The subject invention relates generally to historian components associated with industrial controllers and more particularly to varying a rate of data collection for an embedded historian
Industrial controllers are special-purpose computers utilized for controlling industrial processes, manufacturing equipment, and other factory automation, such as data collection or networked systems. At the core of the industrial control system, is a logic processor such as a Programmable Logic Controller (PLC) or PC-based controller. Programmable Logic Controllers for instance, are programmed by systems designers to operate manufacturing processes via user-designed logic programs or user programs. The user programs are stored in memory and generally executed by the PLC in a sequential manner although instruction jumping, looping and interrupt routines, for example, are also common. Associated with the user program are a plurality of memory elements or variables that provide dynamics to PLC operations and programs. Differences in PLCs are typically dependent on the number of Input/Output (I/O) they can process, amount of memory, number and type of instructions, and speed of the PLC central processing unit (CPU).
In a more macro sense than the controller, businesses have become more complex in that higher order business systems or computers often need to exchange data with such controllers. For instance, an industrial automation enterprise may include several plants in different locations. Modern drivers such as efficiency and productivity improvement, and cost-reduction, are requiring manufacturers to collect, analyze, and optimize data and metrics from global manufacturing sites. For example, a food company can have several plants located across the globe for producing a certain brand of food. These factories in the past were standalone, with minimum data collection and comparison of metrics with other similar factories. In the networked world of today, manufacturers are demanding real-time data from their factories to drive optimization and productivity. Conventional control systems architectures are not equipped to allow a seamless exchange of data between these various components of the enterprise.
Another requirement of modern control system architectures is the ability to record and store data in order to maintain compliance with Food and Drug Administration regulations such as Regulation 21 CFR Part 11. A particular and common solution for recording data includes providing a local recording module that often occupies a slot in a controller backplane such as a PC-Historian which is an industrial computer for the controller backplane, and employs a transitional layer to supply an indirect interface to the controller. This includes a platform that provides high speed, time series, data storage and retrieval with both local and remote control processors. The PC-Historian communicates with controllers directly through the backplane and can communicate remotely via a network interface. The PC-Historian allows archiving data from the controller to an Archive Engine which provides additional storage capabilities.
In general, conventional historian processors enable high-speed real-time data collection by communicating directly with the control processor across the backplane for fast data collection speeds. This includes handling large quantities of data over extended time periods while providing efficient storage and retrieval of process data over extended periods of time. These solutions are generally employed for electronic documentation and provide an audit trail and data flags for tracking modified, inserted, or incomplete data. In order to configure such products, a Graphical User Interface (GUI) can be provided to map controller tags defined in a local or remote processor to a data historian file.
Data from controllers and industrial modules are typically collected and analyzed to determine a source of a problem. In general, controllers are fitted with a small amount of data storage. If data is desirably retained beyond the two gigabytes, an operator should determine which data is desirably kept for a longer period of time, and which data is to be deleted. Likewise, after predetermined time period, or when storage capacity of the controller is reached, data from the controller can be archived. Nonetheless, if data is to be analyzed, then such analysis can be performed with respect to data that is typically collected at a fixed rate.
The following presents a simplified summary in order to provide a basic understanding of some aspects described herein. This summary is not an extensive overview nor is intended to identify key/critical elements or to delineate the scope of the various aspects described herein. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
The subject innovation provides for systems and methods that can vary a data collection rate for embedded historians via a rate adjustment component, to collect data with different levels of granularity. Such difference in the granularity level can be partially in response to fault detection, alert triggering, and the like. Accordingly, future trouble shooting efforts can be performed with respect to data that is typically collected at an adjustable rate. In general, the embedded historians of the subject innovation (unlike conventional PC historians) supply a direct interface to controllers without employing a transitional layer, and hence provide a substantially higher data exchange rate as compared to conventional PC historians.
In a related aspect, a higher sample rate for data collection (than sample rate during normal operation) can be employed when collecting data from an operation stage that is deemed more critical than the rest of the operation. The rate adjustment component can be associated with an embedded historian that can be integrated as part of a controller or industrial unit. Moreover, such adjustable rate component can communicate with controllers directly through the backplane, or can communicate remotely via a network interface. In a related aspect, a storage medium associated with the embedded historian/recording module can selectively decay stored data (e.g., a gradual purge) based on data importance, likelihood of use, and the like.
According to a further aspect of the subject innovation, the rate adjustment component can further include an estimation component that can automatically predict a required sampling rate for a stage of an operation, based on statistical models and collected for similar operations and/or history data. For example, a crude model can be constructed for an initial subset of the data using earlier/prior collected data from similar processes. This allows statistical information to be gleaned from extremely large sets of distributed information related to similar industrial operation. The model can then be evaluated and/or altered via feedback (e.g., user input). Each module can be programmed to be evaluated for the sampling rate periodically, or upon occurrence of an event (e.g., an alarm trigger, receipt of an e-mail notification message, and the like). Various artificial intelligence systems/methodologies can also be employed to facilitate estimation/prediction of the data collection rate (e.g., sampling rate.)
To the accomplishment of the foregoing and related ends, certain illustrative aspects are described herein in connection with the following description and the annexed drawings. These aspects are indicative of various ways which can be practiced, all of which are intended to be covered herein. Other advantages and novel features may become apparent from the following detailed description when considered in conjunction with the drawings.
The various aspects of the subject innovation are now described with reference to the annexed drawings, wherein like numerals refer to like or corresponding elements throughout. It should be understood, however, that the drawings and detailed description relating thereto are not intended to limit the claimed subject matter to the particular form disclosed. Rather, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the claimed subject matter.
The rate adjustment component 110 can be part of applications running on a control unit, which can function as a management control center for the industrial network system 100. Moreover, such adjustable sampling rate component 110 can communicate with controllers directly through the backplane, or can communicate remotely via a network interface. The adjustable sampling component 110 can adjust sampling rates for industrial units 141, 143, 145 (1 to m, m being an integer) such as those that are maintained on higher-level business servers; units that serve control elements of the system such as programmable logic controllers and/or other industrial control components (e.g., sensors, modules, and the like), for example. A directory service (not shown) can further operate with the organizational model to enable adjustment of sampling rate and collection via embedded historians 121, 123, 125 within the organization. Accordingly, the rate for data collection can be varied based on a plurality of industrial parameters, such as for example: type of data that is to be collected (e.g., collecting one type of data at a higher rate, than another type of data); time of data collection, industrial unit that data is being collected therefrom, criticality of the operation, security level, sequence of function block being executed, and the like.
A network system (not shown) can be associated with the industrial automation system 100, for which the rate of data collection can be adjusted via the rate adjustment component 110. The network system can further include additional hosts (not shown), which may be personal computers, servers or other types of computers. Such hosts generally can be capable of running or executing one or more application-level (or user-level) programs, as well as initiating an I/O request (e.g., I/O reads or writes). In addition, the network system can further include one or more input/output units (I/O units), wherein such I/O units can includes one or more I/O controllers connected thereto, and each of the I/O can be any of several types of I/O devices, such as storage devices (e.g., a hard disk drive, tape drive) or other I/O device. The hosts and I/O units and their attached I/O controllers and devices can be organized into groups such as clusters, with each cluster including one or more hosts and typically one or more I/O units (each I/O unit including one or more I/O controllers). The hosts and I/O units can be interconnected via a collection of routers, switches and communication links (such as wires, connectors, cables, and the like) that connects a set of nodes (e.g., connects a set of hosts and I/O units) of one or more clusters. Each unit be programmed and/or configured to operate in a mode in which it employs a sampling interval to initiate periodic sampling.
It is noted that as used in this application, terms such as “component,” “hierarchy,” “model,” and the like are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution as applied to an automation system for industrial control. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program and a computer. By way of illustration, both an application running on a server and the server can be components. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers, industrial controllers, and/or modules communicating therewith.
The system 200 includes a plurality of embedded historian components 210 operating in an organizational data model, wherein a rate adjustment component 209 can vary a data collection rate for such embedded historians (e.g., micro historians) that are distributed on the back plane of an associated industrial network. In addition, the historian components 210 can be distributed across a network 214 to provide a collective or distributed database. The rate adjustment component 209 can be part of applications running on a control unit 230, which can function as a management control center for the industrial network system.
The industrial setting or organizational enterprise 200 can employ a plurality of computers or network components that communicate across the network 214, to one or more industrial control components 230, such as for example programmable logic controllers (PLCs) 211,212, 213 (1 to j, j being an integer) or other factory components. Thus, the embedded historian components 210 can be operated as a singular or collective entity while being viewed, managed and distributed across substantially all or portions of the enterprise 220, control component 230 and/or rate adjustment component 209. For example, at the control levels 230, embedded historians can be embedded within a PLC rack to collect data, whereas higher levels at 220 can be employed to aggregate data from lower levels. Such can include higher level software components that communicate across the network 214 to collect data from lower level control components. The network 214 can include public networks such as the Internet, Intranets, and automation networks such as Control and Information Protocol (CIP) networks including DeviceNet and ControlNet. Other networks include Ethernet, DH/DH+, Remote I/O, Fieldbus, Modbus, Profibus, wireless networks, serial protocols, and the like. In addition, the network devices can include various possibilities (hardware and/or software components). These include components such as switches with virtual local area network (VLAN) capability, LANs, WANs, proxies, gateways, routers, firewalls, virtual private network (VPN) devices, servers, clients, computers, configuration tools, monitoring tools, and/or other devices.
Likewise, the industrial/enterprise 220 can include various computer or network components such as servers, clients, communications modules, mobile computers, wireless components, and the like which are capable of interacting across the network 214. Similarly, the term PLC as used herein can include functionality that can be shared across multiple components, systems, and/or networks 214. For example, one or more PLCs of the control component 230 can communicate and cooperate with various network devices across the network 214. Such can include substantially any type of control, communications module, computer, I/O device, sensor, Human Machine Interface (HMI)) that communicate via the network 214 which includes control, automation, and/or public networks. The PLC 230 can also communicate to and control various other devices such as Input/Output modules including Analog, Digital, Programmed/Intelligent I/O modules, other programmable controllers, communications modules, and the like.
The system 200 enables combining organizational information such as an organizational or hierarchical data model which represents a common model of a plant that can be based in the S88 or S95 model, and is distributed among computers of the enterprise 220 and industrial controllers 230, for example. The model can be viewed as an Organizational Data Model—a tree-like hierarchical and heterogeneous structure of organizational Units. For instance, respective Organizational Units can include other Organizational Units. Organizational Units can be either physical locations (e.g., Site, Area) or logical grouping node or collection (e.g., Enterprise as a collection of Sites). The nodes in the organizational hierarchy or model can have associated items representing the plant's production and control equipment, tags, backing tags (e.g., Alarm & Event and the like), programs, equipment phases, I/O devices, and other application related entities. These organizational units thus can form an application view of the user's system.
A typical system 200 can assign the upper levels of the hierarchy such as an Enterprise node and site to a computer system and the lower levels such as area, line, cell and machine can be contained in multiple industrial controllers 230; each of which can include components that are members of one or more organization units such as area or area model. Moreover, an organization unit can contain components from one or more controllers. The embedded historian components 210 can be positioned at various levels of the enterprise 220 and/or control 230; and can also further be integrated therein and scaled according to system data collection requirements. Such organizational model enables distributed historian components 210 to locate data of interest for collection purposes and to readily adapt and become integrated within the larger system 200.
Adaptability within the system 200 can be facilitated by data having additional information such as metadata that identifies the purpose of the data, and a granularity level that data associated therewith should be collected for. Such metadata can further be employed by the rate adjustment component 209 to designate rates for data collection by a micro-historian. For example, the configuration component 209 can employ a trail of metadata to identify the historians and relevant historian data for collection
Accordingly, one form of data can identify itself as a control tag that has been marked or labeled via metadata to indicate its significance for data collection purposes. Another type of label or metadata can indicate security information that is being distributed throughout the system 200. Furthermore, other type of data can indicate that an alarm condition or an event has occurred within the system and thus, a respective historian component should capture data at a higher granularity level.
A plurality of triggering events can subsequently be defined at 520 that correspond to execution of a particular granularity of data collection associated with such function blocks. For example, such triggering event can be based on an execution order, data importance, likelihood of use, and the like. Next, and at 530 feedback can be provided (e.g., a plant engineer, operator) regarding efficiency of such data collection. Based on such feedback, and/or based on predetermined criteria (e.g., data criticality for future trouble shooting) a rate for data collection can be varied, at 540. Next and at 550, data collection can proceed based on such adjusted rate of data collection.
Data at such adjusted rate can be captured via a plurality of distributed embedded historian components 610. For example, data can automatically be captured at a first sample collection rate at onset of activities relating to a function block or activity. Likewise, data collection automatically stops at such first sample collection rate, upon completion of the function block, and hence, relevant data to various performance stages can automatically be gathered, and stored for future trouble shooting via the distributed historian components 610.
The rate adjustment component 617 can be part of applications running on the control components 611, 612, 613, which can function as a management control center for the industrial network system 600. Accordingly, a distributed historian framework is provided, wherein historical data types can be collected based on triggering events at particular data collection granularity levels, which are set by the rate adjustment component 617 (e.g., a specific data collection rate for particular data collected, such that collected data at such specific rate can address subsequent problems that may arise during the industrial process).
A network system 614 can be associated with the industrial automation system 600. The network system 614 can further include additional hosts (not shown), which may be personal computers, servers or other types of computers. Such hosts generally can be capable of running or executing one or more application-level (or user-level) programs, as well as initiating an I/O request (e.g., I/O reads or writes). In addition, the network system can further include one or more input/output units (I/O units), wherein such I/O units can includes one or more I/O controllers connected thereto, and each of the I/O can be any of several types of I/O devices, such as storage devices (e.g., a hard disk drive, tape drive) or other I/O device. The hosts and I/O units and their attached I/O controllers and devices can be organized into groups such as clusters, with each cluster including one or more hosts and typically one or more I/O units (each I/O unit including one or more I/O controllers). The hosts and I/O units can be interconnected via a collection of routers, switches and communication links (such as wires, connectors, cables, and the like) that connects a set of nodes (e.g., connects a set of hosts and I/O units) of one or more clusters.
It is noted that as used in this application, terms such as “component,” “hierarchy,” “model,” and the like are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution as applied to an automation system for industrial control. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program and a computer. By way of illustration, both an application running on a server and the server can be components. One or more components can reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers, industrial controllers, and/or modules communicating therewith.
For example, in connection with determining a rate collection associated with a control algorithm and/or initiating of data capture, the subject invention can employ various artificial intelligence schemes. A process for learning explicitly or implicitly whether data from a historian should be downloaded, can be facilitated via an automatic classification system and process. Classification can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action that a user desires to be automatically performed. For example, a support vector machine (SVM) classifier can be employed. Other classification approaches include Bayesian networks, decision trees, and probabilistic classification models providing different patterns of independence can be employed. Classification as used herein also is inclusive of statistical regression that is utilized to develop models of priority.
As will be readily appreciated from the subject specification, the subject invention can employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing user behavior, receiving extrinsic information) so that the classifier is used to automatically determine according to a predetermined criteria which answer to return to a question. For example, with respect to SVM's that are well understood, SVM's are configured via a learning or training phase within a classifier constructor and feature selection module. A classifier is a function that maps an input attribute vector, x=(×1, x2, x3, x4, xn), to a confidence that the input belongs to a class—that is, f(x)=confidence(class). As shown in
In addition, the directory interface 740 can be employed to provide data from an appropriate location such as the data source 760, a server 770 and/or a proxy server 780. Accordingly, the directory interface 740 can point to a source of data based upon role and requirements (needs) of a requester (e.g., database 710, HMI 720, PLC 530, and the like.) The database 710 can be any number of various types such as a relational, network, flat-file or hierarchical systems. Typically, such databases can be employed in connection with various enterprise resource planning (ERP) applications that can service any number of various business related processes within a company. For example, ERP applications can be related to human resources, budgeting, forecasting, purchasing and the like. In this regard, particular ERP applications may require data that has certain desired attributes associated therewith. Thus, in accordance with an aspect of the subject invention, the directory interface 740 can provide data to the database 710 from the server 770, which provides data with the attributes desired by the database 710.
Moreover, the HMI 720 can employ the directory interface 740 to point to data located within the system 700. The HMI 720 can be employed to graphically display various aspects of a process, system, factory, etc. to provide a simplistic and/or user-friendly view of the system. Accordingly, various data points within a system can be displayed as graphical (e.g., bitmaps, jpegs, vector based graphics, clip art and the like) representations with desired color schemes, animation, and layout.
The HMI 720 can request data to have particular visualization attributes associated with data in order to easily display such data thereto. For example, the HMI 720 can query the directory interface 740 for a particular data point that has associated visualization attributes. The directory interface 740 can determine the proxy server 780 contains the attributed data point with the desired visualization attributes. For instance, the attributed data point can have a particular graphic that is either referenced or sent along with the data such that this graphic appears within the HMI environment instead of or along with the data value.
As explained earlier, the PLC 730 can be any number of models such as Allen Bradley PLC5, SLC-500, MicoLogix, and the like. The PLC 730 is generally defined as a specialized device employed to provide high-speed, low-level control of a process and/or system. The PLC 730 can be programmed using ladder logic or some form of structured language. Typically, the PLC 730 can utilize data directly from a data source (e.g., data source 760) that can be a sensor, encoder, measurement sensor, switch, valve and the like. The data source 760 can provide data to a register in a PLC and such data can be stored in the PLC if desired. Additionally, data can be updated (e.g., based on a clock cycle) and/or output to other devices for further processing.
Typically, the system 800 can be viewed as a Distributed Historian that spans machines, plants, and enterprises. At level 830, the historian collects data at the rack level and is coupled to Common Plant Data Structure described above. Such can include collecting process & discrete data, alarms & events in a single archive if desired. Other aspects can include auto-discovery of data and context from controllers in local chassis including store/forward data capabilities from local buffers. Data can be collected without polling, having a low communications bandwidth. The plant level 820 aggregates data from Micro or rack-embedded Historians and/or other data sources (e.g., Live Data source). Such can include plant-level querying, analytics, reporting while efficiently storing, retrieving, and managing large amounts of data. This level can also auto-discover data and data model context from Micro Historians located at level 830. Other features of the system 800 can include analysis components, logical units, components for interaction with report elements, embeddable presentation components, replication of configuration, storage, archiving, data compression, summarization/filtering, security, and scalability.
The system bus 918 can be any of several types of bus structure(s) including the memory bus or memory controller, a peripheral bus or external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, 9-bit bus, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Universal Serial Bus (USB), Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), and Small Computer Systems Interface (SCSI).
The system memory 916 includes volatile memory 920 and nonvolatile memory 922. The basic input/output system (BIOS), containing the basic routines to transfer information between elements within the computer 912, such as during start-up, is stored in nonvolatile memory 922. By way of illustration, and not limitation, nonvolatile memory 922 can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory 920 includes random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM).
Computer 912 also includes removable/non-removable, volatile/non-volatile computer storage media.
It is to be appreciated that
A user enters commands or information into the computer 912 through input device(s) 936. Input devices 936 include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the like. These and other input devices connect to the processing unit 914 through the system bus 918 via interface port(s) 938. Interface port(s) 938 include, for example, a serial port, a parallel port, a game port, and a universal serial bus (USB). Output device(s) 940 use some of the same type of ports as input device(s) 936. Thus, for example, a USB port may be used to provide input to computer 912, and to output information from computer 912 to an output device 940. Output adapter 942 is provided to illustrate that there are some output devices 940 like monitors, speakers, and printers, among other output devices 940 that require special adapters. The output adapters 942 include, by way of illustration and not limitation, video and sound cards that provide a means of connection between the output device 940 and the system bus 918. It should be noted that other devices and/or systems of devices provide both input and output capabilities such as remote computer(s) 944.
Computer 912 can operate in a networked environment using logical connections to one or more remote computers, such as remote computer(s) 944. The remote computer(s) 944 can be a personal computer, a server, a router, a network PC, a workstation, a microprocessor based appliance, a peer device or other common network node and the like, and typically includes many or all of the elements described relative to computer 912. For purposes of brevity, only a memory storage device 946 is illustrated with remote computer(s) 944. Remote computer(s) 944 is logically connected to computer 912 through a network interface 948 and then physically connected via communication connection 950. Network interface 948 encompasses communication networks such as local-area networks (LAN) and wide-area networks (WAN). LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet/IEEE 802.3, Token Ring/IEEE 802.5 and the like. WAN technologies include, but are not limited to, point-to-point links, circuit switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet switching networks, and Digital Subscriber Lines (DSL).
Communication connection(s) 950 refers to the hardware/software employed to connect the network interface 948 to the bus 918. While communication connection 950 is shown for illustrative clarity inside computer 912, it can also be external to computer 912. The hardware/software necessary for connection to the network interface 948 includes, for exemplary purposes only, internal and external technologies such as, modems including regular telephone grade modems, cable modems and DSL modems, ISDN adapters, and Ethernet cards.
As used herein, the terms “component,” “system” and the like are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on computer and the computer can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. The word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs.
The internal bus 1034 joins the backplane interface 1032 with a memory 1036, a microprocessor 1028, front panel circuitry 1038, I/O interface circuitry 1039 and communication network interface circuitry 1041. The microprocessor 1028 can be a general purpose microprocessor providing for the sequential execution of instructions included within the memory 1036 and the reading and writing of data to and from the memory 1036 and the other devices associated with the internal bus 1034. The microprocessor 1028 includes an internal clock circuit (not shown) providing the timing of the microprocessor 1028 but may also communicate with an external clock 1043 of improved precision. This clock 1043 may be a crystal controlled oscillator or other time standard including a radio link to an external time standard. The precision of the clock 1043 may be recorded in the memory 1036 as a quality factor. The panel circuitry 1038 includes status indication lights such as are well known in the art and manually operable switches such as for locking the module 1014 in the off state.
The memory 1036 can comprise control programs or routines executed by the microprocessor 1028 to provide control functions, as well as variables and data necessary for the execution of those programs or routines. For I/O modules, the memory 1036 may also include an I/O table holding the current state of inputs and outputs received from and transmitted to the industrial controller 1010 via the I/O modules 1020. The module 1014 can be adapted to perform the various methodologies of the innovation, via hardware configuration techniques and/or by software programming techniques.
What has been described above includes various exemplary aspects. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing these aspects, but one of ordinary skill in the art may recognize that many further combinations and permutations are possible. In particular regard to the various functions performed by the above described components (assemblies, devices, circuits, systems, etc.), the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., that is functionally equivalent), even though not structurally equivalent to the disclosed structure, which performs the function in the herein illustrated exemplary aspects of the innovation. In this regard, it will also be recognized that the innovation includes a system as well as a computer-readable medium having computer-executable instructions for performing the acts and/or events of the various methods of the innovation. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
Number | Name | Date | Kind |
---|---|---|---|
4510565 | Dummermuth | Apr 1985 | A |
4553205 | Porchia | Nov 1985 | A |
4616333 | Shimoni | Oct 1986 | A |
4718025 | Minor et al. | Jan 1988 | A |
4731735 | Borgendale et al. | Mar 1988 | A |
4773028 | Tallman | Sep 1988 | A |
4831529 | Miike et al. | May 1989 | A |
4975865 | Carrette et al. | Dec 1990 | A |
5003469 | Kamiyama et al. | Mar 1991 | A |
5051932 | Inove et al. | Sep 1991 | A |
5274781 | Gibart | Dec 1993 | A |
5452201 | Pieronek et al. | Sep 1995 | A |
5568383 | Johnson et al. | Oct 1996 | A |
5805442 | Crater et al. | Sep 1998 | A |
5901323 | Milliken et al. | May 1999 | A |
5943675 | Keith et al. | Aug 1999 | A |
5991793 | Mukaida et al. | Nov 1999 | A |
6092036 | Hamann | Jul 2000 | A |
6110214 | Klimasauskas | Aug 2000 | A |
6139201 | Carbonell et al. | Oct 2000 | A |
6198480 | Cotugno et al. | Mar 2001 | B1 |
6204782 | Gonzalez et al. | Mar 2001 | B1 |
6219649 | Jameson | Apr 2001 | B1 |
6233623 | Jeffords et al. | May 2001 | B1 |
6252589 | Rettig et al. | Jun 2001 | B1 |
6263487 | Stripf et al. | Jul 2001 | B1 |
6298393 | Hopsecger | Oct 2001 | B1 |
6298454 | Schleiss et al. | Oct 2001 | B1 |
6385496 | Irwin et al. | May 2002 | B1 |
6411987 | Steger et al. | Jun 2002 | B1 |
6505247 | Steger et al. | Jan 2003 | B1 |
6536029 | Boggs et al. | Mar 2003 | B1 |
6539271 | Lech et al. | Mar 2003 | B2 |
6559861 | Kennelly et al. | May 2003 | B1 |
6574639 | Carey et al. | Jun 2003 | B2 |
6584488 | Brenner et al. | Jun 2003 | B1 |
6618856 | Coburn et al. | Sep 2003 | B2 |
6633782 | Schleiss et al. | Oct 2003 | B1 |
6701324 | Cochran et al. | Mar 2004 | B1 |
6754668 | Noble et al. | Jun 2004 | B2 |
6754885 | Dardinski et al. | Jun 2004 | B1 |
6766214 | Wang et al. | Jul 2004 | B1 |
6795798 | Eryurek et al. | Sep 2004 | B2 |
6799148 | Ling et al. | Sep 2004 | B2 |
6847850 | Grumelart | Jan 2005 | B2 |
6847854 | Discenzo | Jan 2005 | B2 |
6865644 | Husted et al. | Mar 2005 | B2 |
6952727 | Lindner et al. | Oct 2005 | B1 |
6975913 | Kreidler et al. | Dec 2005 | B2 |
7043311 | Nixon et al. | May 2006 | B2 |
7050873 | Discenzo | May 2006 | B1 |
7069201 | Lindner et al. | Jun 2006 | B1 |
7152222 | Kumhyr et al. | Dec 2006 | B2 |
7181370 | Furem et al. | Feb 2007 | B2 |
7206646 | Nixon et al. | Apr 2007 | B2 |
7206965 | Roddy et al. | Apr 2007 | B2 |
7218974 | Rumi et al. | May 2007 | B2 |
7228310 | O'Brien | Jun 2007 | B2 |
7249356 | Wilson et al. | Jul 2007 | B1 |
7272665 | Yamada et al. | Sep 2007 | B2 |
7275062 | Deitz et al. | Sep 2007 | B2 |
7286888 | Monette et al. | Oct 2007 | B2 |
7299367 | Hamm et al. | Nov 2007 | B2 |
7328078 | Sanford et al. | Feb 2008 | B2 |
7359930 | Jackson et al. | Apr 2008 | B2 |
7406453 | Mundie et al. | Jul 2008 | B2 |
7574417 | McGreevy et al. | Aug 2009 | B1 |
7584216 | Travieso et al. | Sep 2009 | B2 |
7616095 | Jones et al. | Nov 2009 | B2 |
7627385 | McGreevy et al. | Dec 2009 | B2 |
7684876 | Grgic | Mar 2010 | B2 |
7693585 | Kalan et al. | Apr 2010 | B2 |
7742833 | Herbst et al. | Jun 2010 | B1 |
20020019839 | Shiu | Feb 2002 | A1 |
20020069235 | Chen | Jun 2002 | A1 |
20020120744 | Chellis et al. | Aug 2002 | A1 |
20020133523 | Ambler et al. | Sep 2002 | A1 |
20020169907 | Candea et al. | Nov 2002 | A1 |
20020174263 | Codd et al. | Nov 2002 | A1 |
20020184601 | Fitzhenry et al. | Dec 2002 | A1 |
20020184610 | Chong et al. | Dec 2002 | A1 |
20030014130 | Grumelart | Jan 2003 | A1 |
20030041135 | Keyes et al. | Feb 2003 | A1 |
20030100958 | Cachat et al. | May 2003 | A1 |
20030101208 | Chauvel et al. | May 2003 | A1 |
20030130899 | Ferguson et al. | Jul 2003 | A1 |
20030172107 | Leyfer et al. | Sep 2003 | A1 |
20030182303 | Gibson | Sep 2003 | A1 |
20040153437 | Buchan | Aug 2004 | A1 |
20040181294 | Deitz et al. | Sep 2004 | A1 |
20040225649 | Yeo et al. | Nov 2004 | A1 |
20050071755 | Harrington et al. | Mar 2005 | A1 |
20050085928 | Shani | Apr 2005 | A1 |
20050198034 | Boyer | Sep 2005 | A1 |
20050198406 | Sichner | Sep 2005 | A1 |
20050203648 | Martin | Sep 2005 | A1 |
20050210337 | Chester et al. | Sep 2005 | A1 |
20060004827 | Stuart | Jan 2006 | A1 |
20060020928 | Holloway et al. | Jan 2006 | A1 |
20060026559 | Gunturi et al. | Feb 2006 | A1 |
20060067334 | Ougarov et al. | Mar 2006 | A1 |
20060161268 | Frensch et al. | Jul 2006 | A1 |
20060259160 | Hood et al. | Nov 2006 | A1 |
20060291283 | Jin et al. | Dec 2006 | A1 |
20060294502 | Das et al. | Dec 2006 | A1 |
20070006039 | Fichter et al. | Jan 2007 | A1 |
20070027913 | Jensen et al. | Feb 2007 | A1 |
20070028070 | Avergun et al. | Feb 2007 | A1 |
20070038610 | Omoigui | Feb 2007 | A1 |
20070050348 | Aharoni et al. | Mar 2007 | A1 |
20070073744 | McVeigh et al. | Mar 2007 | A1 |
20070112447 | McGreevy et al. | May 2007 | A1 |
20070112801 | McGreevy et al. | May 2007 | A1 |
20070136533 | Church et al. | Jun 2007 | A1 |
20070142941 | McGreevy et al. | Jun 2007 | A1 |
20070156770 | Espelien | Jul 2007 | A1 |
20070244964 | Challenger et al. | Oct 2007 | A1 |
20070282577 | Lind | Dec 2007 | A1 |
20070288795 | Leung et al. | Dec 2007 | A1 |
20070294078 | Kim et al. | Dec 2007 | A1 |
20080027678 | Miller | Jan 2008 | A1 |
20080082577 | Hood et al. | Apr 2008 | A1 |
20080126408 | Middleton | May 2008 | A1 |
20080313228 | Clark et al. | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
0490864 | Jun 1992 | EP |
1109107 | Jun 2001 | EP |
1307823 | May 2003 | EP |
2347234 | Aug 2000 | GB |
2353616 | Feb 2001 | GB |
2004027531 | Apr 2004 | WO |
2005006130 | Jan 2005 | WO |
2005006130 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080114571 A1 | May 2008 | US |