the subjects rested their head and neck on the upper section 510 and head well 528 of a pillow constructed similarly to pillow 502. The data include the difference in height when the subject's head is resting on the first pillow prototype having height of 6 inches and head well depth of 1 inch (labeled “Alignment Height Differential”), the difference in height when the subject's head is resting on a fourth pillow prototype having height of 5.5 inches and head well depth of 2 inches (labelled “Differential (Prototype 4)”), and the difference in height when the subject's head is resting on a fifth pillow prototype having height of 5.25 inches and head well depth of 2 inches (labeled “Differential (Prototype 5)”).
Through the study it was determined that the greatest number of subjects were closest to alignment when using prototype pillows 3 and 5.
What has been described above includes examples of one or more embodiments. It is, of course, not possible to describe every conceivable modification and alteration of the above devices or methodologies for purposes of describing the aforementioned aspects, but one of ordinary skill in the art can recognize that many further modifications and permutations of various aspects are possible. Accordingly, the described aspects are intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the details description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
This application is a continuation of U.S. application Ser. No. 15/492,347, filed Apr. 20, 2017, which in turn claimed priority to U.S. Provisional Patent Application No. 62/325,075, filed on Apr. 20, 2016, and entitled “ADJUSTABLE CUSHION DEVICE.” The entirety of each of these applications is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62325075 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15492347 | Apr 2017 | US |
Child | 16008174 | US |